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If computational geometry should play an important role 
in the professional environment (e.g. graphics and 
robotics), the data structures it advocates should be 
readily implementable and the algorithms efficient. In the 
paper, the uniform grid and a diverse set of geometric 
algorithms that are all based on it, are reviewed. The 
technique, invented by the second author, is a flat, and 
thus non-hierarchical, grid whose resolution adapts to 
the data. It is especially suitable for telling efficiently which 
pairs of a large number of short edges intersect. Several 
of the algorithms presented here exist as working 
programs (among which is a visible surface program for 
polyhedra) and can handle large data sets (i.e. many 
thousands of geometric objects). Furthermore, the uniform 
grid is appropriate for parallel processing; the parallel 
implementation presented gives very good speed-up 
results. 

uniform grid, line segment intersection, haloed lines, polyhedral 
visibility, map overlay, point location, Boolean operations on polyhedra, 
parallel computational geometry 

The procedure shews me a How o / " m a k i n g ' - -  L. W. 

In an influential recent paper 1, Guibas and Stolfi note 
that, 'Among the tools of computational geometry 
there seems to be a small set of techniques and 
structures that have such a wide range of applications 
that they deserve to be called fundamental, in the same 
sense that balanced binary trees and sorting are 
fundamental for combinatorial algorithms in general.' 
They then overview design techniques such as the locus 
approach, geometric transforms, duality, and space 
sweep and data structures such as fractional cascading 
and finger trees. 

The aim of this paper is to describe a technique 
called the uniform grid which the authors believe may 
be quite fundamental in geometric computing in the 
sense understood above. (To word this claim a little 
more mildly, it must be stated that the grid is not a 
theoretical contribution on the lines of, for example, 
duality.) 

The uniform grid was invented by the second author 
more than a decade ago 2 and since then it has been 
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successfully used to solve a rich collection of geometric 
problems. Among those problems, whose execution 
time the uniform grid vastly improves, are well-known 
issues such as polyhedral visibility, haloed line 
computation, map overlay, Boolean operations on 
polyhedra, etc. 

The uniform grid works in the object space, i.e. 
the realm of exact (within the provided precision) 
computation. Object space algorithms are important 
because, in nearly all CAD applications, precision is 
required for reasons of integrity. 

The uniform grid* is a regular grid overlaid on a 
scene. The 'fineness' of the grid is an experimentally 
determined function of the statistics of the given 
geometric objects. The uniform grid is especially suitable 
for telling efficiently which pairs of a large number of 
short edges intersect. This is the most time-consuming 
operation in programs aimed at resolving the issues 
cited in the preceding paragraph. 

Objections have been made to the uniform grid, in 
the past, on the grounds that it is only suitable for 
evenly spaced data. This paper will review several 
applications and show experimentally that the grid is 
just as efficient on unevenly spaced, real data. It will 
also be shown that the uniform grid executes well on 
parallel machines, making it a fine choice for parallel 
computational geometry. 

After this introduction, the rest of the paper is 
structured as follows. Next, it is shown how to perform 
line segment intersection and a couple of other 
fundamental operations via the uniform grid. This is 
followed by a section which enumerates the applications. 
After a section relating the authors' experience with 
running the uniform grid in parallel, a discussion on 
extensions and future work, finishes the paper. 

Caveat: Due to the amount of material recalled, this 
paper is necessarily terse at times. The reader is referred 
to the relevant articles for details. 

U N I F O R M  G R I D  T E C H N I Q U E  

The uniform grid is introduced by a demonstration of 
how two common operations can be accomplished, 
line segment intersection and planar point location. 

Previously, the uniform grid was called an adaptive grid. However, 
since there is another, independent and unrelated use of this term in 
numerical analysis (in the iterative solution of partial differential 
equations) it was dropped from use. 
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Some analysis is also given as to the expected 
performance for a uniform distribution. 

Line segment intersection 

In many areas, such as graphics, cartography, robotics 
and VLSI design, there exist problems such as visible 
surface computat ion, map overlay, interference 
detection, and design-rule checking, respectively, where 
the essential, most t ime-consuming operation is line 
segment (edge) intersection 3. A textbook on computa- 
tional geometry by Preparata and Shamos 4 begins a 
chapter on 'Intersections' as follows: 

'Much of the motivation for studying intersection problems 
stems from the simple fact that two objects cannot occupy 
the same-place at the same time. An architectural design 
program must take care not to place doors where they 
cannot be opened or have corridors that pass through 
elevator shafts. In computer graphics, an object to be 
displayed obscures another if their projections on the viewing 
plane intersect. A pattern can be cut from a single piece of 
stock only if it can be laid out so that no two pieces overlap. 
The importance of developing efficient algorithms for 
detecting intersection is becoming apparent as industrial 
applications grow increasingly more ambitious: a complicated 
graphic image may involve one hundred thousand vectors, 
an architectural database often contains upwards of a million 
elements, and a single integrated circuit may contain millions 
of components.' 

