
ARTIFICIAL INTELLIGENCE 209

Learning Problem Solving Strategies
Using Refinement and Macro
Generation

H. Altay Giivenir
Computer Engineering and Information Sciences Department ,

Bi lkent University, Ankara , Turkey

George W. Ernst
Computer Engineering and Science Department , Case Western

Reserve University, Cleveland, O H 44106, U S A

ABSTRACT

In this paper we propose a technique for learning efficient strategies for solving a certain class of
problems. The method, RWM, makes use of two separate methods, namely, refinement and macro
generation. The former is a method for partitioning a given problem into a sequence of easier
subproblems. The latter is for efficiently learning composite moves which are useful in solving the
problem. These methods and a system that incorporates them are described in detail. The kind of
strategies learned by RWM are based on the GPS problem solving method. Examples of strategies
learned for different types of problems are given. RWM has learned good strategies for some
problems which are difficult by human standards.

1. Introduction

Search is the basic technique underlying most computer problem solving
methods. Exhaustive search methods explore all possible paths to a goal state
during the problem solving process. However, such methods are not feasible
for problems with combinatorially large state spaces, because there are always
practical limits on the amount of time and storage available. For many tasks it
is possible to state principles or rules of thumb, so-called heuristics, to help
reduce the search. Any such technique used to speed up the search depends on
special information about the problem. Heuristics are used in different ways in
different problem solving techniques; e.g., test functions in hill-climbing [22],
estimate functions in A* [20]. However , Korf showed that for many difficult
problems such as Rubik's Cube, no such heuristic functions are of any direct

Artificial Intelligence 44 (1990) 209-243
0004-3702/90/$03.50 ~ 1990 -- Elsevier Science Publishers B.V. (North-Holland)

210 H. ALTAY GUVENIR AND G.W, ERNST

use [9]. On the other hand, the heuristics used by the General Problem Solver
(GPS) are based on "differences" between problem states [3]. These differ-
ences and the way they are used constitute a strategy for solving the problem.
Refinement with macros (RWM) is a method for essentially learning the
heuristic information that GPS needs to know to solve a problem.

The kind of strategy that the system learns is typified by the one it learned
for the 2 x 2 x 2 Rubik's Cube, which is difficult by human standards. The goal
of this puzzle is to make all eight cubies have the same color on their adjacent
facelets. ~ The primitive operators are the 90 ° counterclockwise rotations of
front (F), upper (U) and right (R) halves of the cube, The following strategy
was learned by RWM:

(t) Make the two lower left cubies have the same color on each pair of their
adjacent facelets.

(2) Make the lower front right cubic and the lower left cubies have the same
color on each pair of adjacent facelets.

(3) Make the cubies on the lower half have the same color on each pair of
adjacent facelets.

(4) Make upper left front cubic and the cubies on the lower half have the
same color on each pair of adjacent facelets.

(5) Make upper right back cubic, upper left front cubie and the cubies on
the lower half have the same color on each pair of adjacent facelets.

(6) Make upper right front cubie, upper left back cubie and the rest of the
cubies have the same color on the adjacent facelets.

Implicit in this strategy is that the goals are solved in the given order and
once a goal is achieved it is not violated later in the solution process. For this
reason, RWM also learns good moves for solving each subproblem. A move is
either a primitive operator or a sequence of operators, which is called a macro.
For example, (UFFFRF) is one of the moves learned for the third stage. A
useful property of this macro is that it is safe over the goals of the first two
subproblems in the sense that if these goals are satisfied before applying this
macro, they will remain satisfied after applying the macro.

This strategy is similar in some respect to those used by humans (see [6], for
example). Such strategies divide the problem into a number of subproblems
such as getting a portion of the cube in its correct position. In solving these
subproblems the goals of the previous subproblems are not violated. This is
accomplished by the way that subproblems are solved: each subproblem is
solved by a search process which only uses moves that are safe over all of the
goals of the previous subproblems. Thus, the order of the subproblems is very
important because the moves that are learned for a subproblem will have such
safety properties.

The terminology used here is standard in the literature of Rubik's Cube [6].

