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Abstract-An algorithm is developed for electrical impedance to- 
mography (EIT) of finite cylinders with general cross-sectional bound- 
aries and  translationally uniform conductivity distributions. The elec- 
trodes for data  collection a re  assumed to be placed around a cross- 
sectional plane; therefore the axial variation of the boundary condi- 
tions and also the potential field a re  expanded in Fourier series. For 
each Fourier component a two-dimensional (2-D) partial differential 
equation is derived. Thus the 3-D forward problem is solved a s  a 
succession of 2-D problems a n d  it is shown that the Fourier series can 
be truncated to provide substantial saving in computation time. The 
finite element method is adopted and  the accuracy of the boundary 
potential differences (gradients) thus calculated is assessed by compar- 
ison to results obtained using cylindrical harmonic expansions for cir- 
cular cylinders. A 1016-element and  541-node mesh is found to be op- 
timal. For  a given cross-sectional boundary, the ratios of the gradients 
calculated for both 2-D and 3-D homogeneous objects a r e  formed. The 
actual measurements from the 3-D object a r e  multiplied by these ratios 
and thereafter the tomographic image is obtained by the 2-D iterative 
equipotential lines method. The algorithm is applied to data collected 
from phantoms, and  the errors  incurred from the several assumptions 
of the method are  investigated. The method is also applied to humans 
and  satisfactory images a re  obtained. It is argued that the method finds 
an  “equivalent” translationally uniform object, the calculated gra- 
dients for which are  the same as  the actual measurements collected. In 
the absence of any other information about the translational variation 
of conductance this method is especially suitable for body parts with 
some translational uniformity. 

Keywords-Electrical impedance tomography; medical imaging; fi- 
nite element method; cylindrical harmonics. 

I. INTRODUCTION 
LECTRICAL impedance tomography (EIT) is an im- E aging modality for which several clinical applications 

are being investigated [ l ] ,  [3]. However, the method can 
still only be used to obtain a difference image, i .e . ,  the 
difference in impedance distribution between two differ- 
ent conditions. For example, changes in impedance dis- 
tribution in thoracic cross sections between end expiration 
and end inspiration are reconstructed. The purpose of this 
study is to extend the method to obtain “static,” i.e., 
actual images, as opposed to “difference” images. 
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EIT, which is an inverse problem, aims at obtaining the 
internal impedance distribution of an object using data 
collected via electrodes applied on the surface. However, 
an essential part of all image reconstruction algorithms 
proposed for EIT at present [2]-[6], [14] is the solution 
of the forward problem, which is the calculation of the 
data, given the internal impedance distribution and also 
the boundary conditions imposed by the shape of the ob- 
ject and the electrodes. 

Currents impressed by electrodes applied on the surface 
spread inside the object in three dimensions. Therefore 
the forward problem of EIT is a three-dimensional (3-D) 
problem and its solution requires a knowledge of 3-D 
boundary shape. The technique of obtaining “difference 
images,” as described in [2], is unique in the sense that 
it obviates the need for both cross-sectional and 3-D 
boundary information. However to obtain “static” im- 
ages one must explicitly consider the 3-D shape of the 
object. 

For the solution of the forward problem for an arbitrary 
boundary and general internal impedance distribution, a 
numerical technique is necessary. The finite element 
method (FEM) has been used by several investigators [SI, 
[6], [ l l ] .  All of these studies have been confined to 2-D 
applications and/or circular or rectangular boundaries [3], 
[ l  11. Furthermore, the requirements for an FEM algo- 
rithm for application to real situations in terms of mesh 
size, mesh generation for any boundary, and easy exten- 
sion to three dimensions have not been investigated in re- 
lation to the imaging problem at hand. 

In this study, an algorithm is developed for obtaining 
static tomographic images of cylindrical objects which 
have arbitrary cross-sectional boundaries. It is also as- 
sumed that conductivity is translationally uniform in the 
third (axial) direction. The relevance of these geometric 
assumptions to the actual use of the method is discussed. 
The method is assessed by obtaining images using data 
from 2-D and 3-D phantoms and also from humans. 

11. DATA ACQUIS~TION HARDWARE 
A 16-electrode data acquisition system for EIT is de- 

veloped. The system easily interfaces to a computer which 
has a 20-b parallel I/O port and which also has an AID 
converter. In this study an IBM PC/AT computer with an 
Intel 8255 U0 port and a 12-b, 25-ps A/D converter (Tec- 
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mar) is used. It is possible to choose by software via the 
parallel port any two electrodes for application of 10 kHz 
and 1-5 mA current. Any other pair of electrodes can also 
be chosen to measure voltage differences. Any sequence 
of electrode selections with appropriate time delays can 
easily be programmed. To acquire the data presented in 
this paper, Brown et al. 's data collection protocol is used 
[2]. In this protocol, 16 electrodes are placed on the pe- 
riphery of the plane of interest, and 16 pairs of adjacent 
electrodes are selected in turn to apply current. For each 
current pair selection, 13 voltage differences (gradients) 
are measured by selecting pairs of adjacent electrodes (ex- 
cluding the ones used for current application, because of 
the voltage drop on contact impedance) to be connected 
to a high-input-impedance differential amplifier. Because 
of reciprocity, only half of the total number of 208 mea- 
surements are independent. 

It is known that tissue conductivity is constant up to 100 
kHz; furthermore, in this frequency range displacement 
current is negligible in comparison with conduction cur- 
rent [13]. It is also known that at frequencies above 10 
kHz neural stimulation thresholds are sufficiently high to 
allow for safe operation [13]. Therefore the 10-100 kHz 
frequency range is appropriate for EIT; and we have cho- 
sen the lower end of this range in order to ease the re- 
quirements on hardware design, especially those require- 
ments relating to stray capacitive effects. 