Obviously, the trivial solution for the intersection problem 
(test all (~) segment pairs for intersection) is not 
practical. Before reviewing some results showing the 
improvements in intersection algorithms, a few lower 
bounds are cited. It is known that O(n log n) comparisons* 
are necessary and sufficient to determine whether n 
intervals are disjoint. (Only algebraic functions of the 
input are allowed.) Thus ~ ( n  log n + k) is a lower bound 
for the problem of reporting all k intersections among 
an arbitrary set of n segments. To see this just observe 
that ~ (n  log n) comes from the preceding bound and 
O(k) is due to the size of the output. Bentley and 
Ottmann 6 proved, by extending an early sweeping line 
algorithm due to Shamos and Hoey, that O((n + k) log 
n) time suffices to report all k intersections. They used 
O(k) space which was later reduced to O(n) by K Q 
Brown without changing the time bound. Chazelle 7 
reduced the time bound to 

o(k  n tog 
log log nJ 

using O(n + k) space. He and Edelsbrunner recently 
improved this bound to O(n log n + k )  which is 
worst-case optimal. The authors have not yet seen this 
work 8 which came to their attention through a footnote 
in Mairson and Stolfi 9. 

Hart and Sharir's work on Davenport-Schinzel 
sequences is also important as a theory of line segment 
intersections ~°. Myers ~ did some interesting work on 
the expected time complexity of segment intersection. 
He showed that the problems can be solved in O(n) 

* The reader is referred to Greene and Knuth s for precise definitions 
of the 0(o), [~-(o), and O(o) notations. 

space and O(n log n + k) expected time. Unlike the 
Bentley and Ottmann algorithm 6, Myers' algorithm can 
deal with special cases such as vertical segments, three 
or more segments intersecting at a point, and collinear 
segments that intersect (overlap). The necessary 
statistical hypothesis of Myers is that 2n endpoints of 
the segments are uniformly distributed. He does not 
impose any demands on the distribution of the actual 
intersection points. 

A special case of the segment intersection problem 
arises with the so-called red-b lue intersections. Given 
two sets R and B of a total of n line segments in the 
plane, such that no two segments in R (similarly, B) 
intersect, find all intersections between segments of R 
and B. Mairson and Stolfi 9 gave an asymptotically 
optimal algorithm which reports all those intersections 
between R and B in O(n log n + k) time with O(n) 
space. They assume*, however, that the input is free 
from 'degeneracies.' Thus all endpoints and intersections 
have distinct coordinates, no segment endpoint lies on 
another segment of either set, and any two curves of 
R u B intersect at finitely many points (their algorithm 
can handle curved edges). Consequently, vertical 
segments, segments which are reduced to points, and 
multiple segments incident on the same endpoint are 
excluded. Besides, it is more natural to require that the 
edges in each set may intersect among themselves - 
consider a robot arm and a workpiece. It should be 
remarked that the algorithms given in Bentley and 
Ottman 6 and Chazelle 7 cannot find all the red-b lue 
intersections without finding (or already knowing) all 
the red-red and b lue-b lue intersections. 

Before proceeding with the uniform grid approach 
to the line segment intersection problem, it is desirable 
to touch briefly on a subject of crucial importance in 
computational geometry: special cases. The correct 
handling of special cases is a key issue when a low-level 
procedure is used to solve a higher level problem. There, 
proper handling of the low-level special cases should 
automatically solve the higher level special cases too. 
It is commonplace that special cases can consume a 
great deal of the code written to implement a given 
algorithm. To quote Franklin et al. ~2, 'Problems such as 
polygon intersection, where an algorithm can be 
described to another person in about 100 words, can 
take weeks to design and code.' There are several 
reasons for this. Franklin ~3 studied the errors symptomatic 
of the underlying computer algebra. Forrest TM and 
Akman ~ also give comments on this problem. However, 
it is noted that special cases are frequently artifacts of 
the data structures used, and do not belong to the 
intrinsic problem, e.g. problems arising from the 
sweeping paradigm. 

There are naturally several solutions to the special 
cases problem. Forrest 16 and Akman ~7 offer several 
thoughts on what they call a 'geometric computing 
environment' or a 'geometer's workbench', respectively, 

tThe standard perturbation method (the idea of distorting the input 
data by a minute amount in such a way that all degeneracies 
disappear without changing which pairs intersect and which do 
not) advocated by Mairson and Stolfi towards the end of their paper 
seems very costly and impractical. 
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which facilitates the testing of geometric algorithms. It 
will shortly be shown that with the uniform grid, special 
cases simply disappear (modulo the floating point 
arithmetic accuracy). 

Uniform grid 

It is probably suitable to introduce the uniform grid by 
drawing an analogy to the 'bucketing' idea in sorting. 
Given a set of n keys with a value between 0 and U - 1 
(where U is the universe size), they can be sorted in 
time O(n + U) using O(n + U) space. More generally, 
given a set of n points in a d-dimensional universe, 
they can be sorted lexicographically in O(d(n + U)) 
time using O(n + U) space. 

Probably originating from this idea, data structures 
resembling the uniform grid have also been called 
buckets in the literature TM. In the case of geometric 
algorithms, it is understood that a bucket is one of 
the subregions into which the entire region under 
consideration is partitioned. Normally, buckets are 
either square or rectangular and they are rectilinearly 
oriented (i.e. with sides parallel to the coordinate axes). 
When a bucket has such a simple shape it is very easy 
to divide the region of interest into buckets and 
furthermore, to decide in which buckets a geometric 
object (e.g. a point or a line segment) belongs. 

It is assumed that n edges of average length / are 
independently and identically distributed (liD)in a I x 1 
screen. This involves projecting and scaling the scene 
to fit in this square; techniques for this are well-known. 
A G x G grid is placed over the screen. Accordingly, 
each grid cell is of size 1/G x 1/G. Note that the grid 
cells partition the screen without any overlaps or 
omissions. This can be achieved (among others) in the 
following way: assume that all the coordinates are such 
that 0 ~x ,  y <  1 and assign only the western and 
southern boundaries of each cell to that cell, in addition 
to its interior. (This is important to determine duplicate 
intersections, as will be noted below.) 

