
Geometric computing and
uniform grid technique
V Akman, W R Franklin*, M Kankanhalli* and C Narayanaswami

If computational geometry should play an important role
in the professional environment (e.g. graphics and
robotics), the data structures it advocates should be
readily implementable and the algorithms efficient. In the
paper, the uniform grid and a diverse set of geometric
algorithms that are all based on it, are reviewed. The
technique, invented by the second author, is a flat, and
thus non-hierarchical, grid whose resolution adapts to
the data. It is especially suitable for telling efficiently which
pairs of a large number of short edges intersect. Several
of the algorithms presented here exist as working
programs (among which is a visible surface program for
polyhedra) and can handle large data sets (i.e. many
thousands of geometric objects). Furthermore, the uniform
grid is appropriate for parallel processing; the parallel
implementation presented gives very good speed-up
results.

uniform grid, line segment intersection, haloed lines, polyhedral
visibility, map overlay, point location, Boolean operations on polyhedra,
parallel computational geometry

The procedure shews me a How o / " m a k i n g ' - - L. W.

In an influential recent paper 1, Guibas and Stolfi note
that, 'Among the tools of computational geometry
there seems to be a small set of techniques and
structures that have such a wide range of applications
that they deserve to be called fundamental, in the same
sense that balanced binary trees and sorting are
fundamental for combinatorial algorithms in general.'
They then overview design techniques such as the locus
approach, geometric transforms, duality, and space
sweep and data structures such as fractional cascading
and finger trees.

The aim of this paper is to describe a technique
called the uniform grid which the authors believe may
be quite fundamental in geometric computing in the
sense understood above. (To word this claim a little
more mildly, it must be stated that the grid is not a
theoretical contribution on the lines of, for example,
duality.)

The uniform grid was invented by the second author
more than a decade ago 2 and since then it has been

Department of Computer Engineering and Information Sciences,
Bilkent University, PO Box 8, 06572 Maltepe, Ankara, Turkey
*Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, New York 12810, USA

successfully used to solve a rich collection of geometric
problems. Among those problems, whose execution
time the uniform grid vastly improves, are well-known
issues such as polyhedral visibility, haloed line
computation, map overlay, Boolean operations on
polyhedra, etc.

The uniform grid works in the object space, i.e.
the realm of exact (within the provided precision)
computation. Object space algorithms are important
because, in nearly all CAD applications, precision is
required for reasons of integrity.

The uniform grid* is a regular grid overlaid on a
scene. The 'fineness' of the grid is an experimentally
determined function of the statistics of the given
geometric objects. The uniform grid is especially suitable
for telling efficiently which pairs of a large number of
short edges intersect. This is the most time-consuming
operation in programs aimed at resolving the issues
cited in the preceding paragraph.

Objections have been made to the uniform grid, in
the past, on the grounds that it is only suitable for
evenly spaced data. This paper will review several
applications and show experimentally that the grid is
just as efficient on unevenly spaced, real data. It will
also be shown that the uniform grid executes well on
parallel machines, making it a fine choice for parallel
computational geometry.

After this introduction, the rest of the paper is
structured as follows. Next, it is shown how to perform
line segment intersection and a couple of other
fundamental operations via the uniform grid. This is
followed by a section which enumerates the applications.
After a section relating the authors' experience with
running the uniform grid in parallel, a discussion on
extensions and future work, finishes the paper.

Caveat: Due to the amount of material recalled, this
paper is necessarily terse at times. The reader is referred
to the relevant articles for details.

U N I F O R M G R I D T E C H N I Q U E

The uniform grid is introduced by a demonstration of
how two common operations can be accomplished,
line segment intersection and planar point location.

Previously, the uniform grid was called an adaptive grid. However,
since there is another, independent and unrelated use of this term in
numerical analysis (in the iterative solution of partial differential
equations) it was dropped from use.

410 0010-4485/89/070410-11 $03.00 © 1989 Butterworth & Co (Publishers) Ltd computer-aided design

Some analysis is also given as to the expected
performance for a uniform distribution.

Line segment intersection

In many areas, such as graphics, cartography, robotics
and VLSI design, there exist problems such as visible
surface computat ion, map overlay, interference
detection, and design-rule checking, respectively, where
the essential, most t ime-consuming operation is line
segment (edge) intersection 3. A textbook on computa-
tional geometry by Preparata and Shamos 4 begins a
chapter on 'Intersections' as follows:

'Much of the motivation for studying intersection problems
stems from the simple fact that two objects cannot occupy
the same-place at the same time. An architectural design
program must take care not to place doors where they
cannot be opened or have corridors that pass through
elevator shafts. In computer graphics, an object to be
displayed obscures another if their projections on the viewing
plane intersect. A pattern can be cut from a single piece of
stock only if it can be laid out so that no two pieces overlap.
The importance of developing efficient algorithms for
detecting intersection is becoming apparent as industrial
applications grow increasingly more ambitious: a complicated
graphic image may involve one hundred thousand vectors,
an architectural database often contains upwards of a million
elements, and a single integrated circuit may contain millions
of components.'

Obviously, the trivial solution for the intersection problem
(test all (~) segment pairs for intersection) is not
practical. Before reviewing some results showing the
improvements in intersection algorithms, a few lower
bounds are cited. It is known that O(n log n) comparisons*
are necessary and sufficient to determine whether n
intervals are disjoint. (Only algebraic functions of the
input are allowed.) Thus ~ (n log n + k) is a lower bound
for the problem of reporting all k intersections among
an arbitrary set of n segments. To see this just observe
that ~ (n log n) comes from the preceding bound and
O(k) is due to the size of the output. Bentley and
Ottmann 6 proved, by extending an early sweeping line
algorithm due to Shamos and Hoey, that O((n + k) log
n) time suffices to report all k intersections. They used
O(k) space which was later reduced to O(n) by K Q
Brown without changing the time bound. Chazelle 7
reduced the time bound to

o(k n tog
log log nJ

using O(n + k) space. He and Edelsbrunner recently
improved this bound to O(n log n + k) which is
worst-case optimal. The authors have not yet seen this
work 8 which came to their attention through a footnote
in Mairson and Stolfi 9.