The 8255 control lines are isolated via opto-couplers. 
The 10-kHz current source and the 10-kHz voltage signal 
to be measured are transformer isolated from the applied 
parts. These precautions together with the use of an iso- 
lated power supply allow for application on humans. The 
isolated circuit common is connected to the object to de- 
crease common mode signals. The signal detection block 
consists of a differential amplifier (CMRR > 80 dB),  a 
bandpass filter (10 +_ 2 kHz),  a signal isolation trans- 
former, a phase sensitive detector, and a computer-con- 
trolled amplifier (to adjust to a 50-dB dynamic range). 
Electrodes are selected by analog multiplexers, and elec- 
trode cable shields are signal driven to minimize inter- 
electrode capacitive coupling. For 2-D studies, a circular 
shallow container 1 cm in height is filled with NaCl so- 
lution, and a l-cm-thick agar block is placed at different 
locations. The conductivities of agar blocks were deter- 
mined by a four-electrode technique applied to small rect- 
angular samples taken from the blocks. For 3-D studies, 
cylinders which have arbitrary cross sections are used. 

Electrode positions in the 2-D and 3-D phantoms are 
known exactly. Turbo-Pascal is used for the programming 
of data acquisition and for the algorithms for image re- 
construction. 

..Z 

111. SOLUTION OF THE FORWARD PROBLEM USING THE 

FINITE ELEMENT METHOD 

A .  Formulation of the 2 - 0  Problem 
In EIT, the four-electrode method of impedance mea- 

surement is used because of the electrode contact imped- 
ance problem [2]. Thus, current is applied through two 

electrodes of finite length placed on the boundary, and 
potential differences between other electrodes on the 
boundary are measured. For a 2-D problem, finding nu- 
merically the potential differences on the boundary for a 
given current electrode pair selection requires first the so- 
lution of the following equation: 

VI * ( c V , U ) ( x ,  Y )  = 0 (x, y )  E S. ( 1 )  

Here, 

J on the surface of positive current electrode 

c - =  
an 
au r 0 elsewhere on the surface. 

-J  on the surface of negative electrode 

S is the closed surface to be imaged; C is the boundary of 
S; U ( x ,  y )  is the potential distribution in S and on C; 
a U / a n  is the gradient of potential distribution normal to 
C; J is the current density on the electrode surface; and 
c(x, y )  is the 2-D conductivity distribution in S .  

In this equation, cV,U,  i.e., conductivity times the 
electric field, represents the internal current density and 
merely expresses Ohm's law. For a conductive medium 
without any free charges, this current density must be so- 
lenoidal, i.e., its divergence must be zero; hence (1) is 
obtained. Thus, finding the distribution of the potential 
field within an inhomogeneous conducting medium 
through which steady current is flowing is equivalent to 
solving (1) subject to the Neumann boundary conditions 
as expressed above. 

To obtain a FEM solution, the region to be imaged is 
divided in50 M triangular elements corresponding to N 
nodes. If V is the N x 1 vector of unknown node poten- 
tials and c I ,  c2, * . . , c,,,, are the assumed uniform con- 
ductivities of the M elements, it can be shown that [ lo] 

A ? =  b" 
where b' is the N X 1 vector incorporating the boundary 
conditions, and A is a sparse N x N matrix whose entries 
depend also on the element conductivities. 

The solution for the potential distribution in S and on 
C with respect to a refereyce node, provided that the cor- 
responding row of A and b is modified to make A nonsin- 
gular, is 

+ 

V = A - ' ; .  (3 )  

The vector of surface potential differences, 2, which 
corresponds t? the actually measured variables can then 
be related to V through a matrix D by the equation 

= 03. (4) 

The quantity g' is a 13 X 1 vector for each current elec- 
trode pair selection. Fig. l(b) displays the definitions for 
g1, g2, * * . , gI3  for a certain electrode selection. Here- 
after, the elements of 2 will be referred to as gradients. 
The matrix D is a very sparse matrix in that each row of 
D has two nonzero elements. If the ith gradient is defined 
as the potential difference between the jth and kth node 
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Boundary 
Volt age 
Differences 

91 

SI 

FEM FEM FEM 1 T a n s i o n  ~ 1016 ~ 248 ~ 56 

1 47.90 1 47.90 1 48.58 1 54. i1 

Method elements elements elements 
J mvolts) I (%) (%U) 1 

+ 93 - + 9, 

96 

g7 

(b) 
Fig. 1. Meshes used for the finite element method of solving Laplace's 

equation for a circular region. (a) An 56-element mesh, with element 
numbering also shown. (b) A 1016-element mesh, for which element 
numbering is principally the same as in the other mesh. This mesh has 
541 nodes. 

6.12 I 6.18 ~ 

potentials, then the ith row of D has + 1 as itsjth element 
and - 1 as its kth element. 

g12 

913 

B. Mesh Generation and Accuracy of the Forward 
Solution 

The accuracy of the solution for field distribution de- 
pends very much on the selection of a proper mesh. Fig. 
1 shows a coarse and a fine mesh used to divide the region 
S into finite elements. In fact, three meshes with 56, 248, 
and 1016 elements were used to solve the FEM equations. 
These meshes, with different numbers of concentric cir- 
cular divisions, are easily generated by software [6]. 