The line segment intersection algorithm works as 
follows: 

• Step 0: determine the optimal grid resolution G from 
the statistics of the input edges. This point will be 
considered further in the sequel, but letting G = [1/11 
is reasonable. Fine-tuning is discussed later. 

• Step 1: for each edge, it is determined which cells 
it passes through, and ordered pairs are written 
(cellnumber, edgenumber) or in short (cell, edge). 

• Step 2: the list of ordered pairs is sorted by the cell 
number and the numbers of all the edges that pass 
through each cell are collected. This gives a new set 
whose elements are (cell, {edge, edge . . . .  }), with 
one element for each cell that has at least one edge 
passing through it. Unlike in a tree data structure, if 

• a cell is empty it does not occupy even one word of 
storage, not even a null pointer. 

• Step 3: finally, a comparison is made, for each cell, 
of all the edges in it pair-by-pair to determine the 
intersections. To see if two edges intersect, each 
edge's endpoint is simply tested against the line 
equation of the other edge. Calculated intersections 

that fall outside the current cell are ignored, lhis 
takes care of some pair of edges occurring together 
in more than one cell (hence the initial provision to 
partition the screen completely). 

Correctness of the algorithm is trivial: two edges that 
intersect must do so in some cell, and so must appear 
together in that cell. Let the first step (step 1) in the 
above algorithm be called the preprocessing step. 
Preprocessing is done by an extension of Bresenham's 
algorithm not by comparing an edge against each of 
the G 2 cells. In fact, simply note that if a few extra cells 
were included for an edge, the result would still be 
correct. Thus a very convenient method is to draw a 
rectangular box around an edge and include all the 
cells that this box overlaps. This is only noticeably 
suboptimal for edges much longer than /, which are 
statistically infrequent - -  it speeds this part of the 
algorithm and slows down the pair-by-pair comparison 
(step 3). 

Before proceeding, it would be helpful to clear up 
any misconceptions. The uniform grid has nothing to 
do with Warnock's hidden line algorithml~; an edge is 
not clipped into several pieces if it passes through 
several cells. Unlike the k-d trees of Bentley 20, the 
uniform grid partitions the data coordinate space 
evenly and independently of the order in which the 
input occurs. Furthermore, unlike a quadtree 2~ or an 
octree 22, the uniform grid is one level; it does not 
subdivide within crowded regions. 

In fact, there are different possible implementations 
for the grid: 

• as noted above, write a list of (cell, edge) pairs and 
sort 

• use a G x G x M array where M is the maximum 
number of edges per cell 

• use a G x G array of lists 
• combine two methods, i.e. if A is the average number 

of edges per cell, use a G x G x A array of edges 
followed by either the first or third method above 
for the overflow 

• use a two-level method, i.e., first partition the data 
into blocks small enough to process easily and then 
use any of the above methods on each block 

Planar point location 

Point location is one of the fundamental operations in 
computational geometry. Algorithms for point location 
are characterised in terms of three issues: preprocessing 
time, space, and query time. Clearly, this assumes that 
there is fixed planar subdivision and that numerous 
location queries are posed so as to justify the time 
spent in preprocessing. There has been a considerable 
amount of work dealing with the problem; so only two 
key results are quoted and the reader is referred to 
Preparata and Shamos 4 for details. Lipton and Tarjan 
gave the first optimal solution to the problem with an 
intricate algorithm based on their 'planar separator 
theorem', which has many far-reaching applications 4. 
They achieved an O(Iog n) query time with a data 
structure that takes linear space and is built in O(n log n) 
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time, for an input graph with n vertices. Kirkpatrick 
later gave a conceptually simpler algorithm which attains 
the same bounds; however, the constant factor in his 
bound seems to be very large 4. 

First, as a special case of planar point location, 
consider the problem of testing whether a point p is 
in a polygon. A 1D version of the uniform grid is given 
that solves this problem very efficiently: the execution 
time depends on the average number of edges that a 
random scan-line would cut. In other words, the total 
number of edges of the polygon has no effect on the 
time. 

The method is an extension of the well-known 
method where a semi-infinite line is extended from p 
in some direction. Then p is inside the polygon iff the 
ray intersects an odd number of edges. The uniform 
grid is used to test the ray against every edge. For this, 
the polygon's edges are projected onto a line (e.g. the 
x-axis) and the line is divided into 1D grid cells (slabs). 
It is now known which edges fall into each cell. p is 
then projected and the ray running vertically up from 
it is considered. This can only intersect those edges 
which belong to the cell of p; so it need only be tested 
against those edges. Clearly, the execution time is equal 
to the average number of edges per cell. As the cell 
size becomes smaller than the edge size, this number 
will approach the polygon's 'depth complexity'. 

Sometimes, for point-in-polygon testing, rather than 
counting how many edges the ray crosses, it is faster 
to orient the edges and just look at the first edge the 
ray crosses. This works when the polygon is a union 
but the union polygon is not available explicitly, e.g. a 
VLSI layer. 

Consideration is now given to the general version of 
the problem: given a planar graph, determine which 
polygon of the graph contains p (each polygon has a 
unique name). This could be done by testing p in turn 
against each polygon of the graph as explained above, 
but that would be slow. Besides it would require that 
one polygon does not completely contain another. An 
efficient and general method is as follows: 

• Extend a semi-infinite line from p. 
• Determine all the edges it intersects, along with 

those edges' neighbouring polygons. 
• Sort those edges along the ray by their intersections 

from p. Then, p is contained in the lower polygonal 
neighbour of the closest crossing edge. 

