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Abstract--One of the most important problems of available solid modeling systems is that the range of 
shapes generated is limited. It is not easy to model objects with free-form surfaces in a conventional solid 
modeling system. Such objects can be defined arbitrarily, but then operations on them are not transparent 
and complications occur. A method for achieving free-form effect is to define regular objects or surfaces, 
then deform them. This keeps various properties of the model intact while achieving the required visual 
appearance. This paper discusses a number of geometric modeling techniques with deformations applied to 
them in attempts to combine various approaches developed so far. 

1. I N T R O D U C I ' I O N  

A system for deforming three-dimensional models to 
obtain objects with free-form surfaces is explained in 
this paper. The system is implemented using C lan- 
guage [ 8 ] on a Unix* workstation environment. In the 
implementation of the system, care has been taken to 
include user interface facilities to simplify the usage [ 7 ]. 

In advanced CAD/CAM applications, designers 
need to model solid objects with complex surfaces [ 9 ]. 
Objects whose surfaces are free-form defy description 
in terms of analytical surfaces such as planes, cones, 
spheres, or toroids[4]. There are various approaches 
to model objects with flee-form surfaces in a solid 
modeling system. 

One approach uses Boolean operations on arbitrary 
free-form surfaces. To implement Boolean operations, 
the computation of intersecting curves between two 
different free-form surfaces is required. This takes a 
long computation time since intersection algorithms 
compute points iteratively and perform some type of 
curve fitting that yields an approximate intersection 
curve. Because of this, the interpolating curve will never 
lie exactly on both surfaces. Consequently, intersection 
algorithms are unreliable. 

The second approach involves generating free-form 
surfaces from a polyhedron. This approach uses 
rounding operations on polyhedral objects for inte- 
grating solid modeling and free-form surface model- 
ing[5]. Since complex calculations are not needed, 
computation time and reliability are not problems. 
However, there are several restrictions in the range of 
shapes generated. 

Another approach to model free-form surfaces is 
based on parametric polynomial functions [ 6 ]. This is 
a unified approach, and geometric operations can be 
performed with equal facility on simple primitives and 
complex sculptured geometries by using it. This ap- 
proach combines a number of parametric polynomial 
geometry representations, such as Brzier, Coons, B- 
spline into a unified modeling system that is capable 
of interchanging between these representations through 
mathematical transformations. 

A new approach, deformations, is similar to the sec- 

* Unix is a trademark of AT&T Laboratories. 

ond approach in the sense that both provide methods 
of changing the existing models to create irregular 
classes of objects. Deformations, first introduced by 
Alan Barr[2], are a highly intuitive and easily visu- 
alized set of operations. Deformations allow the user 
to treat a solid as if it were constructed from a special 
type of topological putty or clay, which may be bent, 
twisted, tapered, compressed, expanded, and otherwise 
transformed into a final shape. Deformations can be 
incorporated into traditional CAD/CAM solid mod- 
eling and surface patch methods, reducing the data 
storage requirements for simulating flexible geometric 
objects, such as objects made of metal, fabric, or rubber. 
Without deformations, to simulate an irregular object, 
one has to save every point on the object. However, 
one can create a regular object and then apply defor- 
mations to it to create an irregular object with much 
less data. 

The system currently uses superquadric objects and 
Brzier surfaces to model regular classes of objects. 
There are two main approaches used to deform solid 
geometric models: 

• Regular deformations [ 2 ]; 
• Free-form deformations (FFD) technique [ 10 ]. 

Our system combines these two approaches for de- 
forming regular classes of objects to create objects with 
free-form surfaces. Both deformation techniques can 
be applied hierarchically and interchangeably in our 
system. The combination seeks to offer benefits of both 
regular deformations and FFD technique. 

2. MODELING IN OUR SYSTEM 
In the implementation of the system, Superquadrics 

and Brzier Surfaces are used to model regular classes 
of objects. They are explained briefly with some ex- 
amples in the following sections for completeness. 