The gradients obtained for the three meshes for a cer- 
tain current application to a uniform circular region (Fig. 
1) are compared in Table I to the exact solution obtained 
by a series expansion method. The series expansion 
method is explained in Appendix A. It is observed that 
with the 1016-element mesh the gradients are correct to 
within 1 % . With the other coarser meshes the solution is 
not accurate near the site of current application. The 1016- 
element mesh, which has 541 nodes, is therefore adopted. 

The solutions given in Table I are obtained with the 
assumption that current is applied via infinitely thin elec- 
trodes located at the corresponding nodes. To understand 
the extent to which electrode width affects solution ac- 
curacy, the series expansion method is applied for differ- 
ent widths of the electrodes. It is found that if the elec- 

' 20.94 , 
47.90 

TABLE I 
BOUNDARY POTENTIAL DIFFERENCFS A S  C A L C U L A T F D  BY THE FEM WITH 

DIFFERENT MESHES AND BY THE SERIES EXPANSION M t r H O D  

20.91 
12.59 
9.00 
7.24 
6.42 
6.19 
6.45 
7.27 
9.01 
12.59 
20.92 
47.70 

1 20.85 1 

1 8.96 
7.20 
6.41 
6.23 

9.01 1 1 12 .5 i  , 
I 20.89 1 
1 47.42 ~ 

21.57 
12.70 
8.97 
7.08 
6.34 
6.35 
6.66 
7.31 
8.98 
12.70 
21.20 
49.80 

Boundary potential differences (gradients) obtained with series expan- 
sion method and FEM with different numbers of elements. The region has 
uniform conductivity of 0.20 S/m,  and 1 mA of current is applied. 

trode width is less than 1/64 of the circumference, 
gradients differ less than 1 % from the impulsive case. For 
different electrode widths, the field distribution in the vi- 
cinity of the current application electrodes must obviously 
be different. However, an advantage of the four-electrode 
impedance measurement method is that, since voltage dif- 
ference measurements are made between other electrodes, 
the effect of current electrode width is not sensed, pro- 
vided that electrode width is less than 1 /64 of the circum- 
ference. 

Gradients measured from a 2-D phantom of circular ge- 
ometry and uniform conductivity are compared with the 
calculated values using FEM. It is observed in Table I1 
that the ratios of measured and calculated values are not 
significantly different for different measurement electrode 
pairs. The nonzero standard deviation of the measured 
gradients is due to the cumulative effects of errors caused 
by mesh size and electrode width, as well as errors com- 
ing from phantom construction and hardware inaccura- 
cies, noise, and digitization. 

Fig. 2 shows the equipotential lines beginning from the 
voltage measurement electrodes calculated by using the 
FEM. These equipotentials are virtually identical to the 
ones calculated by the series expansion method. This is 
very important for the inverse solutions explained later. 

Due to the large number of elements and nodes, the 
actual implementation of the FEM requires a large mem- 
ory and significant amounts of computation time. The 
mesh generation algorithm and the methods used to solve 
the FEM equations are the critical components of any 
FEM solution. 

The meshes shown in Fig. 1 are easily generated for a 
desired number of concentric divisions. Software is also 
developed to adapt a mesh generated for a circular region 
to any geometry. The method of mesh adaptation is given 
in detail in Appendix B. Fig. 6(a) shows a mesh con- 
structed with this method for a noncircular cross section. 

The frontal algorithm is used to solve the FEM equa- 
tions [7]. This algorithm is very memory efficient. The 
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TABLE 11 
MEASURFI) A N D  CALCULA r E D  BOUNDARY POTENTIAL DlFFtRENCES 

Boundary 
Voltage 
Differences 

91 
92 
93 
94 
95 

Q7 

98 
99 
910 
911 

912 
913 

96 

Measured 
(mvolts f s.d) 

38.10 f 1.40 
17.13 f 0.62 
10.39 f 0.29 
7.44 i 0.23 
5.98 f 0.16 
5.28 f 0.15 
5.08 f 0.16 
5.28 f 0.14 
5.97 f 0.19 
7.43 f 0.22 

10.3s i 0.30 
17.14 i 0.63 
3S.06 1.32 

Calculated 
(mvolts) 

47.90 
20.91 
12.59 
9.00 
7.24 
6.42 
6.19 
6.45 
7.27 
9.01 

12.59 
20.92 
47.70 

__-- 
Measured 
Calculated 

(mvolts f s.d) 
0.80 f 0.029 
0.82 f 0.029 
0.83 f 0.023 
0.83 5 0.026 
0.83 f 0.022 
0.82 f 0.023 
0.82 f 0.026 
0.82 f 0.022 
0.82 f 0.026 
0.82 f 0.024 
0.82 k 0.024 
0.82 f 0.030 
0.80 f 0.027 

Measured and calculated boundary potential differences are compared 
for a circular region of uniform conductivity. Calculated values are for I 
mA current to a circular region of 0.20 S/m conductivity. Since measured 
values were not from an exactly 0 .20  S/m region, ratios were taken for 
comparison. Standard deviations of measurements are obtained by consid- 
ering all 16 current applications. 

Fig. 2.  Equipotential lines obtained by FEM (1016 elements) for a uni- 
formly conductive circular region. Current is applied between the two 
electrodes shown. 

memory requirement of the frontal algorithm depends very 
much on the numbering of the mesh elements. By using 
a numbering strategy of the type shown in Fig. l(a), the 
RAM memory requirement is reduced to only 4 kilobytes. 

For each current application the FEM equations must 
be solved. These 16 sets of equations are simultaneously 
solved using the frontal algorithm in 9 min using an 4.77- 
MHz IBM-AT with the 80287 coprocessor. A period of 3 
min is required for initial file preparations and therefore 
a second set of equations can be solved in only 6 min. 