As before, the uniform grid is used to put the planar 
graph's edges (together with the names of the regions 
neighbouring along them) into a 1D structure, and to 
test the ray against only those edges in the same cell 
as p's projection. 

Some analysis 

Choosing a grid size for a given scene looked like a 
most important problem when the authors first started 
experimenting with the uniform grid. This led to the 
gathering of extensive statistics to optimize the algorithm. 
This has been done in spite of the provable efficiency of 
the data structure with liD geometric objects. Assume 

that a grid size of G = [c/ l l  is chosen, where c is a 
fine-tuning constant. To find the cells that an edge falls 
in takes time proportional to a constant plus the actual 
number of these cells. The expected number of cells 
covered by the bounding box* of an edge is O(12G2). 
Thus the total time to place the edges in cells 
(preprocessing) is O(n12G2), or simply O(n). For the 
intersection part, there are O(n) (cell, edge) pairs 
distributed among G 2 cells, for an average of O(n /G 2) 
edges per cell, or equivalently, an average of O(n2/G 4) 
pairs to test. (This must hold since the edges are liD. 
Thus their number in any cell is Poisson distributed, 
whence the mean of the square is the square of the 
mean.) Using once again G = c/I, the time to process 
all the cells becomes O(n2P). Since this last figure is 
equal to the expected number of intersections of the 
edges, the algorithm behaves linearly in the sum of 
input (n edges) and output (k intersections). 

Clearly, the actual c, which minimizes the total time 
for a given scene, should be determined heuristically 
as it would depend on the relative speeds of the various 
parts of the program, and consequently on the model 
of computer. This subject will be considered again. 

APPLICATIONS 

A unifying characteristic of the applications summarized 
below is that they use the uniform grid as an essential 
part. In each case, only some representative timing 
figures are cited to show the performance, and the 
reader is referred to the individual papers for extensive 
statistics. 

Haloed lines 

Haloed lines were introduced in an article by Appel 
et al. 23 who gave various reasons for using them and 
good examples. Briefly, one imagines that each line has 
a narrow region, or a halo, that runs along it on both 
sides. If another, more distant line intersects the first 
line (in the projection plane), then part of the farther 
line that passes through the first line's halo is blotted 
out. David Arnold and B~hr de Ruiter remark in an 
editorial 24, discussing a paper by Franklin and Akman 2s, 
that haloed lines must open up a series of applications 
for the PHIGS interior style 'empty' as the effect is of 
displaying nothing, but nevertheless obscuring that 
which lies behind. 

A haloed line picture shows more 3D relationships 
than any of the following three alternatives: 

• show all the lines 
• remove hidden lines 
• show hidden lines dashed 

Note that if it is wanted to show the hidden edges 
'dashed' it is essential to be able to tell which edges 
are hidden - this in turn requires that the faces of the 

* If a variant of Bresenham's algorithm is used, then this number 
would only be O(IG). However, this higher number is used as it is 
more conservative and does not affect the rate of growth of the 
total time. 
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given objects are known. With haloed lines, a gap is 
produced on an edge where it passes behind another 
edge, so only the edge data is needed and not the 
faces. Thus, the use of invisible haloes around lines of 
a wireframe drawing could be used to highlight the 
spatial relationships between the lines being drawn, but 
without the computational expense of full hidden-line 
elimination. 

The implementation 2s of haloed lines, HALO, has two 
parts. The first part uses a uniform grid to compute all 
edge intersections. It then writes a set containing all 
the locations where each edge is crossed in front by 
another, along with the angle of intersection. Given a 
halo width, the second part reads this set edge-by-edge. 
For each edge it subtracts and adds the halo width to 
each intersection to obtain the locations where the 
edge becomes invisible and visible. (The angle of 
intersection is used to obtain the appropriate halo 
width.) It sorts these along the edge and then traverses 
the edge, plotting only those portions where the 
number of visible transitions is equal to the number of 
invisible transitions. This second part takes time linear 
in the number of segments into which the edges are 
partitioned. The fact that the haloed line computation is 
carried out in two separate parts has the advantage that 
the first part, which is slower, uses just the edges and not 
the halo width. Thus if it is useful to draw the same 
picture with various halo widths (perhaps to pick the 
best looking plot), most of the computation for the 
second and later plots can be avoided. 

HALO is written in Ratfor, a Fortran preprocessor 
used by Kernighan and Plauger 26. On a Prime 750, where 
a single precision floating multiplication takes 2 to 3 #s, 
HALO spent less than 240 s to compute the haloed 
line picture of a data set with 9408 edges. 

On a separate test, the second author implemented 
an independent program called EDGE which creates 
random edges of varying lengths and angles, finds all 
intersections, and plots the edges with intersections 
marked. Thus EDGE almost corresponds to the first part 

Table 1. Sample statistics obtained using program EDGE 

of HALO. EDGE is written in Flecs, another Fortran 
preprocessor by T. Beyer. For a large problem with 50000 
edges and 47222 computed intersections EDGE took 
about 360 s. The average edge length ] was 0.01 and 
the grid size G was 100. About 20% of the time was 
spen t  in the  p r ep roces s ing  step.  A total  of 98753 (cell, 
edge)  pairs were  c r e a t e d  and  11534 in te rsec t ions  were  
r e j ec t ed  as dupl ica tes .  1-able 1 shows s o m e  s a m p l e  
stat is t ics  o b t a i n e d  with EDGE. 