Hart and Sharir's work on Davenport-Schinzel
sequences is also important as a theory of line segment
intersections ~°. Myers ~ did some interesting work on
the expected time complexity of segment intersection.
He showed that the problems can be solved in O(n)

* The reader is referred to Greene and Knuth s for precise definitions
of the 0(o), [~-(o), and O(o) notations.

space and O(n log n + k) expected time. Unlike the
Bentley and Ottmann algorithm 6, Myers' algorithm can
deal with special cases such as vertical segments, three
or more segments intersecting at a point, and collinear
segments that intersect (overlap). The necessary
statistical hypothesis of Myers is that 2n endpoints of
the segments are uniformly distributed. He does not
impose any demands on the distribution of the actual
intersection points.

A special case of the segment intersection problem
arises with the so-called red-b lue intersections. Given
two sets R and B of a total of n line segments in the
plane, such that no two segments in R (similarly, B)
intersect, find all intersections between segments of R
and B. Mairson and Stolfi 9 gave an asymptotically
optimal algorithm which reports all those intersections
between R and B in O(n log n + k) time with O(n)
space. They assume*, however, that the input is free
from 'degeneracies.' Thus all endpoints and intersections
have distinct coordinates, no segment endpoint lies on
another segment of either set, and any two curves of
R u B intersect at finitely many points (their algorithm
can handle curved edges). Consequently, vertical
segments, segments which are reduced to points, and
multiple segments incident on the same endpoint are
excluded. Besides, it is more natural to require that the
edges in each set may intersect among themselves -
consider a robot arm and a workpiece. It should be
remarked that the algorithms given in Bentley and
Ottman 6 and Chazelle 7 cannot find all the red-b lue
intersections without finding (or already knowing) all
the red-red and b lue-b lue intersections.

Before proceeding with the uniform grid approach
to the line segment intersection problem, it is desirable
to touch briefly on a subject of crucial importance in
computational geometry: special cases. The correct
handling of special cases is a key issue when a low-level
procedure is used to solve a higher level problem. There,
proper handling of the low-level special cases should
automatically solve the higher level special cases too.
It is commonplace that special cases can consume a
great deal of the code written to implement a given
algorithm. To quote Franklin et al. ~2, 'Problems such as
polygon intersection, where an algorithm can be
described to another person in about 100 words, can
take weeks to design and code.' There are several
reasons for this. Franklin ~3 studied the errors symptomatic
of the underlying computer algebra. Forrest TM and
Akman ~ also give comments on this problem. However,
it is noted that special cases are frequently artifacts of
the data structures used, and do not belong to the
intrinsic problem, e.g. problems arising from the
sweeping paradigm.

There are naturally several solutions to the special
cases problem. Forrest 16 and Akman ~7 offer several
thoughts on what they call a 'geometric computing
environment' or a 'geometer's workbench', respectively,

tThe standard perturbation method (the idea of distorting the input
data by a minute amount in such a way that all degeneracies
disappear without changing which pairs intersect and which do
not) advocated by Mairson and Stolfi towards the end of their paper
seems very costly and impractical.

volume 21 number 7 september 1989 411

which facilitates the testing of geometric algorithms. It
will shortly be shown that with the uniform grid, special
cases simply disappear (modulo the floating point
arithmetic accuracy).

Uniform grid

It is probably suitable to introduce the uniform grid by
drawing an analogy to the 'bucketing' idea in sorting.
Given a set of n keys with a value between 0 and U - 1
(where U is the universe size), they can be sorted in
time O(n + U) using O(n + U) space. More generally,
given a set of n points in a d-dimensional universe,
they can be sorted lexicographically in O(d(n + U))
time using O(n + U) space.

Probably originating from this idea, data structures
resembling the uniform grid have also been called
buckets in the literature TM. In the case of geometric
algorithms, it is understood that a bucket is one of
the subregions into which the entire region under
consideration is partitioned. Normally, buckets are
either square or rectangular and they are rectilinearly
oriented (i.e. with sides parallel to the coordinate axes).
When a bucket has such a simple shape it is very easy
to divide the region of interest into buckets and
furthermore, to decide in which buckets a geometric
object (e.g. a point or a line segment) belongs.

It is assumed that n edges of average length / are
independently and identically distributed (liD)in a I x 1
screen. This involves projecting and scaling the scene
to fit in this square; techniques for this are well-known.
A G x G grid is placed over the screen. Accordingly,
each grid cell is of size 1/G x 1/G. Note that the grid
cells partition the screen without any overlaps or
omissions. This can be achieved (among others) in the
following way: assume that all the coordinates are such
that 0 ~x , y < 1 and assign only the western and
southern boundaries of each cell to that cell, in addition
to its interior. (This is important to determine duplicate
intersections, as will be noted below.)

The line segment intersection algorithm works as
follows:

• Step 0: determine the optimal grid resolution G from
the statistics of the input edges. This point will be
considered further in the sequel, but letting G = [1/11
is reasonable. Fine-tuning is discussed later.

• Step 1: for each edge, it is determined which cells
it passes through, and ordered pairs are written
(cellnumber, edgenumber) or in short (cell, edge).

• Step 2: the list of ordered pairs is sorted by the cell
number and the numbers of all the edges that pass
through each cell are collected. This gives a new set
whose elements are (cell, {edge, edge }), with
one element for each cell that has at least one edge
passing through it. Unlike in a tree data structure, if

• a cell is empty it does not occupy even one word of
storage, not even a null pointer.

• Step 3: finally, a comparison is made, for each cell,
of all the edges in it pair-by-pair to determine the
intersections. To see if two edges intersect, each
edge's endpoint is simply tested against the line
equation of the other edge. Calculated intersections

that fall outside the current cell are ignored, lhis
takes care of some pair of edges occurring together
in more than one cell (hence the initial provision to
partition the screen completely).

Correctness of the algorithm is trivial: two edges that
intersect must do so in some cell, and so must appear
together in that cell. Let the first step (step 1) in the
above algorithm be called the preprocessing step.
Preprocessing is done by an extension of Bresenham's
algorithm not by comparing an edge against each of
the G 2 cells. In fact, simply note that if a few extra cells
were included for an edge, the result would still be
correct. Thus a very convenient method is to draw a
rectangular box around an edge and include all the
cells that this box overlaps. This is only noticeably
suboptimal for edges much longer than /, which are
statistically infrequent - - it speeds this part of the
algorithm and slows down the pair-by-pair comparison
(step 3).

