
162 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990

An Implementation of Elias Coding for
Input-Restricted Channels

ERDAL ARIKAN. MEMBER, IEEE

Ahstrurt -An implementation of Elias coding for input-restricted chan-
nels is presented and analyzed. This is a variabk-to-fixed length coding
method that uses finite-precision arithmetic and can work at rates arbitrar-
ily close to channel capacity as the precision is increased. The method
offers a favorable tradeoff between complexity and coding efficiency. For
example, in experiments with the 12, 71 runlength constrained channel, a
coding efficiency of 0.9977 is observed, which is significantly better than
what is achievable by other known methods of comparable complexity.

I. INTRODUCTION
Ever since Shannon [l , p. 361 formulated and studied input-

restricted channels, many coding methods have been proposed
for such channels; the reference section proGdes a partial list. We
present another method, based on Elias coding, which may be of
interest since it can achieve extremely high coding efficiencies
using little memory and computation.

The idea of using Elias coding for input-restricted channels is
not new, though the earlier codes were presented under the name
of arithmetic coding [4], [5], [6]. The primary interest in [4], [5]
was in fixed-rate implementations. Here, we consider a variable-
to-fixed-length implementation that is fixed-rate only in a certain
asymptotic sense. It return for giving up the strict fixed-rate
property, a favorable tradeoff is obtained between coding com-
plexity and efficiency, as demonstrated by experimental and
analytical results.

The relation between Elias coding and the code here is a
special case of the duality between source coding (data com-
paction) and coding for input-constrained channels (data transla-
tion). The decoder for a data-translation code is an encoder for a
data-compaction code: it removes the structural redundancy that
is present in the constrained channel sequence. This relationship
was stated and exploited in [4], [5], and more recently in [16]. For
the code here, the decoder is an Elias encoder, more exactly a
finite-precision floating-point implementation of Elias coding,
similar in some respects to that in [15]. (For Elias coding and its
variants, see [14].)

The main results of this correspondence are contained in
Section IV. Sections I1 and 111 contain definitions, conventions,
and some background results. Section V contains complementary
remarks on the algorithm.

11. CONVENTIONS AND DEFINITIONS
We consider only input-restricted channels that can be pre-

sented by finite state diagrams. An example of such a channel is
the [2, 71 runlength constrained channel, presented by the state
diagram in Fig. 1. (Runlength constraints arise, e.g., in magnetic
recording applications. For details, see, e.g., [13].) Each edge in
Fig. 1 is labeled by a 0 or a 1, the input letters for this channel. A
0-1 sequence is admissible as an input to the [2, 71 channel iff it
can be generated by a walk through the state diagram. It will be
noted that runlengths of 0 in admissible sequences are bounded

4

I

Manuscript received December 7. 1987: revised May 13, 1989. This research
was supported in part by Joint Services Electronics Program under contract
N00014-84-C-0149. This correspondence was presented in part at the IEEE
International Symposium on Information Theory, Kobe, Japan, June 1988.

The author is with the Department of Electrical Engineering, Bilkent Uni-
versity. P.K. 8 , 06572, Maltepe, Ankara, Turkey.

IEEE Log Number 8933104.

Fig. 1. State diagram for [2, 71 runlength constraints.

between 2 and 7, and being in state i implies that the current
runlength of 0 is i -1.

There may be several reasonable ways of presenting an input-
restricted channel by a state diagram. For our purposes any such
presentation is acceptable as long as it has the properties of being
simple and deterministic. A state diagram is said to be simple if
for each pair of (not necessarily distinct) states i and j , there is
at most one edge from state i to state j . A state diagram is said
to be deterministic if, for each state, the labels on edges emerging
from that state are distinct.

Note that, if one is given a sequence of edge-labels through a
deterministic state diagram and the initial state is known, one can
then determine the sequence of states visited by the walk. (This
notion was expressed by the terms unifilar in [2] and, in a
somewhat weaker form, by right-resolving in 191.)