2.1. Superquadrics 
One long-term goal of computer graphics and nu- 

merical methods for three-dimensional design is a uni- 
fied mathematical formalism. Such a unified mathe- 
matical formalism for geometric representation and 
computation provides a natural base for a geometric 
modeler of considerable versatility and robustness [ 6 ]. 
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Superquadric objects show potential to achieve this 
goal [ 1 ]. The superquadric objects are a new collection 
of smooth parametric objects producing a new spec- 
t rum of flexible forms. The chief advantage of super- 
quadrics is that they allow complex solids and surfaces 
to be constructed and altered easily by changing a few 
interactive parameters. The superquadrics family con- 
sists of  mainly superquadric ellipsoids, toroids, hyper- 
boloids of  one piece, and hyperboioids of  two pieces. 
These shapes differ from the corresponding quadrics 
in the exponent of their terms. The exponents of  their 
terms, which are two for the quadric shapes, are re- 
placed by an arbitrary positive number.  By changing 
the exponent of the terms, the shapes can be rounded, 
pinched, and can have different properties in different 
sections. 

Superquadrics can be defined by either nonpara- 
metric or parametric equations. Our  implementat ion 
uses parametric equations to generate superquadrics 
since generation of surface points is easier with this 
method. 

The mathematics used to define superquadrics can 
be summarized as follows[l]. Given are two two-di- 
mensional curves 

Lh2(~)J' ~o < ~ < ~ , ,  

and 

r e ( r / )  = fm,(r/)] 
_ Lrn2(r/) j , r/o < '7 -< r/,. 

The spherical product x = m ® h of the two curves is 
a surface defined as 

[ m,(r/)h,(w) ] 
_x(r/, o.,) = ] m , ( r / ) h 2 ( o , )  / , 

Lm2(r / )  J r/o ~ r/ ~ r/] 

Geometrically, h(w) is a horizontal curve vertically 
modulated by m(r/) ;  m~ (r/) changes the relative scale 
of  h, while m2(r/) raises and lowers it. ,7 is a north- 
south parameter, like latitude, whereas co is an east- 
west parameter, like longitude. Spherical product sur- 
faces can be rescaled by a separate vector a = [a~, a2, 
a3 ] r where T denotes the transpose. 

Position vectors for different types of superquadric 
objects follow [ 1 ]. 

2.1. I. Position vector of surface for superellipsoids." 

el ~2 F a , C . C ~ ]  
x_(r/, ,o) = l a2C;,S~ l , 

L aaS~' J 

71" 71" 
- - - - < r / ~  

2 -  -2 

- - ~  

where (7, = cos(r/), and S, = sin(,/) .  

and BOLENT OZGO¢ 

2. i.2. Position vector of surface for superhyperboloids 
of one piece." 

x(r/, o~) = 
aj sec r/C~ 

~1 c2 a2sec r/S~ 
. aatan ̀ ~ r/ 

- - < r / < -  
2 2 

2.1.3. Position vector of surface for superhyperboloids 
of two pieces." 

x(  r/. o~ ) 

7r 71- 
- - - - < r l <  

2 g 

r alsec~l r/ seC'2°~ ] 71" 71" 
= Ja2sec' ,r / tan'2,0j ,  - ~ < ~ < ~ (piece 1) 

k a3tan" 7/ 

7r 37r 
< o~ < -~- (piece 2) 

2.1.4. Position vector of surface for supertoroids: 

['al(a4 + C~I)C~] - T r  -~ r / - ~  ~" 

X(r/, oo) = [ a2 (a4  -I- c : , ) sw  I , 
k a3Si t j - r  _< o~ < r 

Wireframe examples of superquadric objects from 
our system are shown in Fig. I, and superquadric el- 
lipsoids with different exponents are shown in Fig. 2. 

2.2. B#zier surfaces 
For an arbitrary curve, it may be difficult to devise 

a single set of  parametric equations that completely 
defines the shape of the curve. However, any curve can 
be approximated by using different sets of parametric 
functions over different parts of the curve. Since finite 
degree polynomials are, in many  respects, ideal forms 
for representing and approximating functions, they are 
used to form these approximations. The smoothness 
of a curve from one section to another can be described 
in terms of curve continuity between sections [ 3 ]. 