Before proceeding, it would be helpful to clear up
any misconceptions. The uniform grid has nothing to
do with Warnock's hidden line algorithml~; an edge is
not clipped into several pieces if it passes through
several cells. Unlike the k-d trees of Bentley 20, the
uniform grid partitions the data coordinate space
evenly and independently of the order in which the
input occurs. Furthermore, unlike a quadtree 2~ or an
octree 22, the uniform grid is one level; it does not
subdivide within crowded regions.

In fact, there are different possible implementations
for the grid:

• as noted above, write a list of (cell, edge) pairs and
sort

• use a G x G x M array where M is the maximum
number of edges per cell

• use a G x G array of lists
• combine two methods, i.e. if A is the average number

of edges per cell, use a G x G x A array of edges
followed by either the first or third method above
for the overflow

• use a two-level method, i.e., first partition the data
into blocks small enough to process easily and then
use any of the above methods on each block

Planar point location

Point location is one of the fundamental operations in
computational geometry. Algorithms for point location
are characterised in terms of three issues: preprocessing
time, space, and query time. Clearly, this assumes that
there is fixed planar subdivision and that numerous
location queries are posed so as to justify the time
spent in preprocessing. There has been a considerable
amount of work dealing with the problem; so only two
key results are quoted and the reader is referred to
Preparata and Shamos 4 for details. Lipton and Tarjan
gave the first optimal solution to the problem with an
intricate algorithm based on their 'planar separator
theorem', which has many far-reaching applications 4.
They achieved an O(Iog n) query time with a data
structure that takes linear space and is built in O(n log n)

412 computer-aided design

time, for an input graph with n vertices. Kirkpatrick
later gave a conceptually simpler algorithm which attains
the same bounds; however, the constant factor in his
bound seems to be very large 4.

First, as a special case of planar point location,
consider the problem of testing whether a point p is
in a polygon. A 1D version of the uniform grid is given
that solves this problem very efficiently: the execution
time depends on the average number of edges that a
random scan-line would cut. In other words, the total
number of edges of the polygon has no effect on the
time.

The method is an extension of the well-known
method where a semi-infinite line is extended from p
in some direction. Then p is inside the polygon iff the
ray intersects an odd number of edges. The uniform
grid is used to test the ray against every edge. For this,
the polygon's edges are projected onto a line (e.g. the
x-axis) and the line is divided into 1D grid cells (slabs).
It is now known which edges fall into each cell. p is
then projected and the ray running vertically up from
it is considered. This can only intersect those edges
which belong to the cell of p; so it need only be tested
against those edges. Clearly, the execution time is equal
to the average number of edges per cell. As the cell
size becomes smaller than the edge size, this number
will approach the polygon's 'depth complexity'.

Sometimes, for point-in-polygon testing, rather than
counting how many edges the ray crosses, it is faster
to orient the edges and just look at the first edge the
ray crosses. This works when the polygon is a union
but the union polygon is not available explicitly, e.g. a
VLSI layer.

Consideration is now given to the general version of
the problem: given a planar graph, determine which
polygon of the graph contains p (each polygon has a
unique name). This could be done by testing p in turn
against each polygon of the graph as explained above,
but that would be slow. Besides it would require that
one polygon does not completely contain another. An
efficient and general method is as follows:

• Extend a semi-infinite line from p.
• Determine all the edges it intersects, along with

those edges' neighbouring polygons.
• Sort those edges along the ray by their intersections

from p. Then, p is contained in the lower polygonal
neighbour of the closest crossing edge.

As before, the uniform grid is used to put the planar
graph's edges (together with the names of the regions
neighbouring along them) into a 1D structure, and to
test the ray against only those edges in the same cell
as p's projection.

Some analysis

Choosing a grid size for a given scene looked like a
most important problem when the authors first started
experimenting with the uniform grid. This led to the
gathering of extensive statistics to optimize the algorithm.
This has been done in spite of the provable efficiency of
the data structure with liD geometric objects. Assume

that a grid size of G = [c/ l l is chosen, where c is a
fine-tuning constant. To find the cells that an edge falls
in takes time proportional to a constant plus the actual
number of these cells. The expected number of cells
covered by the bounding box* of an edge is O(12G2).
Thus the total time to place the edges in cells
(preprocessing) is O(n12G2), or simply O(n). For the
intersection part, there are O(n) (cell, edge) pairs
distributed among G 2 cells, for an average of O(n /G 2)
edges per cell, or equivalently, an average of O(n2/G 4)
pairs to test. (This must hold since the edges are liD.
Thus their number in any cell is Poisson distributed,
whence the mean of the square is the square of the
mean.) Using once again G = c/I, the time to process
all the cells becomes O(n2P). Since this last figure is
equal to the expected number of intersections of the
edges, the algorithm behaves linearly in the sum of
input (n edges) and output (k intersections).

Clearly, the actual c, which minimizes the total time
for a given scene, should be determined heuristically
as it would depend on the relative speeds of the various
parts of the program, and consequently on the model
of computer. This subject will be considered again.

APPLICATIONS

A unifying characteristic of the applications summarized
below is that they use the uniform grid as an essential
part. In each case, only some representative timing
figures are cited to show the performance, and the
reader is referred to the individual papers for extensive
statistics.

Haloed lines

Haloed lines were introduced in an article by Appel
et al. 23 who gave various reasons for using them and
good examples. Briefly, one imagines that each line has
a narrow region, or a halo, that runs along it on both
sides. If another, more distant line intersects the first
line (in the projection plane), then part of the farther
line that passes through the first line's halo is blotted
out. David Arnold and B~hr de Ruiter remark in an
editorial 24, discussing a paper by Franklin and Akman 2s,
that haloed lines must open up a series of applications
for the PHIGS interior style 'empty' as the effect is of
displaying nothing, but nevertheless obscuring that
which lies behind.