It is easy to see that if an input-restricted channel can be
presented by a finite state diagram, so can it be by a simple,
deterministic one. So, the restrictions we have imposed on state
diagram presentations do not exclude any channels. We shall,
however, exclude from consideration those channels that cannot
be presented by irreducible state diagrams. A state diagram is
said to be irreducible if there exists a directed path from each
state to each other state. Channels that are not irreducible are not
of particular interest; they are best studied in terms of their
irreducible components. Henceforth, we shall assume that the
state diagram under consideration is finite, simple, deterministic,
and irreducible.

Let us note that the restriction to simple state diagrams is
made only to simplify the notation; the coding method presented
here can be applied to nonsimple state diagrams after minor
changes. The restriction to deterministic state diagrams is essen-
tial for decodability, though that too can be relaxed somewhat (to
what is called right-resolving in [9]).

We shall label the states by integers 1 through S, where S
denotes the number of states. We shall let t , . , , 1 I i, j I S,
denote the number of edges from state i to state j . Thus, t , , , will
be either 0 or 1 since we consider only simple state diagrams. The
matrix T = (t , , /) will be called the state transition matrix. We
shall let l , . , denote the channel symbol labeling the edge from
state i to state j ; if there is no such edge, 1,. , will be undefined.

111. MAXENTROPIC PROBABILITIES
AND CHANNEL CAPACITY

Let A be the largest positive eigenvalue of T , the staie-transition
matrix for some input-restricted channel. Let (B , , 1 I i I S) be
an eigenvector belonging to A : T B = A B . (By the Frobenius
theorem for irreducible, nonnegative matrices [3, p. 531, B is
unique up to a scaling constant, and one may assume that B, > 0
for all i.)

Shannon [l , p. 581 showed that the entropy of the input to an
input-restricted channel is maximized by a source that visits the
states of the constraint diagram according to the following
Markovian transition probabilities:

p , , / = t i , i B j A - ' / B , .

0018-9448/90/0100-0162$01.00 01990 IEEE

IEEE TRANSACTIONS ON I N F O R ~ ~ A T I O N THEORY, VOL. 36, NO. 1. J A N U A K Y 1990 163

i

These transition probabilities are called maxentropic, and the
resulting maximum entropy is calculated to be log A.

Shannon 11, p. 371 also showed that the capacity of an input-
restricted channel is given by C = log A. Thus, in order to use this
noiseless channel at the maximum possible rate C, one must
maximize the entropy of the channel input. This suggests that the
output of an encoder working at a rate close to channel capacity
should, in some sense, approximate the . maxentropic Markov
chain. The algorithm presented in the next section tries to achieve
this as best it can under the limitations of finite-precision arith-
metic.

IV. THE ALGORITHM

The algorithm presented here is a variable-to-fixed-length slid-
ing-block code, which in each encoding cycle accepts a variable
number t of new data bits into the encoder and sends out one
channel symbol. The encoder thus maps a data sequence
d, , . . . , d, to a code sequence x,, . . . , x , ~ . The decoder processes
the code sequence x, , . . . , x , ~ and generates d,, . . . , d , K , the
original data sequence except for a tail of K bits. The number K
of undecodable bits is data-dependent, but always upperbounded
by r, the length of registers used by the algorithm. Thus, by
appending to the original data sequence a fixed tail of r bits, one
can ensure the decodability of all data bits. Since we shall be
primarily interested in the asymptotic performance of the algo-
rithm as L goes to infinity, we shall ignore these end-effects.

In order to apply the algorithm to an input-restricted channel,
we first fix a state-diagram presentation. Then, we choose a
matrix of transition probabilities (p , , /) on this state-diagram so
that p, , = 0 whenever t,, I =0, and C.:=,p,, I =1, all i. The
algorithm can work with any such set of transition probabilities,
but what is intended is to choose the (p , , ,) as close to the
maxentropic probabilities as possible within finite precision. It is
aimed to have the encoder behave like a Markov chain (in its
transitions from one state to another during the encoding pro-
cess) with the chosen transition probabilities when the encoder
input is a symmetric Bernoulli process (independent, equiproba-
ble bits).