Boolean operations on polyhedra 

Algorithms for calculating the set-theoretic combinations 
(union, intersection, and difference) of polyhedra are 
required in several places: 

• solid modelling where complex objects are formed 
from a small set of primitives 

• numerical control where the volume cut out of an 
object by a drill is wanted 

• interference detection where it is to be determined 
whether two parts are trying to occupy the same 
place 

The principal contribution of the algorithm in Franklin 2'* 
is that, through its use of the uniform grid, it can process 
scenes with thousands of faces. Furthermore, unlike 
some other algorithms, it produces all the Boolean 
combinations at little more than the cost of producing 
one. 

The algorithm accepts the polyhedra in B-rep (Eulerian 
surface description) format and produces a list of new 
faces with tags indicating which of these faces are to 
be included in each of the Boolean combinations. A 
striking difference that makes this algorithm more 
involved than the others reported in this paper is that 
for polyhedral combinations a 3D grid (cells becoming 
cubes instead of squares) is used. For the polygonal 
case, there is no difference. Here, the authors restrict 
themselves to that and refer the reader to Franklin 27 

Number of Average Length of 
edges length of side of each 

edges grid cell 
(assuming 
screen is 1 by 1) 

Number of CPU time (s) CPU time (s) Total 
intersections to put to find CPU time 
found edges in intersections (s) 

cells among 
edges 

100 0.100 0.100 
300 0.100 0.100 

1000 0.010 0.010 
1000 0.030 0.030 
1000 0.100 0.100 
3000 0.010 0.010 
3000 0.030 0.030 
3000 0.100 0.100 

10000 0.003 0.010 
10000 0.010 0.010 
10000 0.030 0.030 
30000 0.001 0.010 
30000 0.003 0.010 
30000 0.010 0.010 
50000 0.001 0.010 
50000 0.003 0.010 
50000 0.010 0.010 

15 0.17 0.26 0.43 
153 0.54 0.93 1.47 
11 1.73 3.62 5.35 

163 1.72 2.54 4.25 
1720 1.71 4.46 6.18 
149 5.24 8.05 13.29 

1487 5.41 8.82 14.22 
15656 5.19 27.93 33.12 

156 16.36 16.45 32.82 
1813 17.38 26.02 43.40 

16633 17.68 44.78 67.45 
149 48.33 43.95 92.28 

1797 48.46 54.21 102.66 
16859 52.85 98.93 151.78 

315 77.71 75.75 153.46 
4953 79.49 92.37 171.87 

47222 86.23 278.49 364.72 
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for the 3D version, which is considerably more 
complicated. 

Given two polygons, P~ and P2, the algorithm proceeds 
as usual and intersects all the edges of P1 with all the 
edges of P2 in each cell. For each pair of edges, e and 
l, found to intersect, two ordered pairs, (e, f) and (f, e) 
are written. Overlapping collinear edges are considered 
to intersect. After sorting the last set by the first edge 
of each pair, all the edges intersecting each edge are 
obtained in one place. Now the segments are needed. 
A segment is a whole edge or a piece of an edge that 
will not be further subdivided (and that may be used in 
the resulting polygon). Since there are two types of 
segments - those that come from an edge of only one 
polygon and those that are common to an edge of 
both polygons - care is taken to store the names of 
the polygons and the orientations of the segments. To 
compute the segments, simply note the other edges 
that intersect a given edge, e, and sort the intersection 
points along e. Finally, depending on the particular 
result desired (P~ u P2, P~ ~ P2, or P~\P2) an appropriate 
subset of the segments are selected from a table (not 
reproduced here) given in Franklin 27. For example, if 
two polygons were wanted to be united, then edge 
segments to be included are as follows: on P~ and 
outside P2, on P2 and outside P~, and on both and in 
the same direction. 

If it is desirable to have the edges of the resulting 
polygon in order, then the algorithm given in Franklin 
and Akma, n 2~ can be applied. That is, given a straight- 
edge planar graph in terms of its edges, the faces should 
be determined. This can be accomplished in O(n log n) 
time using linear space for a graph with n edges and 
is worst-case optimal. 

Map overlay 
Cartographic map overlay 29'~° is the process of 
superimposing two maps. A map is a 2D spatial data 
structure made of a set of chains (polylines in the plane). 
A chain begins at a vertex and ends at a vertex (not 
necessarily the same one). A chain does not intersect 
itself. Furthermore, the chains in the same map do not 
intersect among themselves. The set of chains and 
vertices partition the plane into regions. 

The algorithm for map overlay is simply an extension 
(and combination) of the algorithms for polygon 
intersection 27 and planar graph reconstruction 28. The 
difference is that instead of edges, the algorithm deals 
with chains. Briefly, first the intersecting chains are split. 
Then the vertex incidences are computed. This is 
followed by a sort of the chains into proper cyclic order 
at each vertex. Finally, we link up the region boundaries 
and identify, for each region, the regions to its left and 
right. To prevent numerical problems, an exact rational 
package is used. 

Polyhedral visibility 
HSH ~ is an object space hidden-surface program for 
polyhedra. (McKenna 32 presents bounds on worst case 
optimal hidden-surface removal.) HSH was first described 
in Franklin 33 and an analysis given there showed that 

the algorithm is linear in the number of faces and is not 
affected by the depth complexity of the scene, provided 
the faces are liD. 