A haloed line picture shows more 3D relationships
than any of the following three alternatives:

• show all the lines
• remove hidden lines
• show hidden lines dashed

Note that if it is wanted to show the hidden edges
'dashed' it is essential to be able to tell which edges
are hidden - this in turn requires that the faces of the

* If a variant of Bresenham's algorithm is used, then this number
would only be O(IG). However, this higher number is used as it is
more conservative and does not affect the rate of growth of the
total time.

volume 21 number 7 september 1989 413

given objects are known. With haloed lines, a gap is
produced on an edge where it passes behind another
edge, so only the edge data is needed and not the
faces. Thus, the use of invisible haloes around lines of
a wireframe drawing could be used to highlight the
spatial relationships between the lines being drawn, but
without the computational expense of full hidden-line
elimination.

The implementation 2s of haloed lines, HALO, has two
parts. The first part uses a uniform grid to compute all
edge intersections. It then writes a set containing all
the locations where each edge is crossed in front by
another, along with the angle of intersection. Given a
halo width, the second part reads this set edge-by-edge.
For each edge it subtracts and adds the halo width to
each intersection to obtain the locations where the
edge becomes invisible and visible. (The angle of
intersection is used to obtain the appropriate halo
width.) It sorts these along the edge and then traverses
the edge, plotting only those portions where the
number of visible transitions is equal to the number of
invisible transitions. This second part takes time linear
in the number of segments into which the edges are
partitioned. The fact that the haloed line computation is
carried out in two separate parts has the advantage that
the first part, which is slower, uses just the edges and not
the halo width. Thus if it is useful to draw the same
picture with various halo widths (perhaps to pick the
best looking plot), most of the computation for the
second and later plots can be avoided.

HALO is written in Ratfor, a Fortran preprocessor
used by Kernighan and Plauger 26. On a Prime 750, where
a single precision floating multiplication takes 2 to 3 #s,
HALO spent less than 240 s to compute the haloed
line picture of a data set with 9408 edges.

On a separate test, the second author implemented
an independent program called EDGE which creates
random edges of varying lengths and angles, finds all
intersections, and plots the edges with intersections
marked. Thus EDGE almost corresponds to the first part

Table 1. Sample statistics obtained using program EDGE

of HALO. EDGE is written in Flecs, another Fortran
preprocessor by T. Beyer. For a large problem with 50000
edges and 47222 computed intersections EDGE took
about 360 s. The average edge length] was 0.01 and
the grid size G was 100. About 20% of the time was
spen t in the p r ep roces s ing step. A total of 98753 (cell,
edge) pairs were c r e a t e d and 11534 in te rsec t ions were
r e j ec t ed as dupl ica tes . 1-able 1 shows s o m e s a m p l e
stat is t ics o b t a i n e d with EDGE.

Boolean operations on polyhedra

Algorithms for calculating the set-theoretic combinations
(union, intersection, and difference) of polyhedra are
required in several places:

• solid modelling where complex objects are formed
from a small set of primitives

• numerical control where the volume cut out of an
object by a drill is wanted

• interference detection where it is to be determined
whether two parts are trying to occupy the same
place

The principal contribution of the algorithm in Franklin 2'*
is that, through its use of the uniform grid, it can process
scenes with thousands of faces. Furthermore, unlike
some other algorithms, it produces all the Boolean
combinations at little more than the cost of producing
one.

The algorithm accepts the polyhedra in B-rep (Eulerian
surface description) format and produces a list of new
faces with tags indicating which of these faces are to
be included in each of the Boolean combinations. A
striking difference that makes this algorithm more
involved than the others reported in this paper is that
for polyhedral combinations a 3D grid (cells becoming
cubes instead of squares) is used. For the polygonal
case, there is no difference. Here, the authors restrict
themselves to that and refer the reader to Franklin 27

Number of Average Length of
edges length of side of each

edges grid cell
(assuming
screen is 1 by 1)

Number of CPU time (s) CPU time (s) Total
intersections to put to find CPU time
found edges in intersections (s)

cells among
edges

100 0.100 0.100
300 0.100 0.100

1000 0.010 0.010
1000 0.030 0.030
1000 0.100 0.100
3000 0.010 0.010
3000 0.030 0.030
3000 0.100 0.100

10000 0.003 0.010
10000 0.010 0.010
10000 0.030 0.030
30000 0.001 0.010
30000 0.003 0.010
30000 0.010 0.010
50000 0.001 0.010
50000 0.003 0.010
50000 0.010 0.010

15 0.17 0.26 0.43
153 0.54 0.93 1.47
11 1.73 3.62 5.35

163 1.72 2.54 4.25
1720 1.71 4.46 6.18
149 5.24 8.05 13.29

1487 5.41 8.82 14.22
15656 5.19 27.93 33.12

156 16.36 16.45 32.82
1813 17.38 26.02 43.40

16633 17.68 44.78 67.45
149 48.33 43.95 92.28

1797 48.46 54.21 102.66
16859 52.85 98.93 151.78

315 77.71 75.75 153.46
4953 79.49 92.37 171.87

47222 86.23 278.49 364.72

414 computer-aided design

for the 3D version, which is considerably more
complicated.

Given two polygons, P~ and P2, the algorithm proceeds
as usual and intersects all the edges of P1 with all the
edges of P2 in each cell. For each pair of edges, e and
l, found to intersect, two ordered pairs, (e, f) and (f, e)
are written. Overlapping collinear edges are considered
to intersect. After sorting the last set by the first edge
of each pair, all the edges intersecting each edge are
obtained in one place. Now the segments are needed.
A segment is a whole edge or a piece of an edge that
will not be further subdivided (and that may be used in
the resulting polygon). Since there are two types of
segments - those that come from an edge of only one
polygon and those that are common to an edge of
both polygons - care is taken to store the names of
the polygons and the orientations of the segments. To
compute the segments, simply note the other edges
that intersect a given edge, e, and sort the intersection
points along e. Finally, depending on the particular
result desired (P~ u P2, P~ ~ P2, or P~\P2) an appropriate
subset of the segments are selected from a table (not
reproduced here) given in Franklin 27. For example, if
two polygons were wanted to be united, then edge
segments to be included are as follows: on P~ and
outside P2, on P2 and outside P~, and on both and in
the same direction.

If it is desirable to have the edges of the resulting
polygon in order, then the algorithm given in Franklin
and Akma, n 2~ can be applied. That is, given a straight-
edge planar graph in terms of its edges, the faces should
be determined. This can be accomplished in O(n log n)
time using linear space for a graph with n edges and
is worst-case optimal.