To define a curve or surface in design applications, 
a set of  control points indicating the shape of the curve 
or surface is interactively specified. Brzier formulated 
a method for displaying curves specified with control 
points using the Bernstein polynomial basis. A useful 
feature of Bernstein basis is its convex-hull property, 
which means that any curve defined using it smoothly 
follows the control points without erratic oscillations. 

Formulat ion of Brzier Surfaces can be found in [ 3 ]. 
Fig. 3 shows two Brzier Surfaces generated by our 
system. 

3. DEFORMATIONS 
Since the primary goal of our system is to create the 

free-form objects and scenes that the user desires, we 
have to supply the user with the operations that can 
be used to achieve this goal. We have implemented 
deformations for this purpose. Two deformation tech- 
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Fig. 1. Superquadric ellipsoid, hyperboloid of one piece, hyperboloid of two pieces, and toroid. 
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Fig. 2. Superquadric ellipsoids with different exponents. 
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Fig. 3. Two B~zier surfaces. 

niques are used in the implementation. Regular de- 
formations [ 2 ] simulate twisting, bending, tapering, or 
similar transformations of geometric objects. Free-form 
deformation technique [ l 0 ] is mainly developed to de- 
fine the solid geometric model of an object bounded 
by free-form surfaces, and to sculpt it further with flex- 
ibility and freedom. Both of these techniques have ad- 
vantages and disadvantages. 

Although results of FFD can be guessed according 
to the movement of control points, desired objects can 
be obtained by trial and error. However, regular de- 
formations are well defined and their results are 
straightforward. On the other hand, using FFD as a 
free-form modeling technique is better than using reg- 
ular deformations due to the generality of it. 

A very important disadvantage of FFD is the speed 
of the deformations since operations on trivariate 
Bernstein polynomials are very costly. It can be made 
faster by converting trivariate Bernstein polynomials 
to standard power basis polynomials. However, this 
operation also takes a fair amount of time. 

The speed of deforming an object with FFD tech- 
nique also depends on the number of control points. 
A deformation defined by larger number of control 
points can cause the deformed shape to follow the con- 
trol points more closely than for lower degree defor- 
mations[ 1 l]. This produces better results, but at the 
expense of slowing down the operations. Regular de- 
formations are very fast compared to FFD technique. 

These two approaches have some common prop- 
erties. 

• Both approaches can be applied hierarchically to 
create complex objects from simpler ones, 

• Both approaches can be applied to any solid mod- 
eling scheme. 

• Both approaches compute the new x, y, z coordinates 
of a point as polynomial functions of the original x, 
y, z coordinates of that point. 

Another important issue is that regular deformations 
can also be performed using FFD since it is a method 
for deforming three-dimensional objects in a free-form 
manner. However, using FFD to make twisting, bend- 
ing, and tapering operations brings some undesired ef- 

fects. For example, when an object is bent using FFD 
technique, the result will not be as predictable as when 
the same object is bent using regular deformations. 

Due to the reasons stated above, our system com- 
bines the two approaches to alleviate the problems of 
them, and to offer the benefits to the user. When regular 
deformations are suitable for modeling an object, he 
or she may use them to gain in speed. When they are 
not sufficient for modeling an object, either FFD tech- 
nique can be used, or both of the techniques can be 
applied hierarchically and interchangeably. The two 
deformation techniques are explained briefly with some 
examples in the following sections for completeness. 

3.1. Regular deformations 
A globally specified deformation of a three-dimen- 

sional solid is a mathematical function _F which ex- 
plicitly modifies the global coordinates of points in 
space. Mathematically, it can be represented by the 
equation _X = _F(x) where _ represents the point in the 
undeformed solid, and X represents the points in the 
deformed solid [ 2 ]. Each of the regular deformations 
are explained in detail in the following sections. 

3.1.1. Tapering. Tapering is making an object become 
gradually narrower toward one end of it. Mathemati- 
cally, it differentially changes the length of the two 
global components without changing the length of the 
third. 