C. Formulation of the 3-0 Problem for  a Finite 
Cylinder of Arbitrary Cross Section with Translationally 
Uniform Conductivity 

For a finite cylinder of height 2a and diameter d (Fig. 
3),  the problem can be reduced to the solution of a series 
of 2-D problems by making use of Fourier expansions. 
Since the current electrodes are placed at the z = 0 plane, 
and since a symmetric cylinder is used, this boundary 
condition can be expanded in cosine series (without loss 

Fig. 3 .  Finite cylinder along z axis. The distance from the origin to the 
top is represented by U .  

of generality); hence the solution can also be expressed 
as 

With V and V, being the 3-D and 2-D Laplace operators 
and s being the 3-D conductivity distribution, 

kx U 1 ( k = O  

03 

v * sv c vkC0s-z = o  

ka 
k = O  5 [v . +V,V,) cos - a z + v, 

( 7 )  
where uz is the unit vector along z axis, and 

k = O  U 

k = O  

Therefore, for each cosine term, the corresponding coef- 
ficient must be zero: 

v, * SV,Vk - s (:T - v, = 0. 

Each component Vk obeys a different 2-D partial differ- 
ential equation with parameter ( k a / a ) 2 .  The boundary 
condition for each equation can also be found: 

must be obeyed, and 
m 

SA(: 
an k = o  

= c JkC0s-z kn (12)  
a k = O  a 

or 

where Jk is the coefficient of the kth term in the cosine 
expansion of the boundary condition. 
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0.992 
0.427 
0.249 
0.166 
0.132 
0.126 
0.132 
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1 . 4 1  

0.983 
0.431 
0.245 
0.167 
0.133 
0.124 
0.133 
0.167 

0.554( \ \ \ k  2 

A::: 
1.15 

1.00 

0.85 

0.70 

Fig. 4. Gradient values obtained by solution of equation (10) for eight fre- 
quency terms for a cylinder of circular cross section, with diameter 20 
cm and height 80 cm. For the 0 frequency term all gradient values are 
multiplied by 1.3/0.59. k represents the frequency index in (10). Units 
are arbitrary. 

In order to determine the number of terms to be used, 
gradients obtained for different terms are calculated and 
are shown in Fig. 4. It is found that at higher frequencies, 
i.e., higher k values, gradients are much lower. Further- 
more, for higher k values, the rate of decrease of gradients 
further from the current electrodes increases. Therefore, 
convergence of the sum can be tested by looking at the 
maximum contribution of each new frequency term. In 
this study, solution is stopped after the frequency whose 
maximum contribution to the sum is less than 1 %. It is 
found that eight frequency terms are sufficient for con- 
vergence. 

Therefore by adopting this approach, it is possible to 
solve the 3-D problem by solving eight 2-D problems. 
This is an advantage of the four-electrode impedance 
measurement method where the high-frequency potential 
field, which is significant only near the current electrodes, 
is not of interest. The solution of eight 2-D problems takes 
a total computation time of 3 + 8 X 6 = 51 min. Of this, 
3 min are for preparation of files that use mesh informa- 
tion for the solution of all the 2-D problems. 

The accuracy of the solutions is tested against the cy- 
lindrical harmonic solutions for a circular cylinder. The 
cylindrical harmonic expansion method is explained in 
Appendix A. Cylindrical harmonic solutions for an a / d  
ratio of 2 are given in the first column of Table 111. FEM 
solutions are given in the other three columns for different 
a / d  ratios (2 ,  1.5, and 1, respectively). 

The maximum percentage difference of the solutions 
obtained with the two methods, cylindrical harmonics and 
FEM, is less than 2 % . 

Comparison of FEM solutions for different a / d  ratios 
shows that for a values more than twice the diameter of 
the cylinder, the gradient values do not significantly 

TABLE I l l  
BOUNDARY POTEKTIAL D l F F E R E V C t S  FOR A Fl'illt; CYl.lVDER OF CIRCL'LAR 

C R O S S  SECTION 

Measured 
~ (f s.d.) 

FEbl Cylindrical 1 
harmonics 

(a/d = 1.5) 
3.611 
0.980 
0.432 
0.24; 
0.171 
0.139 
0.129 
0.139 
0 . l i l  
0.24i 
0.432 
0.980 
3.611 

(a/d = 1) 
3.585 
0.9i4 
0.443 
0.269 
0.199 
0.169 
0.160 
0.169 
0.199 
0.269 
0.443 
0.971 
3.585 

(uld = 2 )  
3.615 i 0.233 
0.965 f 0.062 
0.420 f 0.020 
0.237 f 0.010 
0.161 f 0.00; 
0.128 i 0.007 
0.118 f 0.005 
0.128 f 0.007 
0.161 * 0 . O O i  
0.237 i 0.010 
0.420 f 0.020 
0.965 i 0.062 
3.615 i 0.233 

The first two columns show the cylindrical harmonics and FEM solu- 
tions with the same u / d  ratio. where 2a is the height and d is the diameter 
of the circular cylinder. The next two columns show the FEM solutions for 
different u / d  ratios. Conductivity is taken to be uniform as 0.20 S /m.  
Units are mV. The last column includes the measurements from a circular 
cylindrical phantom filled with salty water so that the cr/d ratio is 2 .  Stan- 
dard deviations of measurements are obtained by considering all 16 current 
applications. The measured values are scaled to match the highest gradient 
with the FEM solution for u / d  = 2.  

change. Therefore, those gradient values obtained with an 
a / d  ratio of 2 can be considered the solutions for an in- 
finitely long cylinder. 