Map overlay
Cartographic map overlay 29'~° is the process of
superimposing two maps. A map is a 2D spatial data
structure made of a set of chains (polylines in the plane).
A chain begins at a vertex and ends at a vertex (not
necessarily the same one). A chain does not intersect
itself. Furthermore, the chains in the same map do not
intersect among themselves. The set of chains and
vertices partition the plane into regions.

The algorithm for map overlay is simply an extension
(and combination) of the algorithms for polygon
intersection 27 and planar graph reconstruction 28. The
difference is that instead of edges, the algorithm deals
with chains. Briefly, first the intersecting chains are split.
Then the vertex incidences are computed. This is
followed by a sort of the chains into proper cyclic order
at each vertex. Finally, we link up the region boundaries
and identify, for each region, the regions to its left and
right. To prevent numerical problems, an exact rational
package is used.

Polyhedral visibility
HSH ~ is an object space hidden-surface program for
polyhedra. (McKenna 32 presents bounds on worst case
optimal hidden-surface removal.) HSH was first described
in Franklin 33 and an analysis given there showed that

the algorithm is linear in the number of faces and is not
affected by the depth complexity of the scene, provided
the faces are liD.

A regular G x G grid is, as usual, overlaid on the
scene. Each cell c of the grid has three initially null
items associated with it:

• the name of the closest blocking face block(c), if
any, of this cell (block(c) covers c completely and
thus hides everything behind)

• the set of front faces traces(c) which intersect c and
are in front of block(c)

• the set of edges ledges(c) which intersect c and are
i n front of block(c)

First it is determined, for each projected face f, the grid
cells cells that f partly or wholly covers. For a cell c ~ cells
we check if c has a block(c) which is in front of f
throughout the cell. If so, this c is no longer considered
with t. Otherwise, t itself may be a blocking face; in
this case, block(c)is appropriately updated. If none of
the preceding cases holds, then l is inserted to ffaces(c).
This is repeated for all members of cells. Following this,
for each grid cell c compare block(c) to all faces in
flaces(c). All faces that are behind block(c) throughout
cell c are deleted from ffaces(c).

Then for each projected edge e, the cells, cells, to
which the edge partly or wholly belongs, are determined.
For each c~cells, e is checked to see if it is behind
block(c). If this is not true, then e is added to ledges(c).
This is repeated for each member of cells. Following
this, the segment calculation is carried out, which is
identical to the process summarized in the section
dealing with Boolean operations. Note that a segment
is visible iff its midpoint p is visible. (This is determined
by comparing p against block(c) and traces(c), where
c is the cell including the midpoint.) Now we should
find the visible regions made from these visible segments.
Computing the regions of the straight-edge planar
graph composed of the visible segments is done as
explained by Franklin and Akman 28. Finally, for each
visible region of the graph, the intensity (shading value)
should be computed. Let p be an interior point of a
visible region and let c be the cell enclosing p. Scan
through flaces(c) and find the closest face f~tfaces(c)
whose projection covers p. Thus, this region is given a
suitable shading value using say, the surface normal of f.

HSH was implemented in Ratfor on a Prime 750. It
is able to create some complex pictures of random
polyhedral scenes very quickly. The reader is referred
to Franklin 33 and Franklin and Akman 3~ for example
scenes which are rendered either as cross-hatched pen
plotter drawings or as shaded raster images.

PARALLEL PROCESSING
The uniform grid method is ideal for implementation
on a parallel machine because it consists of two types
of operations: applying a function independently to
each element of a set to generate a new set, and sorting
a set. Both types can be made to run well in parallel.

Several versions of uniform grid were implemented ~4-36
on a Sequent Balance 21000 which contains 16 National

volume 21 number 7 september 1989 415

Semiconductor 32000 processors. The authors compared
the elapsed t ime when up to 15 processors were used
with the t ime for a single processor. The speed-up ratios
ranged from eight to 13. For example, on a scene
consisting of three overlays of the US Geological Survey
digital line graph, total ing 62405 edges, 81373 inter-
sections were reported, using a grid of size 250. The
t ime for a single processor was 273 s whereas for 15
processors this was reduced to 28 s - a speed-up of
almost 10.

Another data set was the Risch Ukranian Easter egg,
projected onto xy, xz, or yz planes. The mult iple
coincidences make this a difficult case for a sweeping line
algorithm. The object has 5897 edges. For example, in
the xz projection 37415 intersections were found with
a grid of size 115 in 98 s (serial) and 12 s (15 processors).
In the ×y projection, 40177 intersections were computed
with a grid of size 80 in 92 s (serial) and 10 s (15
processors).

A set of 50000 random edges was tried with a grid
of size 100. In the serial case, 45719 intersections were
reported in 521 s whereas the 15-processor figure was
about 40 s. Finally, it was observed that the speed-up,
as a function of the number of processors, was still rising
smoothly at 15 processors. This shows that we might
achieve even bigger speed-up on a machine with more
processors.

V a r i a t i o n of g r i d s i z e

During experiments with the uniform grid, the authors

tried many values of G to learn the variation of
computat ion t ime with G. For example, part of the
Survey graph mentioned above was used to observe
the variation of G. Average edge length was 0.0044 and
there were 18092 edges. A total of 23586 intersections
were found. For G = 10 the total t ime was 3080 s. This
became 710 s when G was increased to 30. With
G = 100 the t ime was 155 s. At G = 275 the t iming
figure was minimized: 93 s! After that, increasing G
slightly increased the time, too. With G = 800 the t ime
was 132 s and with G = 1000 the t ime became 161 s.
It is noted that the optimal t ime for this case is within
50% of the times obtained with grids from 115 x 115
up to 800 x 800. This demonstrates the extreme
insensitivity of the t ime to grid size.

A very big example to date has been the handling
of the Survey graph mentioned above. A total of 115973
edges of average length 0.0022 were submitted to the
serial algorithm. A total of 135050 intersections were
found in 683 s with a 650 x 650 grid. It is worth noting
that while it may appear that 650 x 650 = 422500 cells
is very inefficient in terms of storage, it should be
recalled that not one word of storage is used for empty
cells.