To do a tapering operation along the z-axis, one 
should choose a tapering function depending on the 
z-coordinates of the points. When the tapering function 
f ( z )  = 1, the portion of the deformed object is un- 
changed; the object increases in size as a function of z 
when f ' ( z )  > 0 and decreases in size whenf ' ( z )  < 0. 
The object passes through a singularity a t f (z)  = 0 and 
becomes everted whenf(z)  < 0. Global tapering along 
the z-axis is given by the following equations: 

r = f ( z )  

Y = r x  

Y =  ry 

Z = z .  
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Fig. 4. Tapered superquadric ellipsoids. 

Examples of tapering are shown in Fig. 4 where a su- 
perellipse is tapered using different tapering functions. 
The first object is obtained using the tapering function 

71" 
f ( z )  = z ~ and the second one is obtained using the 

tapering function f (z)  = cos z . 

3. 1.2. Twisting. A twist operation can be approximated 
as differential rotation, just as tapering is a differential 
scaling of the global basis vectors. We rotate one pair 
of global basis vectors as a function of height, without 
altering the third global basis vector. An example of 
twisting operation is the twisting of a deck of cards, by 
which each card is rotated somewhat more than the 
card beneath it. Twisting operation preserves the vol- 
ume of the original solid. 

To do a twisting operation along the z-axis, twisting 
angle 0 should be a function of the z-coordinate of the 
point to be deformed. Global twisting along the z-axis 
is given by the following equations: 

o = f ~ z )  

co = c o s ( 0 )  

So = sin(0) 

X = xCo-  ySo 

Y = xSo + yCo 

Z = z .  

The twist proceeds along the z-axis at a rate of f '(z) 
radians per unit length in the z direction. 

Examples of twisting are shown in Fig. 5 where a 
superellipse is twisted using different twisting functions. 
The first object is obtained using the twisting function 

7r 

0 = z ~ and the second one is obtained using the 

twisting function 0 = sin z 

3.1.3. Bending. Bending simulates an important 
manufacturing process for fabricating objects. An ex- 
ample of this operation is the bending of a bar stock 
or sheet metal. 

To make a bending along the y-axis, one has to 
specify a bent region along the y-axis. The range of the 
bending deformation is controlled by Ymin, and Ymax, 
with the bent region corresponding to values ofy such 
that Ym~n -< Y < Ymax. The axis of the bend is located 

along[s, yo,~lr,wheresistheparameteroftheline. 

The center of the bend occurs at y = Y0. The radius of 
1 

curvature of the bend is ~ .  The bending angle 0 is 

constant outside the bent region, changes linearly in 
the central region. In the bent region, bending rate k, 
measured in radians per unit length, is constant. Out- 
side the bent region, the deformation consists of a rigid 
body rotation and translation. The length of the cen- 
terline passing through the object along the y-axis does 
not change during the bending process. 

Fig. 5. Twisted superquadric ellipsoids. 
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Fig. 6. Bent superquadric ellipsoids. 

The bending angle 0 is given by: 

0 = k(~ - Y0) 

Co = cos(0) 

$8 = sin(0) 

where 

f Ymin, Y -~< Ymin 
.v = ]Y,  Ymin < Y < Ymax 

t Ymax, Y >--- Ymax- 

The formula for bending along the y-axis centerline 
is given by the following equations: 

X = x  

Y =  - So( Z - k ) + Yo + Co( Y - Ymin), Y < Ymin 

y > Ymax 

Z = 

Ymin --< Y < Ymax 

Co(Z -k )  q- k -r So(y--Ymin), Y < Ymin 

Y > Ymax. 

Examples of  bending operation are shown in Fig. 6. 
In these examples, the bent region includes the whole 
object. In the first figure, an ellipse is bent 90 ° , and in 
the second one an ellipse is bent 360 ° . 

Regular deformations explained above can be com- 
bined with rotation around some axes so that these 
operations can be performed around other axes than 
the ones specified. The mathematical  details of  the reg- 
ular deformations can be found in [2].  Results ob- 
tained by applying regular deformations hierarchically 
are shown in Fig. 7. 

3.2. Free-form deformations 
Free-form deformation can be thought of  as a 

method for sculpturing solid models in a free-form 
manner.  FFD can sculpt solids bounded by any ana- 
lytical surface; planes, quadrics, parametric surface 
patches, or implicit surfaces. Its application is not re- 

Fig. 7. A twisted, tapered superquadric ellipsoid, and a tapered, bent superquadric ellipsoid. 
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stricted to solid models, but it can also sculpt surfaces 
or polygonal data. 