A pseudocode for the algorithm is shown next.

procedure encode((F;. (I , . r , so);
begin
begin{ initialization}
,y := s(,; .” := 0; z := 2’- 1’ w := z - y’

u:=Z::=,d,2’ ‘
end{ initialization}
while not end-of-data do
begin { encodingcycle}
determine the least i such that
q,, - E , , I > 0 and .v + I w F . , l > U ;
output the next code letter x = I , , , ;
z : = ? , + l w F , , , l ;
. v : = . v + 1 w q , , 1 1 ;

t := t(.v, z) :
shift t 0’s into register y :
shift t 1’s into register z ;
shift the next t data bits into register U ;
w : = z - y. s : = l

end { encodingcycle }
end.

procedure decode((5, /), (I , , /), r, so):
begin
begin{ ini tialization}

. 3

s : = s . (,, . V : = 0; z := 2’ - 1; M: := z - y
end(initia1ization)
while not end-of-code-sequence do
begin{ decodingcycle}
input the next code letter x;
determine the state i such that /,,, = x;
z := .V + I w e , ~ J ;
. . v:= v + l w q ,) 1 1 ;

t := t(’. z) ;
output the leftmost t bits of register y ;
shift t 0’s into register y ;
shift t 1’s into register z ;

end{ decodingcycle}
end.

w := z - V; := i

We shall first explain some variables and operations that
appear in this pseudocode. For each pair of states, there is a
cumulative probability defined by

By convention. we take c,,, = 0 for all i.
The variables U, y , and z represent r-bit, right-to-left shift-

registers. Register U holds a window of r data bits: U =

d,,+ . ., d,, . , , where h is the number of bits that have been
processed by the encoder until then, and left the system. The
contents of register U are also treated as the integer U =

1:- ,d,, *(2‘ ‘. In the same manner, registers y and z are treated
as both bit sequences and integers. Thus, setting z = 2’- 1 is
equivalent to loading register z with r 1’s. Likewise, setting
U =Z:=,d,2’ ‘ loads register U with the first r data bits.

The function t(y , z) gives the length of the common (left)
prefix of registers y and z (e.g., if y = 001001 and z = 001110
(with r = 6), the common prefix is 001 and t (y , z) = 3).

The shift operation on registers is best explained by an exam-
ple: If U = 001010 (r = 6), then executing “shift 111 into register
U ” results in U = 010111.

To explain how the algorithm works, let us indicate the value
of a variable at the end of encoding cycle n by the subscript n
(e.g., y,,, s,), etc.). Let the subscript 0 indicate initial values. The
algorithm works by generating, in effect, a sequence of intends
I,, = [J ! , z , ,] , n 2 0, with the property that ytj 5 u , ~ I z ~ , . In the
nth encoding cycle, the initial interval I,,~- I = [j ; , ,, z , , , I is
divided into subintervals so that there is one subinterval for each
state. The subinterval for state i is empty if

it equals

P\,, , , q,, , , - E,, I , - I = 0; otherwise,

What is aimed here is to allocate a fraction p,,, I , / of the initial
interval to state i. These subintervals may overlap at their end-
points, but what matters is that they cover all integers in I,, -,.
(With a more complicated rule, one could guarantee disjoint
subintervals and slightly improve the coding efficiency.) The
encoder sets s,, equal to the least i such that U,,-, lies in the
subinterval for state i. The symbol x,, = I , ,?- I , ,,, is then sent to the
channel.

Let us now look at the situation from the decoder’s point of
view. Suppose that the decoder has kept up with the encoder and

c

~

164 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1 , JANUARY 1990

14

12

10

8

6

4

2

0
53 54 55 56 57 58 59 60 6 1 62 63 64 65 66 67 68 69 70

Fig. 2:. Histogram of number of decoded digits minus 5100 for algorithm.

is in possession of y,, ~ z,, ,, and s , , ~ After observing x,,, the
decoder can determine s,, (since the state diagram is determinis-
tic), and hence, y,,, z,,, and the leftmost

I , , = t (Y,, I + 1 w,, ~ 1 F , , - ~ . ,,,- 1 1 Y,,- 1 + 1 ~ 9 , - 7. J (4)

bits of U, , This explains why the encoder can drop, as it does,
the leftmost t,, bits of register U, thus making room for the
upcoming t,, data bits. The updating rule for registers y and z
ensures that the inequality y,, I U,, I z,, is satisfied going into the
next cycle; so the process can continue indefinitely.