Another very recent large example is a complete
chip designed by Jim Guilford, a student of Professor
Ed Rogers, at RPl's Computer Science Department. This
chip has 1819064 edges, each of which is either
horizontal or vertical. For the fol lowing t iming figures,
an optimized (for the rectil inear case) version of the
program was used. General edges would slow it by
a factor of two to three. The program used the standard

Table 2. Sample statistics for edge intersections for map 'Chikamagua area 3 - hydrography, roads, and trails.'

Grid Pairs P/Cell P/Edge Grid Sort Xsect Total
size time (s) time (s) time (s) time (s)

10 18988 189.880 1.050 15.45 4.60 3060.15 3080.20
13 19235 113.817 1.063 15.43 4.62 2486.20 2506.25
15 19421 86.316 1.073 17.15 7.55 2101.47 2126.17
20 19959 49.898 1.103 15.58 4.75 1370.98 1391.31
25 20420 32.672 1.129 16.17 5.17 927.71 949.05
30 20888 23.209 1.155 15.83 4.92 689.41 710.15
40 21931 13.707 1.212 15.78 4.92 421.88 442.58
50 22862 9.145 1.264 15.88 5.10 308.15 329.14
65 24378 5.770 1.347 16.18 5.50 217.57 239.26
80 25841 4.038 1.428 16.50 5.80 168.63 190.93

100 27713 2.771 1.532 16.95 6.27 131.89 155.11
115 29187 2.207 1.613 17.47 6.53 114.10 138.09
125 30131 1.928 1.665 17.72 6.70 105.30 129.71
140 31572 1.611 1.745 18.22 7.15 95.23 120.60
150 32496 1.444 1.796 18.47 7.20 89.38 115.05
160 33514 1.309 1.852 t8.77 7.47 84.50 110.73
175 35005 1.143 1.935 19.33 8.07 79.40 106.80
200 37340 0.933 2.064 20.15 8.38 72.06 100.60
275 44483 0.588 2.459 22.63 10.03 60.61 93.28
325 49373 0.467 2.729 24.68 11.42 57.48 93.58
400 56617 0.354 3.129 28.72 13.37 55.01 97.10
500 66222 0.265 3.660 30.92 16.03 56.05 103.00
625 78304 0.200 4.328 36.22 19.25 56.70 112.16
800 95143 0.149 5.259 45.91 24.13 61.85 131.89

1000 114419 0.114 6.324 61.35 30.20 69.01 160.56

No. of edges 18092 Xsects by end point coincidence 23007
Average edge length 0.0044 Xsects by actual equation solution 579
Standard deviation 0.0061 Total intersections 23586

416 computer-aided design

Sun C compiler; commercial compilers may produce
better code. On a Sun 4/280 with 32 Mbyte of real
memory and using a 1200 x 1200 grid, 4577916 (cell,
edge) pairs were calculated in 70 s whereas calculating
the 6941110 intersections took 108 s (total time 178 s).
The data structure was two simple square arrays of
linked list headers. Each cell has a separate list for its
horizontal and vertical edges. A 1500 x 1500 grid was
a little bit slower: 5263144 (cell, edge) pairs, which were
found in 79 s, and 111 s were spent to compute the
intersections (total time 190 s).

Table 2 shows sample statistics for intersecting edges
in a map titled 'Chikamagua area 3 - hydrography,
roads, and trails' (uniprocessor). Table 3 is a summary
of results from processing various data sets, separated
with horizontal line~ in the table (again serial
computation). Table 3 shows the effect of parallel
computation. Figures 1 (a) and 1 (b), on the other hand,
show the time and speed-up graphs for the Chikamagua
map.

With these timing figures (timing starts when the
array of edges is available for processing and excludes
I/O), the authors believe that they have shown that
there is hardly any need for complicated methods such
as quadtrees and sweep algorithms.

DISCUSSION AND CONCLUSION

It may still be suggested that the first extension that
would prove useful is to use a hierarchical grid to
accommodate regions of the plot where the edges are
somewhat clustered. This would, as a matter of fact,
save time only when there are orders of magnitude
variation in edge density. As soon as the cells become
hierarchical, parts of the uniform grid algorithm that
determine where (i.e. in which cells) an edge falls would
become more complicated, thus slower. In fact, the
preceding point is a very important objection to the
uniform grid. Some parts of a real scene are frequently
much denser than other parts so that a regular grid
would appear not to work. Is a hierarchical technique,
such as a quadtree, necessary?

The answer is no. First, even a quadtree cannot
efficiently deal with all data sets. If there are n parallel
edges separated by distances of n -~ for c > 1, then it
takes more than quadratic time to build a quadtree
(and a uniform grid for that matter) that has cells
fine enough to distinguish the edges. The sweeping line
algorithm would work well in this case, but it was noted
earlier that the sweep paradigm cannot handle the
red blue intersections.

Table 3. Summary of results from processing all data sets (serial computation)

Database Edges Length Standard
deviation

Xsects Grid
size

Time
(s)

Risch e g g - YZ projection 5897 0.0355 0.0124 39666 100 194.24
XZ project ion 5897 0.0391 0.0132 37415 115 193.18
XY project ion 5897 0.0352 0.0131 40177 80 183.83

USA map
Shifted by 2% and overlaid on itself
Shifted by 10% and overlaid on itself

915 0.0186 0.0245 1078 125 4.97
1830 0.0184 0.0243 2430 140 14.38
1830 0.0180 0.0237 2348 125 12.57

Chikamagua area 1 - hydrography, 13712 0.0044 0.0084 15039 275 68.50
roads & trails (HR&T)

Area 2 - HR&T 14145 0.0049 0.0080 16595 275 71.11
Area 3 HR&T 18092 0.0044 0.0061 23586 275 93.28
Area 4 - HR&T 16425 0.0048 0.0076 20335 200 88.58
Area 5 - HR&T 12869 0.0053 0.0103 14978 275 62.93
Area 6 - HR&T 13871 0.0050 0.0080 16072 275 69.40
Area 7 - HR&T 13579 0.0134 0.0518 16640 160 188.76
Area 8 - HR&T 11937 0.0048 0.0098 13283 275 58.86
All sections - railroads 1122 0.0159 0.0543 1316 150 8.10
pipe & transmission lines 850 0.0277 0.0523 1211 115 7.95
railroads, pipe & transmission lines 1972 0.0206 0.0533 2745 115 22.28
Railroads, pipe & transmission 3944 0.0206 0.0533 13268 115 84.15
lines overlaid on itself