On the other hand, solutions obtained with a / d  ratios 
less than I .5 (i.e.,  1 ) differ very much from the solutions 
of an infinitely long cylinder, especially at the gradient 
values calculated at electrodes placed opposite to the cur- 
rent application electrodes. 

IV. IMAGE RECONSTRUCTION-SOLUTION OF THE 
INVERSE PROBLEM 

In this study, the iterative equipotential lines method 
(IELM) [2], [4] is used to reconstruct images. In this 
method, first, the forward problem is solved for a homo- 
geneous medium to calculate the voltage distribution so 
that the gradients and the equipotential paths which end 
on the voltage-measuring electrodes are determined. Sec- 
ond, the conductivity values between two consecutive 
equipotential lines are multiplied by the measured to cal- 
culated gradient ratio for the corresponding electrodes. 
The final conductivity distribution is calculated as the 
average of all such corrected distributions which are ob- 
tained for each current application. But since the calcu- 
lated gradients for this final conductivity distribution do 
not satisfy the measured ones, this procedure is applied 
iteratively until the error between the measured and the 
calculated gradients reaches a reasonably small value. 

Fig. 5 displays the images obtained for a circular agar 
block of conductivity 0 .6  S/m and diameter 9 cm, placed 
midway between the center and the periphery of the 26- 
cm-diameter 2-D phantom filled with liquid of conductiv- 
ity 0.21 S/m. Both the 2-D phantom and the electrodes 
used have 1 cm thicknep. It is observed that even the first 
iteration yields an image which is indicative of the posi- 
tion and relative size of the object. However, both con- 
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Fig. 5 .  Images obtained for a 9-cm-diameter, l-cm-thick agar disk of con- 
ductivity 0.6 S/m placed midway between the center and the edge in the 
26-cm-diameter 2-D phantom filled for 1 cm with NaCl solution of con- 
ductivity 0.21 S/m. (a) Result of first iteration. (b) Results of fifth it- 
eration. (c) Result of tenth iteration. (d) Result of tenth iteration drawn 
in the perspective mode. Parts (A), (B), and (C) are drawn in the inten- 
sity mode with ten intensity levels covering the range o f 0 .  18 to 0 . 5  S/m. 

trast and resolution increase considerably with further it- 
erations. The rms value of the percent differences between 
measured and calculated gradients is calculated at the end 
of each iteration to monitor the convergence of the algo- 
rithm. This rms value has a minimum at about 3 .5% 
around the tenth iteration. However, further iterations 
cause an increase in this rms value, indicating divergent 
behavior. Therefore the IELM does not give a conductiv- 
ity distribution for which the calculated gradients are ex- 
actly the same as the measured gradients. This property 
of IELM, which is true for even simulated data, has also 
been observed by Yorkey [4]. 

Average conductivity values for the flat tops of the re- 
gions in Fig. 5 corresponding to the agar object at the 
first, fifth, and tenth iterations are 0.35, 0.49 and 0.58 
S/m. These results show that, for quantitative imaging, 
iterative application of the method is very important. 
Conductivity of the background stabilizes at about 0.20 S 
in a few iterations. 

Reconstructing tomographic images of 3-D bodies is a 
somewhat different problem. It is in fact a problem of 
finding the 3-D conductivity distribution from the gra- 

dients measured by electrodes placed around a certain slice 
of the body. This is so because off-slice objects also affect 
the data collected by such electrodes [12]. Yet, it is not 
possible to estimate the positions and conductivities of 
off-slice objects from the measurements collected around 
a slice. However if translational uniformity is assumed, 
then one may find a 2-D conductivity distribution whose 
translationally extended form yields a gradient set which 
satisfies the original measurements. However, one can 
find such a 2-D conductivity distribution if a 2-D equiv- 
alent form of the measurements is known. A 2-D equiv- 
alent form of the measurements may be defined to be the 
data set one would measure for a 2-D object having a con- 
ductivity distribution the same as the transverse conduc- 
tivity distribution of the translationally uniform 3-D ob- 
ject. 

The 2-D equivalent form of the measurements can be 
calculated by multiplying the measurements by the 
2-D/3-D ratio of calculated gradients obtained for the ac- 
tual conductivity distribution. However, in this study, 
since the actual conductivity distribution is not known, the 
2-D/3-D gradient ratios are calculated for a homogeneous 
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conductivity distribution. Therefore, once the 2-Dl3-D 
gradient ratio is calculated, one can find an approximate 
2-D equivalent form of the measurements and then begin 
to search for the 2-D conductivity distribution using 
IELM. 

This approach gave satisfactory results for phantoms 
with translationally uniform conductivity distributions. A 
cylindrical phantom which does not have a circular cross 
section is constructed and is filled with salty water, and 
delrin rods are placed inside. Fig. 6(a) shows the mesh 
used for the solution of the field distribution and for image 
reconstruction. Fig. 6(b) shows the actual locations and 
sizes of the delrin rods. Fig. 6(c) is the reconstructed im- 
age of the delrin rods using the original data without mul- 
tiplying by 2-D/3-D gradient ratios. In this image the po- 
sitions of delrin rods cannot be seen at all. Finally, Fig. 
6(d) is the reconstructed image using the 2-D equivalent 
form of the data. This image gives sufficient information 
about the sizes and the locations of the delrin rods. The 
percentage conductivity difference of delrin rods from the 
background is about 42 % . 