A regular G x G grid is, as usual, overlaid on the 
scene. Each cell c of the grid has three initially null 
items associated with it: 

• the name of the closest blocking face block(c), if 
any, of this cell (block(c) covers c completely and 
thus hides everything behind) 

• the set of front faces traces(c) which intersect c and 
are in front of block(c) 

• the set of edges ledges(c) which intersect c and are 
i n  front of block(c) 

First it is determined, for each projected face f, the grid 
cells cells that f partly or wholly covers. For a cell c ~ cells 
we check if c has a block(c) which is in front of f 
throughout the cell. If so, this c is no longer considered 
with t. Otherwise, t itself may be a blocking face; in 
this case, block(c)is appropriately updated. If none of 
the preceding cases holds, then l is inserted to ffaces(c). 
This is repeated for all members of cells. Following this, 
for each grid cell c compare block(c) to all faces in 
flaces(c). All faces that are behind block(c) throughout 
cell c are deleted from ffaces(c). 

Then for each projected edge e, the cells, cells, to 
which the edge partly or wholly belongs, are determined. 
For each c~cells, e is checked to see if it is behind 
block(c). If this is not true, then e is added to ledges(c). 
This is repeated for each member of cells. Following 
this, the segment calculation is carried out, which is 
identical to the process summarized in the section 
dealing with Boolean operations. Note that a segment 
is visible iff its midpoint p is visible. (This is determined 
by comparing p against block(c) and traces(c), where 
c is the cell including the midpoint.) Now we should 
find the visible regions made from these visible segments. 
Computing the regions of the straight-edge planar 
graph composed of the visible segments is done as 
explained by Franklin and Akman 28. Finally, for each 
visible region of the graph, the intensity (shading value) 
should be computed. Let p be an interior point of a 
visible region and let c be the cell enclosing p. Scan 
through flaces(c) and find the closest face f~tfaces(c) 
whose projection covers p. Thus, this region is given a 
suitable shading value using say, the surface normal of f. 

HSH was implemented in Ratfor on a Prime 750. It 
is able to create some complex pictures of random 
polyhedral scenes very quickly. The reader is referred 
to Franklin 33 and Franklin and Akman 3~ for example 
scenes which are rendered either as cross-hatched pen 
plotter drawings or as shaded raster images. 

PARALLEL PROCESSING 
The uniform grid method is ideal for implementation 
on a parallel machine because it consists of two types 
of operations: applying a function independently to 
each element of a set to generate a new set, and sorting 
a set. Both types can be made to run well in parallel. 

Several versions of uniform grid were implemented ~4-36 
on a Sequent Balance 21000 which contains 16 National 
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Semiconductor 32000 processors. The authors compared 
the elapsed t ime when up to 15 processors were used 
with the t ime for a single processor. The speed-up ratios 
ranged from eight to 13. For example, on a scene 
consisting of three overlays of the US Geological Survey 
digital line graph, total ing 62405 edges, 81373 inter- 
sections were reported, using a grid of size 250. The 
t ime for a single processor was 273 s whereas for 15 
processors this was reduced to 28 s - a speed-up of 
almost 10. 

Another data set was the Risch Ukranian Easter egg, 
projected onto xy, xz, or yz planes. The mult iple 
coincidences make this a difficult case for a sweeping line 
algorithm. The object has 5897 edges. For example, in 
the xz projection 37415 intersections were found with 
a grid of size 115 in 98 s (serial) and 12 s (15 processors). 
In the ×y projection, 40177 intersections were computed 
with a grid of size 80 in 92 s (serial) and 10 s (15 
processors). 

A set of 50000 random edges was tried with a grid 
of size 100. In the serial case, 45719 intersections were 
reported in 521 s whereas the 15-processor figure was 
about 40 s. Finally, it was observed that the speed-up, 
as a function of the number of processors, was still rising 
smoothly at 15 processors. This shows that we might 
achieve even bigger speed-up on a machine with more 
processors. 

V a r i a t i o n  of  g r i d  s i z e  

During experiments with the uniform grid, the authors 

tried many values of G to learn the variation of 
computat ion t ime with G. For example, part of the 
Survey graph mentioned above was used to observe 
the variation of G. Average edge length was 0.0044 and 
there were 18092 edges. A total of 23586 intersections 
were found. For G = 10 the total t ime was 3080 s. This 
became 710 s when G was increased to 30. With 
G = 100 the t ime was 155 s. At G = 275 the t iming 
figure was minimized: 93 s! After that, increasing G 
slightly increased the time, too. With G = 800 the t ime 
was 132 s and with G = 1000 the t ime became 161 s. 
It is noted that the optimal t ime for this case is within 
50% of the times obtained with grids from 115 x 115 
up to 800 x 800. This demonstrates the extreme 
insensitivity of the t ime to grid size. 

A very big example to date has been the handling 
of the Survey graph mentioned above. A total of 115973 
edges of average length 0.0022 were submitted to the 
serial algorithm. A total of 135050 intersections were 
found in 683 s with a 650 x 650 grid. It is worth noting 
that while it may appear that 650 x 650 = 422500 cells 
is very inefficient in terms of storage, it should be 
recalled that not one word of storage is used for empty 
cells. 

Another very recent large example is a complete 
chip designed by Jim Guilford, a student of Professor 
Ed Rogers, at RPl's Computer Science Department. This 
chip has 1819064 edges, each of which is either 
horizontal or vertical. For the fol lowing t iming figures, 
an optimized (for the rectil inear case) version of the 
program was used. General edges would slow it by 
a factor of two to three. The program used the standard 

Table 2. Sample statistics for edge intersections for map 'Chikamagua area 3 - hydrography, roads, and trails.' 