Thus the number of data bits that the decoder is able to decode
after observing the first n code letters is given by T, =
t , + . . . + t , , . The question that arises is whether the code here is
asymptotically fixed-rate, i.e., whether R,, = T , / n converges as n
goes to infinity to a fixed rate R for all data sequences. (In such
limits, we assume that L , the number of data bits, is infinite.)
Unfortunately, this is not so. However we shall see later in this
section that, if each data sequence of a fixed finite length is
assumed equally likely, then the set of all infinite-length data
sequences for which the previous statement is false has total
probability zero.

4

I

A. A n Experimental Result

We applied the algorithm to the [2, 71 runlength constrained
channel presented in Fig. 1 . The numbers (4, ,) were based on
the following transition probabilities: p 3 ,] = 0.34, p4,1 = 0.36,
ps . l = 0.40, ph,l = 0.46, P , . ~ = 0.59, which were obtained by
rounding off the maxentropic transition probabilities. The regis-
ter length was r = 8.

We carried out the experiment 100 times. In each run the input
to the encoder was a simulated symmetric Bernoulli sequence.
The encoder was run until it produced N = loo00 code letters,
which were then processed by the decoder, and the number T, of
decoded bits was recorded. Fig. 2 shows the frequency of occur-
rence of the observed values of T,.

We observe that the sample mean of the rate R , = T , / N
equals 0.516165, which is within 0.23% of the channel capacity
C = 0.517370 . . . for the [2, 71 channel (see [13] for the capacity).
We also observe that the spread of the observed values of T,
around the sample mean is, relatively speaking, quite small,
suggesting some statistical regularity. The analysis that follows
helps to explain these observations.

B. Statistical Analysis of the Algorithm

For the statistical analysis, we assume that the data sequence is
a symmetric Bernoulli process. We first sketch a proof that R ,
converges almost surely as N goes to infinity.

The proof is based on the observation that the sequence
(u , ~ : n 2 0), where U,, = (s,,, y,,, z,,), is a Markov chain with time-
invariant transition probabilities. This follows from the facts that
U,, is a function of U, , - , and u , ! - ~ , and that U,,-, is uniformly
distributed (equally likely to take on any integer value) on the
interval [y,, I , z,, ,] , regardless of the path taken to reach the
state U,, I . (These statements can be proved easily by induction.)

Since the random variable t,, is a function of u , ! - ~ and U,,, i.e.,
t , , = t (U,, U,,), we can write

R , = 1 / N c t , ,= c f N (U , ~ ') t (U , ~ ') (5)
l s rrs iv (0 , o ')

where the random variable f, (U , 0 ') equals 1 / N times the num-
ber of transitions from state U to state U' during the first N
transitions in the sequence (U, ,) . Since (U,,) is a Markov chain
with finitely many states, the times at which a transition occurs
from state U to state U' form a renewal process; hence, we have,
almost surely as N goes to infinity (e.g., [17, p. 290]),

fb (u , u ? = %rC,d (6)
where T, is the reciprocal of the mean recurrence time of state U ,

and r,,,, is the transition probability from state U to state U' .

From (5) and (6) , we have, as N goes to infinity,

R,%R = r ,r , , , . t (u,a') . (7)
(0 .0 ')

We have thus shown that the coding rate asymptotically ap-
proaches a constant R for almost all data sequences.