The 2-D/3-D gradient ratios are also calculated for the 
reconstructed conductivity distribution, as shown in Fig. 
6(d). It is found that these ratios do not differ more than 
1 %  from the ratios calculated for a homogeneous distri- 
bution. Therefore, the error incurred from using 2-D/3-D 
ratios for a homogeneous distribution is negligible. For 
very high contrast images, the error may not be neglected. 
However, even though an actual object may have regions 
with very different conductivity values, such as delrin and 
water in this case, the reconstructed images, because of 
the limitations of the IELM in particular and impedance 
tomography technique in general, have much lower con- 
trast. 

Tomographic images of the human arm are also recon- 
structed using this imaging system. The problem of find- 
ing electrode positions is first overcome by forcing the 
arm boundary to be circular, resulting in the use of pre- 
determined electrode positions. For this purpose, a ring 
is prepared which is 7 cm high and which has a diameter 
slightly less than the average diameter of the slice of in- 
terest of the arm. Electrodes are located inside the holes 
which are bored with equal distances on the inner surface 
of the ring. The arm is then inserted inside the ring until 
the electrodes reach the level of the slice of interest. Fig. 
7(a) shows the fifth iteration of the tomographic image of 
a human arm, where the slice is chosen to be below the 
armpit of one third the distance from the armpit to the 
elbow. In the image, the large dark area and the brightest 
region probably correspond to the humerus and the blood 
vessels, which are known to run together in a collection 
at this level of the upper arm, respectively [9]. Another 
application is performed with the data collected from hu- 
man arm using a noncircular ring which has a shape closer 
to the actual boundary shape of the slice of interest (Fig. 
7(b)). The selected slice is again roughly the same as the 
one which was chosen for the previous case. Again the 
vessel group is identified; however the bone appears as 
more shifted to the boundary. In fact the bone was ac- 

tually closer to the boundary when the noncircular ring 
was used, as tactually sensed by us. When these experi- 
ments were repeated to obtain images from multiple sub- 
jects, the following general features for the arm images 
were observed: 1) The Humerus appears rather close to 
the periphery and its contrast with respect to its surround- 
ing is low. In particular, the region between the bone and 
the periphery has low conductivity. 2) Low-conductivity 
regions extending inward from the boundary may be ob- 
served. 3) A high-conductivity small locality may be 
identified as the vessel groap. 4) There is a tendency to- 
ward lower conductivity at the periphery with respect to 
the inner regions. 

To properly interpret these images, cross-sectional 
anatomy atlases may be consulted. However, since EIT 
is limited in resolution one does not expect to obtain im- 
ages which correspond to the anatomy in a millimetric 
scale. It is known that the equipotential lines method is a 
nonlinear reconstruction method and has a position-de- 
pendent point spread function [2J. Resolution of a prac- 
tical 16-electrode system is roughly found to be 7-10% 
of diameter [ 11, [2]. Furthermore, several reconstruction 
artifacts may be complicating the interpretation of EIT 
images. Therefore, a simulation study is undertaken to 
understand to what extent EIT can give reasonable images 
of the actual arm. Fig. 8(a) shows a simulation picture of 
the upper arm which is constructed in reference to stan- 
dard anatomy books [9], [15]. The outermost low-con- 
ductivity layer corresponds to the skin and the fatty sub- 
cutaneous layer, which can be a few millimeters to a 
centimeter thick. The bone, humerus, is slightly off-cen- 
tered, and bone marrow is also represented. Major vessels 
of the upper arm, the brachial artery, brachial vein, and 
basilic vein, run close to each other and are rather inter- 
nally located. On the periphery there is the large cephalic 
vein, and also we have assumed a more pronounced pe- 
ripheral site with low conductivity in order to represent 
more localized fat depositions under the skin. The con- 
ductivity values for different tissues are taken as reviewed 
elsewhere [14]. The background tissue, which is mostly 
skeletal muscle, is assigned the average transverse con- 
ductivity of the human arm [ 141. The forward problem is 
solved for this 2-D simulation picture and the calculated 
gradients are accepted as data from which the EIT image 
shown in Fig. 8(b) is obtained, using the equipotential 
lines method. 

It is observed that the low-conductivity outermost layer 
is not identified as a thin, well-defined layer but its effect 
is to generally decrease the conductivity of the relatively 
peripheral regions. It is observed that the low-conductiv- 
ity bone region is therefore not found to have high con- 
trast difference with respect to this peripheral region and 
it appears to be rather connected and shifted to the pe- 
riphery. The blood vessel group is well localized, with a 
wide skirt, and of course individual vessels are not rec- 
ognized. The vessel group appears to be somewhat shifted 
away from the boundary. The peripheral vessel is not felt 
at all, and the peripherally localized fat is seen to generate 
a stripe artifact which extends into the region with de- 
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Fig. 6 .  (a) Mesh used for the finite element method in the solution of Laplace’s equation for the noncircular cross-sectional 
geometry at hand. (b) Actual locations and sizes of the delrin rods placed in a noncircular finite cylinder. (c) Image recon- 
structed without considering the 3-D nature of the object. (d) Image reconstructed using the same data as in (c) but taking 
into account also the 3-D effects. The fifth iteration image is shown. 