Grid Pairs P/Cell P/Edge Grid Sort Xsect Total 
size time (s) time (s) time (s) time (s) 

10 18988 189.880 1.050 15.45 4.60 3060.15 3080.20 
13 19235 113.817 1.063 15.43 4.62 2486.20 2506.25 
15 19421 86.316 1.073 17.15 7.55 2101.47 2126.17 
20 19959 49.898 1.103 15.58 4.75 1370.98 1391.31 
25 20420 32.672 1.129 16.17 5.17 927.71 949.05 
30 20888 23.209 1.155 15.83 4.92 689.41 710.15 
40 21931 13.707 1.212 15.78 4.92 421.88 442.58 
50 22862 9.145 1.264 15.88 5.10 308.15 329.14 
65 24378 5.770 1.347 16.18 5.50 217.57 239.26 
80 25841 4.038 1.428 16.50 5.80 168.63 190.93 

100 27713 2.771 1.532 16.95 6.27 131.89 155.11 
115 29187 2.207 1.613 17.47 6.53 114.10 138.09 
125 30131 1.928 1.665 17.72 6.70 105.30 129.71 
140 31572 1.611 1.745 18.22 7.15 95.23 120.60 
150 32496 1.444 1.796 18.47 7.20 89.38 115.05 
160 33514 1.309 1.852 t8.77 7.47 84.50 110.73 
175 35005 1.143 1.935 19.33 8.07 79.40 106.80 
200 37340 0.933 2.064 20.15 8.38 72.06 100.60 
275 44483 0.588 2.459 22.63 10.03 60.61 93.28 
325 49373 0.467 2.729 24.68 11.42 57.48 93.58 
400 56617 0.354 3.129 28.72 13.37 55.01 97.10 
500 66222 0.265 3.660 30.92 16.03 56.05 103.00 
625 78304 0.200 4.328 36.22 19.25 56.70 112.16 
800 95143 0.149 5.259 45.91 24.13 61.85 131.89 

1000 114419 0.114 6.324 61.35 30.20 69.01 160.56 

No. of edges 18092 Xsects by end point coincidence 23007 
Average edge length 0.0044 Xsects by actual equation solution 579 
Standard deviation 0.0061 Total intersections 23586 
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Sun C compiler; commercial compilers may produce 
better code. On a Sun 4/280 with 32 Mbyte of real 
memory and using a 1200 x 1200 grid, 4577916 (cell, 
edge) pairs were calculated in 70 s whereas calculating 
the 6941110 intersections took 108 s (total time 178 s). 
The data structure was two simple square arrays of 
linked list headers. Each cell has a separate list for its 
horizontal and vertical edges. A 1500 x 1500 grid was 
a little bit slower: 5263144 (cell, edge) pairs, which were 
found in 79 s, and 111 s were spent to compute the 
intersections (total time 190 s). 

Table 2 shows sample statistics for intersecting edges 
in a map titled 'Chikamagua area 3 - hydrography, 
roads, and trails' (uniprocessor). Table 3 is a summary 
of results from processing various data sets, separated 
with horizontal line~ in the table (again serial 
computation). Table 3 shows the effect of parallel 
computation. Figures 1 (a) and 1 (b), on the other hand, 
show the time and speed-up graphs for the Chikamagua 
map. 

With these timing figures (timing starts when the 
array of edges is available for processing and excludes 
I/O), the authors believe that they have shown that 
there is hardly any need for complicated methods such 
as quadtrees and sweep algorithms. 

DISCUSSION AND CONCLUSION 

It may still be suggested that the first extension that 
would prove useful is to use a hierarchical grid to 
accommodate regions of the plot where the edges are 
somewhat clustered. This would, as a matter of fact, 
save time only when there are orders of magnitude 
variation in edge density. As soon as the cells become 
hierarchical, parts of the uniform grid algorithm that 
determine where (i.e. in which cells) an edge falls would 
become more complicated, thus slower. In fact, the 
preceding point is a very important objection to the 
uniform grid. Some parts of a real scene are frequently 
much denser than other parts so that a regular grid 
would appear not to work. Is a hierarchical technique, 
such as a quadtree, necessary? 

The answer is no. First, even a quadtree cannot 
efficiently deal with all data sets. If there are n parallel 
edges separated by distances of n -~ for c > 1, then it 
takes more than quadratic time to build a quadtree 
(and a uniform grid for that matter) that has cells 
fine enough to distinguish the edges. The sweeping line 
algorithm would work well in this case, but it was noted 
earlier that the sweep paradigm cannot handle the 
red blue intersections. 