In our system, two kinds of parametric surface 
patches, namely Brzier surfaces and superquadrics, are 
deformed in a free-form manner using FFD techniques. 
In fact, the objects are approximated using small poly- 
gons. Thus, the deformed data are actually polygonal 
data. 

The free-form deformation is initiated by defining 
a three-dimensional grid of control points about the 
region to be deformed. The objects to be deformed are 
embedded in the grid of control points that can be 
interactively deformed as if it is made of a flexible ma- 
terial. The objects themselves can also be regarded as 
if they are made of a flexible material, so that when 
the whole grid is deformed, the objects inside them are 
also deformed respectively. 

The deformation function for an FFD operation is 
defined by a trivariate tensor product Bernstein poly- 
nomial as specified in [10]. Since it is very time con- 
suming to evaluate a trivariate Bernstein polynomial 
for lots of polygon vertices that are to be transformed, 
it is wise to convert the Bernstein polynomial to stan- 
dard power polynomial basis, which can then be eval- 
uated using Horner's method. 

Steps of deforming an object using FFD technique 
can be summarized as follows: 

1. Move control points from their undisplaced, latticial 
positions to their new positions. 

2. Convert the Bernstein polynomial whose coeffi- 
cients are the displaced control points to a standard 
power basis polynomial. 

3. Calculate free-form deformation position of each 
point on the object by evaluating standard power 
basis polynomial found in step 2. 

Our system uses the algorithms in [11] to deform ob- 
jects in a free-form manner. The mathematical details 
of FFD technique can be found in [10]. Examples of 
FFD technique are shown in Fig. 8. 

3.3. Combination of regular deformations and FFD 
technique 

We have applied the two deformation techniques 
hierarchically to regular classes of objects by using our 
implementation. Results are shown in Fig. 9. The first 
object is obtained by tapering a superquadric hyper- 
boloid of one piece and applying an FFD to the tapered 
object. The second object is also obtained in the same 
way, but the initial object is an ellipse. The third object 
is obtained by applying an FFD to a superquadric to- 
roid to compress it and bending the compressed object. 

4. THE USER INTERFACE 
Since our system is interactive, we have to provide 

the user some facilities for defining parameters in cre- 
ating objects and for defining deformation parameters 
so that the user can use it in an efficient manner. The 
facilities provided by the system are explained in detail 
in the following sections. 

4.1. Facilities.for creating B~zier surfaces" and super- 
quadrics 

In our system, the user can create the desired objects 
with the help of the object menu (Fig. 11). The user 
can either select Brzier surfaces or one of the super- 
quadrics to create a three-dimensional object. 

To create Brzier surfaces, number of control points 
and number of curve points on each curve of the sur- 
face can be specified by the user, and control points 
for a Brzier surface can be interactively entered with 
the help of a mouse. 

Fig. 8. An ellipse deformed using different FFDs. 
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Fig. 9. Results of applying combination of regular deformations and FFDs. 

To create superquadrics, scaling factors and expo- 
nents are interactively input from the user and the user 
is presented with a rough sketch, namely the bounding 
box, for the object that will be created, Then the user 

may want the system to create the object specified by 
the parameters or discard it and specify different values 
for the parameters. The layout of the screen while pa- 
rameters of superquadrics are being specified is shown 

1, 171 I 
Control Potn¢e n1 : ~ n2 : 3 Curve Potnts ml : 15 m2 : 

0 HSE_OFF 0 DEPTH_SORT 
No. planes tn x d i rec t |on  : 3 No. p l inee tn y d i rec t ion  : 3 
Epstlon I : 1.8 Epetlon 2 : 1.6 
$cal lng fac tor  tn z : [138] 8 
Ftlename : dump RI: Help R2: Dtspley R3: Save 

I 
15 Resolution (1-368) : 36 I 

$HAOE_OFF 

I No. pl lne= tn z d i rec t ion  : 3 
Torus r a d t u s :  286.8 

J 666 
R4: Copy prey, plane R5: O~ep, Cnt r l .  P t l .  