Hydrography, railroads, pipe & 55973 0.0023 0.0162 53426 500 323.09
transmission lines

Roads & trails, railroads, pipe 62045 0.0026 0.0106 81373 500 436.35
& transmission lines

Hydrography, roads & trails, 115973 0.0022 0.0115 135050 650 682.51
railroads, pipe & transmission lines

VLSI data XFACEA.MAG 436
VLSI data - XFACELL.MAG 1960
VLSI data - XFACELL.MAG 1960
(Rotated by 30 °)
VLSI data - XFACELL.MAG 1960
(Rotated by 90 °)

0.0314
0.0467
0.0352

0.0467

0.0908
0.0852
0.0643

0.0852

1403
6488
6488

6488

150
65

125

65

5.22
16.87
32.48

18.67

volume 21 number 7 september 1989 417

On a more conceptual basis, there is evidence for
assuming that data sets with one region that is
exponentially more crowded than another are rare. In
practice, scenes are resolution limited. People do not
create scenes with enormous variations: if there is a
large blank expanse, some detail will be added there;
if there is a dense region, simplifying notation and
approximations will be used. To quote Franklin et al. ~,
'We could also define such data sets out of existence
as numerical analysts do with partial differential
equations. Just as they consider only equations that
satisfy a Lipschitz condition where the greatest slope
of a curve is bounded, we might restrict ourselves to
sequences of data sets where the densest region's
density, relative to average density, remains bounded
as n ~ oo.'

300

~' 250
"O

8 200

150
E

-- 1 0 0 -

0

5 0 -

oi

a

\
- \

\

- k

~" ~"e"e-~-_~.÷_e._~. .e . ~ . .o . . e
l I I I I
3 6 9 12 15

Number of processors

O.
D
"O

b

1 5 -

1 0 -

5 - -

X ~

x
x x

x

O"
I I I I I

0 3 6 9 12 15

Number of processors

Figure 1. Time and speed-up graphs for Chikamagua map

Another extension is to handle curved edges, l his
can be done without changing the general structure
of uniform grid'

• The edges are no longer defined by endpoints but
by the coordinates of splines, for instan(e.

• It is considerably more difficult to determine which
cells a given curve occupies. If the curve is smooth, it
can be enclosed in a box. (Again, it does not matter if
a few extra cells are also included in this way.)If the
curve is complicated, we can subdivide it until it is
smooth and then use the bounding box.

• It is essential to find out whether two curves in the
same cell intersect, and if that is the case, the
parameter value. Efficient curve intersection is an
area of active research. Obviously, the curves can
be split into line segments, and intersected to obtain
approximate crossing points, and then the result can
be refined with a few iterations of Newton's rule. It
is also known how curves can be approximated by
quadratic parametrics for which closed form solutions
are known.

• It is essential to sort (in, for example, HALO) the
intersection points along each curve. If the curve is
parametric this means that the point is needed as
a parameter value, not just as (x, y). On the other
hand, if the curve is in some other form but single-
valued in say, x, then one can sort the points in x.

A worthwhile addition to the uniform grid would be
to compute, before preprocessing, a global 'slant' value
for the whole data set showing the bias (if any) in the
slopes of the edges. If the edges are slanted in some
direction, then the grid can be placed parallel to that
direction so that the number of grid cells spanned by
the edges decreases.

Although the large scale and diverse data sets prove,
in a strong sense, the efficiency and superiority of the
uniform grid, analytical results, which assume some
distribution and then prove asymptotic bounds, are
certainly welcome. The authors regard the work in
stochastic geometry (or geometric probability) quite
relevant to this purpose. Although the expected
performance of uniform grid is hard to analyse for all
cases, Devroye's interesting monographS7 may provide
the required theoretical basis. This remains to be seen.

This paper was written to demonstrate, both by
theoretical analysis and by implementation, that the
uniform grid technique from computational geometry

Table 4. Summary of results from processing all data sets (parallel computation)

Database Edges Xsects Grid Time taken (s)
size

1 Processor 5 Processors 10 Processors 15 Processors

Risch egg - YZ projection 5897 39666 100 98.91 24.02 14.19 11.96
XZ projection 5897 37415 115 97.88 23.55 14.83 11.81
XY project ion 5897 40177 80 92.33 20.33 12.36 10.40

Roads & trails, railroads, pipe 62045 81373 250 273.11 62.98 39.42 27.77
& transmission lines

Random edges of size 0.01 50000 45719 100 521.06 108.90 57.88 40.15

418 computer-aided design

leads to more efficient means of solving certain common
operations in practice. In a nutshell, there are potential
advantages in aiming research in computer graphics
not only at producing fine representations ('pretty
pictures') but also at identifying and solving the
underlying algorithmic problems.

A C K N O W L E D G E M E N T S

The authors are grateful to Jeremy Weightman for his
encouragement and kind invitation to write this paper.
The first author thanks Ozay Oral and Mehmet Baray
for their moral support. The second author's research
is supported by the National Science Foundation under
PYI grant no. DMC-8351942.

Mention of commercial products in this paper does
not necessarily imply endorsement.

REFERENCES

1 Guibas, L J and Stolfi, J 'Ruler, compass, and
computer: the design and analysis of geometric
algorithms' in Earnshaw, R A (ed) Theoretical
foundations of computer graphics and CAD NATO
ASI Series Vol F40 Springer-Verlag (1988) pp 111-165

2 Franklin, W R 'Combinatorics of hidden surface
algorithms' PhD thesis (also Technical Report TR-
12-78) Center for Research in Computing Technology,
Harvard University Cambridge MA, USA (1978)

3 Edelsbrunner, H Algorithms in combinatorial
geometry Springer-Verlag (1987)

4 Preparata, F P and Shamos, M I Computational
geometry: an introduction Texts and Monographs
in Computer Science, Springer-Verlag (1985)

5 Greene, D H and Knuth, D E Mathematics for the
analysis of algorithms Progress in Computer Science
Vol 1 Birkh~user, Boston, MA, USA (1981)