Next, we present an analysis, though inexact, provides insight
into why and under what conditions we may expect R to be close
to the channel capacity. We begin by noting the following recur-
sive relation:

w,, = z,, - y,,

= (1 w,, - I F,, , ,,,I - 1 w,, - 1 e.-,, S" - 11) 2" + zrp8 - 1 . (8)

w,, = w,r-lP\"~l.5"2'n (9)

The algorithm aims at having \

within the limitations of finite-precision arithmetic. The idea is to
have, as a consequence of the preceding equation,

W k ~ ~) P , , , . , , P ~ , . ~ ~ . . . P ~ N I . .N2TN. (10)

wh. = wo(B , N / B , o) 2 - N C t T ~ , (11)

For (p , ,) approximately maxentropic, this implies

where C is the channel capacity. Since 1 I w, I 2' - 1, it follows
that, for large N ,

R , = T, /N = C. (12)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36. NO. 1. JANUARY 1990 165

Thus to the extent that the previous approximations are valid for
the state sequence (s,!) corresponding to a data sequence, the
coding rate for that data sequence will be close to the channel
capacity. The most effective way of ensuring the validity of these
approximations for a large fraction of data sequences is to choose
r , the register size, suitably large.

Note that in the limit of infinite precision, the above approxi-
mations are exact and the code is truly fixed-rate. The algorithm
deviates from being fixed-rate as the precision is decreased. The
experimental values of R I previously reported suggest that even
with a modest precision that deviation may be kept at an insignif-
icant level.

C. The Error Propugution Problem

Suppose that, instead of the entire code sequence xl, x2; . .,
the decoder is given x,! , , x,, + z, Can the data sequence still
be reconstructed correctly allowing a finite number of initial
errors? This situation arises when some of the first n symbols are
garbled by noise, or when one wishes to start decoding in the
middle of an encoded sequence. In such cases, one would not like
to see a catastrophic propagation of decoding errors.

Unfortunately the codes generated by the algorithm may suffer
catastrophic error propagation. We now examine this problem in
more detail, mention possible remedies, but propose no specific
solutions.

Let U,, denote, as before, the state of the encoder at the end of
encoding cycle n. Let 4, denote the state of the decoder at the
end of decoding cycle n. We may view e,, as the decoders
estimate of U,). Assume that x,, e ,, x,,+>, . . . is error-free.

From our discussion of the decoding algorithm, it is clear that
the output of the decoder at decoding cycles > n is completely
determined by (s,,, x,, ~ , , x,, + ?, . . .). In other words the effect of
xl; . ., x,, on the future behavior of the decoder is completely
summarized by 6,. Thus for each possible value of 4, (there are
finitely many) there is a hypothetical data sequence. One of these
sequences, the one for which 3,, = U,, , is the true data sequence. In
order to stop error propagation, the decoder must be able to
select one of the hypothetical sequences that shares a common
suffix with the true sequence. (Two sequences q, CY?, . . . and
PI, /Iz, . . . are said to share a common suffix if there exist k , k’
such that a/\ , = PI +, for all i 2 1.)

A straightforward, but not particularly elegant, solution to this
problem is to build some structure into the data sequence (e.g.,
by inserting parity-check bits) so as to facilitate the elimination
of false data sequences. This approach requires no major changes
in the algorithm itself. Another approach is to try to modify the
algorithm so that both the encoder and the decoder update their
states using a next-state function with finite look-ahead and finite
look-back

where k , k‘ are fixed integers. Clearly, an algorithm with such a
next-state function is noncatastrophic, with a maximum synchro-
nization delay of k + k ’ + l symbols. The algorithm here has a
next-state function of the form U, = f (~ , ~ ~ , x ,) , which has no
look-ahead, but possibly infinite look-back. We have found no
clean way of modifying the algorithm so as to eliminate the
potentially infinite memory from its next-state function.

We should note that there are algorithms (e.g., [9], [lo]), for
which the next-state function is in the form (13), with one
important difference: for these algorithms, each argument of the
next-state function (the terms x , - ~ ; . ., x , + ~ ,) is a block of q
symbols (for some fixed integer q) from the channel alphabet.
Unfortunately such a next-state function does not provide pro-

tection against misframing (i.e., incorrectly deciding the block
boundaries); hence, these codes, too, are subject to catastrophic
error propagation.

V. CONCLUSION
Nonfixed-rate codes require buffering if one wishes to use the

channel synchronously, and one has to worry about the conse-
quent buffer overflow problems. For this reason there is a bias
towards fixed-rate codes in practice. Such a bias is hard to justify
in systems where the source sequence is highly redundant and
one uses a variable-length source code (such as a Huffman code)
to remove part of that redundancy, since buffering is required
then whether the channel coding is fixed-rate or not.