. J . . ,  IN. x 

Fig. 10. The layout of the screen while parameters of superquadrics are given. 



Free-form solid modeling 

L D l a p l a y  mezler surface / 

Dtaplay Superhyperbolold of one place I 
Dlaplay Superhyporbolotd of t~o places 
Dloplay $upartorotd 

] hndlng along y-axls 
~_.LTvlatlng around z-axis 
r _ _  ~1 i1 I.,I i i l i i ii~, i i l l  i l l  ! ~  !; !  I [ 

$caltn9 
Rotating around an arbi t rary axis 
Froe-Forl DeforRatlona 

I Translation 
L E x l t  frmm thls menu 

Fig. 11. The object menu and the operations menu of the system. 

in Fig. 10. The rectangular prism gives an idea to the 
user about the size of the object. Resolution of the 
superquadric objects can also be specified. In order to 
obtain very good polygonal approximations of super- 
quadric objects, a high resolution may be specified. 
However, using a high resolution will produce better 
results at the expense of slowing down the operations. 

4.2. Facilities for deforming objects 
The implementation also provides facilities for de- 

forming the created objects. The operations that will 
be performed on the objects can be selected using the 
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operations menu (Fig. 11 ). Different twisting and ta- 
pering functions can be selected using menus. The user 
may select currently available twisting and tapering 
functions for these operations or select the option for 
specifying a new twisting or tapering function. If the 
user selects this option, a new window appears on the 
screen in which he or she can enter the function for 
twisting or tapering operation in infix notation using 
the keyboard. Also, bending region and center of bend 
can be specified interactively for bending operation. 

To do an FFD, the user is presented with a regular 
lattice of control points. The number of planes in x, 
y, and z directions can be specified interactively. In 
this way, the user may select between high quality and 
speed of the operations. If the number of control points 
in each direction is high, the deformation specified will 
be better, but operations will be slower. On the other 
hand, if the number of control points in each direction 
is low, operations will be faster, but deformations will 
not be high quality. 

The user may take each plane parallel to the xy- 
plane and change the coordinates of points interactively 
with the help of a mouse. He or she may see the lattice 
of control points any time during that process. After 
deforming lattice of control points, the user can get 
the deformed object according to the specified lattice. 
Fig. 12 shows a lattice of control points generated by 
our system. 

Display facilities such as shading and hidden-surface 
elimination are also provided by the system so that 

' - T ' l ~ n n l  
Con t ro l  Po tn t s  n !  : ~ n2 : 3 Curve Po tn ts  ml  : 15 m2 : 1S Reso lu t i on  (1-36B) : 36 

~-sHSF__OFF ~-~DEPTH_SORT ~SHAOE_OFF 
No. p lanes  tn  x d i r e c t i o n  : 3 No. p lanes tn  y d i r e c t i o n  : 3 No. p lanes tn  z d i r e c t i o n  : 3 
E p s t l o n  1 : 1 .8 Epo i l on  2 : 1.8 Torua Padtus : 289.B 
S c a l t n g  ~ac to r  t n  z : [ 138 ]  G ~ 688 

Ftlonae~e : dump RI :  Help R2: D isp lay  R3: Save R4: Copy i ~ev .  p lane  RS: Dtsp.  C n t r l .  Pts .  

V] '  

:1 

Fig. 12. A lattice of control points created and deformed by our system. 
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they can be used to obtain realistic scenes. The imple- 
mentat ion uses the facilities provided by Sun View t 
system such as windows, panels, and menus[12] .  

5. CONCLUSIONS 
A system is developed to create the objects and 

scenes that the user desires through the use of a set of  
primitive objects and a set of  operations to deform 
these primitives. Two different deformation techniques 
are used in the implementat ion of  the system. Since 
both deformation techniques have advantages and dis- 
advantages, we have combined them. 

Our system can be used to model objects with free- 
form surfaces or to sculpt objects. Both of the defor- 
mation techniques can be applied hierarchically and 
interchangeably through a set of  user interface facilities 
provided by the implementation.  By combining the 
two approaches, some of the problems peculiar to each 
method disappear and the advantages of both ap- 
proaches are utilized. 
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