Fig. 7. (a) Reconstructed image of human arm. Selected slice is below the armpit by one third the distance between the armpit 
and elbow of the right arm. Boundary of the cross section is forced to be circular by inserting the arm into a circular ring with 
inside attached electrodes. Nine gray levels from black to white are used to represent nine conductivity levels. (b) The same 
arm inserted into a noncircular ring which has approximately the same shape as the arm itself. Maximum difference in pixel 
values divided by maximum pixel value is 65 %. 
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(b) 
Fig. 8.  (a) Two-dimensional simulation picture of the upper right arm cross 

section below the armpit by one third the distance between the armpit 
and elbow (upper:  anterior, lower: posterior. /eft: lateral, righr: medial). 
The same boundary as in Fig. 7 is assumed. The conductivity values of 
different tissues are taken as follows: 0.033 S/m for subcutaneous tissue. 
0.025 S/m for fat tissue, 0.0066 S/m for bone, 0.04 S/m for bone mar- 
row, 0.66 S/m for blood, 0.2 S/m for muscle. (b) Image obtained by 
using the calculated gradients for the simulation picture shown in (a) .  
Maximum difference in pixel values divided by maximum pixel value is 
85 %. Fifth iteration of IELM is shown. 

creasing contrast and width. Therefore, even with noise- 
free 2-D simulation data, the anatomical boundaries may 
not be obtained in a clear-cut fashion. The striking simi- 
larity between the images obtained with simulation data 
and the actual data shows that the undesirable features 
observed in the actual images derive from the fundamen- 
tal limitations of the equipotential lines method. 

Finally, Fig. 9 shows an EIT image of the thorax at the 
mamillary level. The data are collected by the APT hard- 
ware, developed by Brown er al. [14] of Sheffield Uni- 
versity, U.K.,  which work at 50 kHz. This system is fast 
and therefore it is possible to collect the data in under 1 s 
while breath is held at inspiration. A mechanical system 
is developed to determine electrode positions. Electrodes 

Fig. 9. EIT image of the thorax at the mamillary level. Maximum differ- 
ence in pixel values divided by maximum pixel value is 75%.  Upper 
boundary in the picture is the anterior surface. and the right side in the 
picture IS  the left side of the thorax. Fifth iteration o f  IELM is shown. 

are held at the end of bars which may be slid until the 
electrodes touch the body surface. Angular and linear dis- 
placement of the bars may be marked so that electrode 
locations are later determined. In this thorax image the 
two lungs appear as low-conductivity regions. The heart 
and/or any other structure is not recognizable. The low- 
conductivity extension to the anterior surface is probably 
the stripe artifact of the sternum. This image also illus- 
trates the fact that the fundamental limitations of the IELM 
must be reconsidered for obtaining images of a compli- 
cated section such as the thoracic section shown here. 

V .  CONCLUSIONS A N D  DISCUSSION 
A .  The Finite Element Method Used 

When static images are aimed at, as in this study, the 
forward solutions must be very accurate. In obtaining dif- 
ference images using the equipotential lines method, con- 
sistent errors in the reference and actual data sets cancel 
when gradient ratios are taken. The requirement of accu- 
racy for obtaining static images has caused us to use a 
mesh with a large number of elements. Furthermore we 
have used a mesh which is the same for all current appli- 
cations and which has elements of almost equal size 
throughout the region. The reasons are: 

Although a different mesh for every current appli- 
cation can be chosen such that small elements are 
used only near the current applying electrodes, some 
computational efficiency is lost. If only one fine 
mesh is chosen for all currents, then matrix A in (2) 
is the same for all current applications and only the 
right-hand side differs. Therefore the forward elim- 
ination phase of the solution algorithm need not be 
repeated for all currents [7]. 
In the FEM used in this study. every element must 
have uniform conductivity. The conductivity of an 
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element must then be assigned by averaging the cor- 
responding image region. With small elements the 
averaging effect is not significant. Furthermore in 
the constant mesh since the elements are directly as- 
signed conductivities, such an averaging is not re- 
quired at all. 
Resolution of a 16-electrode EIT is argued to be 7- 
10% of the diameter [ l ] .  The finite elements must 
be smaller than the smallest object detectable so that 
precise definition of object position is obtained. In 
this study the element dimension is about 3.3% of 
diameter. 

All these considerations led us to the selection of the 
1016-element mesh used in this study. The 248-element 
mesh gave unacceptable results, especially when the 
3-D solutions were compared. 

B. Solution of Forward Problem to Include 3-0 Effects 
The Fourier decomposition technique has several ad- 

vantages. First of all the problems of 3-D mesh generation 
and 3-D FEM formulation need not be tackled because 
the 3-D problem is solved as a succession of 2-D solu- 
tions. Second, a considerable saving in computation time 
is achieved. For a cylinder of height three times the di- 
ameter, if a 3-D mesh were generated with simple repe- 
tition of the 2-D mesh, then 90 different levels would have 
to be considered because the length of the elements in the 
third dimension must be comparable to their size in the 
transverse plane [ 101. This means at least a 90-fold in- 
crease in solution time, provided that the block diagonal 
nature of the FEM equations are considered. A more ef- 
ficient mesh may of course be constructed, but in such an 
effort all of the constraints we have considered for 2-D 
mesh generation must be reconsidered. In the Fourier de- 
composition technique used here the time required for the 
solution for the 3-D forward problem is only eight times 
more than that for the 2-D problem. One important reason 
for achieving this computational efficiency is that the field 
solutions in the immediate vicinity of the current elec- 
trodes need not be known as a consequence of employing 
the four-electrode impedance measurement philosophy. 

C. Assumptions Regarding 3 - 0  Properties 
It may be argued that actual objects such as the limbs 

do not have exact cylindrical shapes. However, we have 
obtained images of the upper arm demonstrating that the 
cylindrical assumption is a good rule-of-thumb assump- 
tion. Thus the computational efficiency obtained by this 
assumption, especially in the absence of information re- 
garding the 3-D geometry of the object, is worth consid- 
eration. 