6 Bentley, J L and Ottmann, T A 'Algorithms for
reporting and counting geometric intersections'
IEEE Trans. Comput. Vol C-28 No 9 (1979) pp
643-647

7 Chazelle, B 'Reporting and counting arbitrary
planar intersections' Technical Report CS-83-16
Department of Computer Science, Brown University,
Providence, RI, USA (1983)

8 Chazelle, B and Edelsbrunner, H 'An optimal
algorithm for intersecting line segments in the
plane' Proc. 29th Ann. Conf. Foundations of
Computer Science White Plains, New York, NY, USA
(October 1988)

9 Mairson, H G and Stolfi, J 'Reporting and counting
intersections between two sets of line segments' in
Earnshaw, R A (ed) Theoretical foundations of
computer graphics and CAD NATO ASI Series Vol
F40 Springer-Verlag (1988) pp 307-325

10 Hart, S and Sharir, M 'Nonlinearity of Davenport-
Schinzel sequences and of generalized path
compression schemes' Combinatorica Vol 6 No 2
(1986) pp 151-177

11 Myers, E W 'An O(E log E+I) expected time
algorithm for the planar segment intersection
problem' SIAM J. Comput. Vol 14 No 3 (1983) pp
625-637

12 Franklin, W R, Wu, P Y I:, Samaddar, S and Nichols,
M 'Prolog and geometry projects' IEEE Comput.
Graph. Appl. Vol 6 No 11 (1986) pp 46-55

13 Franklin, W R 'Cartographics errors symptomatic
of underlying algebra problems' Proc. Int. Syrup.
Spatial Data Handling Vol 1, Zurich, Switzerland
(1984) pp 190-208

14 Forrest, A R 'Computational geometry in practice'
in Earnshaw, R A (ed) Fundamental algorithms for
computer graphics NATO ASI Series Vol F17
Springer-Verlag (1985) pp 707-724

15 Akman, V 'Geometry and graphics applied to
robotics' in Earnshaw, R A (ed) Theoretical
foundations of computer graphics and CAD NATO
ASI Series Vol F40 Springer-Verlag (1988) pp 619-638

16 Forrest, A R 'Geometric computing environments:
some tentative thoughts' in Earnshaw, R A (ed)
Theoretical foundations of computer graphics and
CAD NATO ASI Series Vol F40 Springer-Verlag
(1988) pp 185-197

17 Akman, V Unobstructed shortest paths in polyhedral
environments Lecture Notes in Computer Science
Vol 251 Springer-Verlag (1987)

18 Asano, T, Edahiro, M, Imai, H, Iri, M and Murota, K
'Practical use of bucketing techniques in compu-
tational geometry' in Toussaint, G T (ed)
Computational geometry Elsevier Science Publishers
(North Holland)(1985) pp 153-195

19 Sutherland, I E, Sproull, R I: and Schumacker, R A
'A characterization of ten hidden surface algorithms'
ACM Comput. Surv. Vol 6 No 1 (1974) pp 1-55

20 Bentley, J L 'Multidimensional binary search trees
used for associative searching' Commun. ACM Vol
18 No 9 (1975) pp 509-517

21 Finkel, R A and Bentley, J L 'Quad trees: a data
structure for retrieval on composite keys' Acta
Informatica Vol 4 (1974) pp 1-9

22 Meagher, D J 'Geometric modeling using octree
encoding' Comput. Graph. Image Process. Vol 19
No 2 (1982) pp 129-147

23 Appel, A, Rohlf, F J and Stein, A J 'The haloed line
effect for hidden line elimination' ACM Comput.
Graph. (Proc. SIGGRAPH'79) Vol 13 No 2 (1979) pp
151-156

24

25

Arnold, D and de Ruiter, B 'Editorial' Comput.
Graph. Forum Vol 6 No 2 (May 1987) pp 75-76

Franklin, W R and Akman, V 'A simple and efficient
haloed line algorithm for hidden line elimination'
Comput. Graph. Forum Vol 6 No 2 (1987) pp
103-109

volume 21 number 7 september 1989 419

26 Kernighan, B W and Plauger, P H Soitware Tools
Addison-Wesley Inc, USA (1976)

27 Franklin, W R 'Efficient polyhedron intersection and
union' Proc. Graphics Interface '82 Toronto, Canada
(1982) pp 73 80

28 Franklin, W R and Akman, V 'Reconstructing visible
regions from visible segments' BIT Vol 26 (1986) pp
430- 441

29 Franklin, W R 'A simplified map overlay algorithm'
Proc. Harvard Comput. Graph. Conf. Cambridge,
MA, USA (1983)

30 Franklin, W R 'Adaptive grids for geometric
operations' Proc. 6th Int. Syrup. on Automated
Cartography (Auto-Carto Six) Vol 2 Ottawa, Canada
(1983) pp 230 239

31 Franklin, W R and Akman, V 'Adaptive grid for
polyhedral visibility in object space: an implementa-
tion' Comput. J. Vol 31 No 1 (1988) pp 56 60

32 McKenna, M 'Worst case optimal hidden surface
removal' ACIV/ Trans. Graph. Vol 6 No 1 (1987) pp
19-28

33 Franklin, W R 'A linear time exact hidden surface
algorithm' ACM Comput. Graph. (Pro(. 51GGRAPH "80)
Vol 14 No 3 (1980) pp 117 -123

34 Franklin, W R, Chandrasekhar, N, Kankanhalli, M,
Seshan, M and Akman, V 'Efficiency of uniform grids
for intersection detection on serial and parallel
machines' in Magnenat-Thalmann, N and Thai-
mann, D (eds) New trends in computer graphics
(Proc. Computer Graphics International'88) Springer-
Verlag (1988)

35 Chandrasekhar, N and Seshan, M 'The efficiency
of uniform grid for computing intersections' MS
thesis Electrical, Computer, and Systems Engineering
Dept, Rensselaer Polytechnic Institute, Troy, NY,
USA (1987)

36 Kankanhalli, M 'Uniform grids for line intersection
in parallel' MS thesis Electrical, Computer, and
Systems Engineering Dept, Rensselaer Polytechnic
Institute, Troy, NY, USA (1988)

37 Devroye, L Lecture notes on bucket algorithms
Progress in Computer Science Vol 6, Birkh~user,
Boston, MA, USA (1986)

420 computer-aided design