Table 3. Summary of results from processing all data sets (serial computation) 

Database Edges Length Standard 
deviation 

Xsects Grid 
size 

Time 
(s) 

Risch e g g -  YZ projection 5897 0.0355 0.0124 39666 100 194.24 
XZ project ion 5897 0.0391 0.0132 37415 115 193.18 
XY project ion 5897 0.0352 0.0131 40177 80 183.83 

USA map 
Shifted by 2% and overlaid on itself 
Shifted by 10% and overlaid on itself 

915 0.0186 0.0245 1078 125 4.97 
1830 0.0184 0.0243 2430 140 14.38 
1830 0.0180 0.0237 2348 125 12.57 

Chikamagua area 1 - hydrography, 13712 0.0044 0.0084 15039 275 68.50 
roads & trails (HR&T) 

Area 2 - HR&T 14145 0.0049 0.0080 16595 275 71.11 
Area 3 HR&T 18092 0.0044 0.0061 23586 275 93.28 
Area 4 - HR&T 16425 0.0048 0.0076 20335 200 88.58 
Area 5 - HR&T 12869 0.0053 0.0103 14978 275 62.93 
Area 6 - HR&T 13871 0.0050 0.0080 16072 275 69.40 
Area 7 - HR&T 13579 0.0134 0.0518 16640 160 188.76 
Area 8 - HR&T 11937 0.0048 0.0098 13283 275 58.86 
All sections - railroads 1122 0.0159 0.0543 1316 150 8.10 
pipe & transmission lines 850 0.0277 0.0523 1211 115 7.95 
railroads, pipe & transmission lines 1972 0.0206 0.0533 2745 115 22.28 
Railroads, pipe & transmission 3944 0.0206 0.0533 13268 115 84.15 
lines overlaid on itself 

Hydrography, railroads, pipe & 55973 0.0023 0.0162 53426 500 323.09 
transmission lines 

Roads & trails, railroads, pipe 62045 0.0026 0.0106 81373 500 436.35 
& transmission lines 

Hydrography, roads & trails, 115973 0.0022 0.0115 135050 650 682.51 
railroads, pipe & transmission lines 

VLSI data XFACEA.MAG 436 
VLSI data - XFACELL.MAG 1960 
VLSI data - XFACELL.MAG 1960 
(Rotated by 30 ° ) 
VLSI data - XFACELL.MAG 1960 
(Rotated by 90 ° ) 

0.0314 
0.0467 
0.0352 

0.0467 

0.0908 
0.0852 
0.0643 

0.0852 

1403 
6488 
6488 

6488 

150 
65 

125 

65 

5.22 
16.87 
32.48 

18.67 
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On a more conceptual basis, there is evidence for 
assuming that data sets with one region that is 
exponentially more crowded than another are rare. In 
practice, scenes are resolution limited. People do not 
create scenes with enormous variations: if there is a 
large blank expanse, some detail will be added there; 
if there is a dense region, simplifying notation and 
approximations will be used. To quote Franklin et al. ~, 
'We could also define such data sets out of existence 
as numerical analysts do with partial differential 
equations. Just as they consider only equations that 
satisfy a Lipschitz condition where the greatest slope 
of a curve is bounded, we might restrict ourselves to 
sequences of data sets where the densest region's 
density, relative to average density, remains bounded 
as n ~ oo.' 
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Figure 1. Time and speed-up graphs for Chikamagua map 

Another extension is to handle curved edges, l his 
can be done without changing the general structure 
of uniform grid' 

• The edges are no longer defined by endpoints but 
by the coordinates of splines, for instan(e. 

• It is considerably more difficult to determine which 
cells a given curve occupies. If the curve is smooth, it 
can be enclosed in a box. (Again, it does not matter if 
a few extra cells are also included in this way.)If the 
curve is complicated, we can subdivide it until it is 
smooth and then use the bounding box. 

• It is essential to find out whether two curves in the 
same cell intersect, and if that is the case, the 
parameter value. Efficient curve intersection is an 
area of active research. Obviously, the curves can 
be split into line segments, and intersected to obtain 
approximate crossing points, and then the result can 
be refined with a few iterations of Newton's rule. It 
is also known how curves can be approximated by 
quadratic parametrics for which closed form solutions 
are known. 

• It is essential to sort (in, for example, HALO) the 
intersection points along each curve. If the curve is 
parametric this means that the point is needed as 
a parameter value, not just as (x, y). On the other 
hand, if the curve is in some other form but single- 
valued in say, x, then one can sort the points in x. 

A worthwhile addition to the uniform grid would be 
to compute, before preprocessing, a global 'slant' value 
for the whole data set showing the bias (if any) in the 
slopes of the edges. If the edges are slanted in some 
direction, then the grid can be placed parallel to that 
direction so that the number of grid cells spanned by 
the edges decreases. 

Although the large scale and diverse data sets prove, 
in a strong sense, the efficiency and superiority of the 
uniform grid, analytical results, which assume some 
distribution and then prove asymptotic bounds, are 
certainly welcome. The authors regard the work in 
stochastic geometry (or geometric probability) quite 
relevant to this purpose. Although the expected 
performance of uniform grid is hard to analyse for all 
cases, Devroye's interesting monographS7 may provide 
the required theoretical basis. This remains to be seen. 

This paper was written to demonstrate, both by 
theoretical analysis and by implementation, that the 
uniform grid technique from computational geometry 

Table 4. Summary of results from processing all data sets (parallel computation) 

Database Edges Xsects Grid Time taken (s) 
size 

1 Processor 5 Processors 10 Processors 15 Processors 

Risch egg - YZ projection 5897 39666 100 98.91 24.02 14.19 11.96 
XZ projection 5897 37415 115 97.88 23.55 14.83 11.81 
XY project ion 5897 40177 80 92.33 20.33 12.36 10.40 

Roads & trails, railroads, pipe 62045 81373 250 273.11 62.98 39.42 27.77 
& transmission lines 

Random edges of size 0.01 50000 45719 100 521.06 108.90 57.88 40.15 
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leads to more efficient means of solving certain common 
operations in practice. In a nutshell, there are potential 
advantages in aiming research in computer graphics 
not only at producing fine representations ('pretty 
pictures') but also at identifying and solving the 
underlying algorithmic problems. 
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