Another, more fundamental assumption of the method 
presented here is that of translational uniformity of con- 
ductivity. Actual objects may not satisfy this condition. 
However, it may be proposed that the images obtained in 
this study are “equivalent” images in the sense that, had 
the object had that particular translationally uniform con- 
ductivity distribution, then the gradient data to be ob- 
tained from it would have been the same as the actual data 
obtained. The contributions of off-slice objects to EIT im- 

ages have been studied [12]. There seems to be no way 
to estimate the off-slice positions of objects from their 
contributions to an EIT image reconstructed from data ob- 
tained from equiplanar electrodes. Therefore we believe 
that in the absence of any other information regarding 
3-D conductivity distribution, the method used here yields 
a reasonably equivalent image. This is so especially for 
the limbs where bones and vessels extend perpendicular 
to the imaging plane for considerable distances. 

Before the above assumptions for 3-D shape and con- 
ductivity distribution are further evaluated, it will be nec- 
essary to study the capabilities of the IELM in recon- 
structing complicated body sections. Our simulation 
studies have shown that, in terms of resolution, the IELM 
is itself a major limiting component. 

D. Electrode Positions 
Finally, one must comment on the accuracy with which 

electrode positions must be known. If an CY% error in the 
angular separation between two adjacent electrodes is 
made, then the gradient calculated between these two 
electrodes is roughly in CY% error also. Such errors cause 
the appearance of higher and lower conductivity regions 
separated by the equipotential line for that particular elec- 
trode. The contrast error is found to be also about CY% 
near the boundary and less marked as the regions of con- 
ductivity artifact move toward the inside. Therefore in or- 
der to avoid such noticeable stripes near the boundary, 
electrode positions must be accurately known. A hard- 
ware and/or software technique to find electrode locations 
easily when data are collected from an actual object is 
needed. 

APPENDIX A 
SOLUTIONS USING CYLINDRICAL HARMONICS 

Solution of the Laplace equation for a finite cylinder of 
radius R which has translationally uniform conductivity c 
can be expressed using the cylindrical harmonics as 

+ ( r ,  0, z )  = C A,, sin (mO)rlll + C C A,,,, 
m m m  

in = I n = I  m = I  

with the boundary condition 

where 4, and 
electrodes. 

are the angular locations of two current 

The unknown coefficients A,,n and A,,, are evaluated as 

21, sin (rn4,) 
A,,,, = c1rm2aR”‘ ’ 

21, sin ( m 4 , )  
cIra(naR/a)  Z,’rl(n7rR/a)’ Ann, 

n , m  = 1 , 2 ,  - - e  , 00. (A .4 )  
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In finding from its infinite series expansion, it is nec- 
essary to generate the modified Bessel function I,,, and its 

tions are evaluated using their series expansions [8]. 
However, because of the large truncation numbers in- 
volved, Bessel functions of very high order need to be 
evaluated. Since I,,, and I:, asymptotically approach the 
exponential function, for very large m the values of Z,fl and 
I;, may be prohibitively large for storage in the computer. 
For this reason, the asymptotic form of the ratio Zm/Ih  for 
a fixed argument and for large m is needed. Using the 
asymptotic forms given in [8] for Zn1,  the ratio Zm/Zh can 
be shown to be z / m ,  where I is the argument. Without 
dealing with infinitely large numbers for Z, and Zk sepa- 
rately, we can work with the asymptotic ratio which is 
well behaved. Therefore, the ratio Zm/Ik  was calculated 
for increasing m, using the series expansions for I,,, and 
Z; until the ratio became close to the asymptotic value by 
less than 0.1 %. After this m ,  only the asymptotic value 
was used. For each n ,  the value m was incremented up to 
10 000; n was incremented until each new term ceased to 
change the gradients by more than 1 % . 

Solution of the Laplace equation for a 2-D homoge- 
neous circular region, with nonzero current electrode 
widths, can be shown to be 

.I ..:.,- T,!~, .-:*I. -c -=cc t +- tLr nryllment The40 func- 

[COS - e ) )  - COS ( n ( a 2  - e ) ) ] .  
(‘4.5 1 

For the above expression, a1 and cy2 represent the an- 
gular positions of current electrodes and p is the angular 
width of each electrode. The summation is stopped for 
( l/n2)(r/R)” < n For r = R, ( l/n2) < 
> io3. 

APPENDIX B 
MESH ADAPTATION 

The electrode positions are expressed in polar coordi- 
nates with respect to a central reference point and the first 
electrode. The angles of the electrodes for a circular ob- 
ject and their distance from the central point are multi- 
plied by appropriate factors to make them coincide with 
the electrodes of the actual object. The nodes of the cir- 
cular mesh are also transformed using an interpolation 
formula (see Fig. 10): 

Here, 

e,,: 
e, + I: 

(r,,, e,,) is the nth electrode of circular mesh; 
(r,, + I ,  8, + I ) is the ( n  + 1 )st electrode of cir- 

cular mesh which is adjacent to e,,; 

‘f / % * I  

I X 

Fig. I O .  Transforming the nodes of a circular mesh to obtain a mesh for 
noncircular cross sections. 

p :  

e:,: 

( r ,  e )  is a node of circular mesh such that e,, < 

(r,,, e,,) is the nth electrode of the actual object; 
(r:,+,, is the ( n  + 1)st electrode of the 

(r’, e ’ )  is a node of the actual mesh such that 

6 < e,+,;  

actual object which is adjacent to e;; 
p ’ :  

e:, I e, I e:,+I. 
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