Fixed-rate codes do not present a buffer-overflow problem, but
they may require considerably more implementation complexity.
Consider, for example, the fixed-rate codes proposed in [7], [8].
and the ones pioneered by Adler, Hassner, and Coppersmith [9],
[lo], [l l] . These codes are constrained to work at rational rates;
and, to construct a code with rate p / q , one needs to work with a
q-step state-diagram for the given channel. Since the q-step
diagram contains on the order of 2‘IC states for a channel with
capacity C, the implementation complexity of these codes is
exponential in q. The constructions in [9], [lo], [ll] have an even
higher complexity because they apply state-splitting (an elegant
procedure invented by Marcus [12]) to the q-step diagram, result-
ing in a further increase in the final number of states. The fact
that the complexity is exponential in q places a practical limit on
how close one can get to the channel capacity with rational rates
of the form p / q .

In contrast, the algorithm here never has to deal with extended
channels no matter how close the desired coding rate is to
channel capacity. In order to achieve higher rates, one need only
run the same algorithm using a higher precision.

REFERENCES
C. E. Shannon and W. Weaver. The Murheniuricul Theory of Coninirinicu-
r i m

H. McMillan, “The basic theorems on information theory,” Atn i . Murh.
Sror.. vol. 24. pp. 196-219. June 1953.
F. R. Gantmacher. The Theorr of Murrices. i d . I I . New York: Chelsea.
1959
G N. N. Martin. <;. <;. Langdon, Jr., S. J. P. Todd, “Arithmetic codes
for constrained channels.” I B M J . Res. D e i d o p . . vol. 27, pp. 94-106,
Mar. 19x3.
S. J. P. Todd. C;. G. Langdon. Jr.. G. N. N. Martin, “A general fixed
rate arithmetic coding method for constrained channels,” I B M J . Re.i.
D e i d o p . . vol. 27. pp. 107-115. Mar. 19x3.
H. Sato. “ O n the generation of run-length constrained codes by arith-
me tic coding,” IEICE (1n.v. E/ectron., In/orni. Conini. Engineerr), Tech-
n i u l Reporr. vol. R7. IT 87-94, pp. 25-30. 1987 (in Japanese).
P. A. Franaszek. “Construction of bounded delay codes for discrete
noiseless channels.” I B M J . Res. Deidop. . pp. 506-514, July 1982.
A. Lempel and M Cohn, “Look-ahead coding for input-restricted chan-

Trun\. ln/orni. Theo?. vol. IT-28, pp. 933-937. Nov. 19x2
persmith. and M. Hassner. “Algorithms for sliding
Truns. Inforni. Theor,. vol. IT-29. pp. 5-22. Jan.

Urbana. IL: Univ. of Illinois Press, 1963.

19x3.
H. Marcus. “Sofic systems and encoding data,” 16
Theor:i., vol. IT-31. pp. 366-377. May 1985.

H. H. Marcus. “Sliding-block coding for input-restricted
Trun.\ lnforni. Theorr, vol. IT-34, pp 2-26. Jan. 19XX.

tors and extensions of full shifts.” Monurs. Murh.. vol.
XX, pp. 239-247, 1979.
A. Norris and D. S. Hlooniberg, “Channel capacity of charge-constrained
run-length limited codes,” I T r u m Mug.. vol. Mag-17. pp.
3452-3455. Nov. 19x1.

zciples O/ Irforniurron Theory. Reading. MA: Addi-

efficient coding system for long source sequences,”
I)) . Thfwri.. vol. IT-27, pp. 280-291, May 1981.

K . J. Kerpez. “Run length codes from source codes via maximum
entropv probabilities.” Ahrrucrs of Puprrs. IEEE lnr . Synip. lnforni.
Thror1,. Kobe. Japan. 19XX.
E. Cinlar, Inrrodu(.rrori 10 Srochusric ProcesAes.
Prentice-Hall, 1975.

Englewood Cliffs. N.J.

c