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 211

Another example is the Mod-3 problem, which we will use throughout the
paper since it is easier to visualize than Rubik's cube. The Mod-3 Puzzle 2 is
played on a 3 × 3 board. Each square can take any value between 0 and 2. A
move consists of playing on a square, which will increment the value of each
square that is in the same row or the same column as the square played on.
Each increment adds 1 mod 3 to the number. The goal is to have the same
value on every square. An initial state has arbitrary values, e.g.,

2 0 1

0 1 2

1 2 0

Although this problem appears to be easy, it is not so obvious how one
should go about solving it. The reader is invited to try solving the puzzle from
the initial state given above. Usually one starts by making the numbers in the
first row equal. However, one soon realizes that it is difficult to make the
numbers in the second row equal to the ones in the first row without changing
the numbers in the first row. The nature of the difficulty is that lots of squares
have to be made equal, and when making a square equal to the others, the
relevant operators usually violate the equality of some of the squares which
were previously made equal. Also it is not clear in what order the squares
should be made equal. An exhaustive search is not reasonable because usually
it takes more than 8 operators to solve the problem, and the branching factor is
9.

Our approach is to use a strategy in which each step makes a few squares
equal while maintaining the accomplishments of the previous stages. The
strategy learned by the RWM method for the Mod-3 Puzzle is shown in Fig. 1.

1. Make sn = s12 using
2. Make s23 = s33 using
3. Make all the squares
4. Make s21 = s31 using
5. Make s22 = s32 using
6. Make s22 = s23 using
7. Make sn = s21 using
8. Make all the squares

moves o2a and/or 022.
moves (02,022) and/or (03,0a2).
in the first row equal using moves o23 and (o21o32).
moves (023o22031) and/or (o3302,032).
moves (o23o~1o32) and/or (o3~o~2o~1).
moves o12 and/or o13.
move (o12o1~).
equal using o11.

Fig. 1. The strategy learned for the Mod-3 Puzzle.

2 This is essentially the "One to Five" puzzle given in [21].

212 H. ALTAY GOVENIR AND G.W. ERNST

The first stage of the strategy is to get the squares Sll and s~2 equal; ssj denotes
the value in row i and column j'. The problem solver solves this subproblem by
searching for a state in which Sl~ and Sl2 have equal values. During this search
only moves o21 and 022 are used, where o~j denotes the move on square sij. For
example, 022 and 02102~022 are two of the possible solutions that the search
considers. In the second stage squares s23 and s33 will be made equal while
maintaining what was done in the first stage. The macro moves (021022) and
(03~032) will be used to accomplish this. The macro move (02~022) denotes first
playing on square s21 and then on square s22. Notice that although playing on
s21 will change the equality of sll and Sl2, the goal of the first stage, it will be
restored when s22 is played on next. Therefore , the macro move (02~022) is
"safe" over the goal of the first stage since it does not affect the equality of the
squares Sll and Sl2. And, since it affects the equality of s23 and s33, the goal of
the second stage, it is used for that stage. The moves 02~ and (02~032) are safe
over the goals of the first two stages, and effective in making sL~ and the other
squares of the first row equal. Thus, they are the moves in the third stage of
the strategy which makes the squares in the first row the same while maintain-
ing the previous stages. A similar situation holds for the remaining stages. The
problem solver continues to use this process one stage at a time until a state
satisfying the goal s tatement of the last stage is found; such a state also satisfies
the goal of the whole problem.

1.1. GPS

The General Problem Solver (GPS) implements the problem solving technique
called means-ends analysis. Means-ends analysis refers to the process of
comparing what is given or known to what is desired, and on the basis of this
comparison, selecting a " reasonable" thing to do next [5].

GPS is designed to work on state space problems. A state space problem
consists of an initial state, a set of goal states and a set of operators. Each
operator is a partial function on the set of states. A solution to a problem is a
sequence of operators which transforms the initial state into a goal state. Each
intermediate state produced by one of these operators must be in the domain
of the next opera tor in the sequence.

If the initial state is not a goal state, GPS detects differences between them,
and then at tempts to reduce the largest of these differences. To do this GPS
selects an operator which is relevant to the largest difference and applies it to
the initial state. This results in a new state, and the process is repeated by
comparing it to the goal state and detecting the differences. If the initial state is
not in the domain of an operator , the goal of reducing the largest difference
between the initial state and the domain of that opera tor is created. Operators
which are relevant to this difference are used to reduce it. This will produce a
state in the domain of the opera tor which can then be applied.

L E A R N I N G PROBLEM SOLVING STRATEGIES USING RWM 213

Information about differences is a problem-dependent parameter to GPS; its
purpose is to make the search more efficient. Some of these differences are
more difficult to remove than others, and thus they are ordered according to
their difficulty. GPS employs the heuristic of removing differences in the order
of their difficulty, the most difficult first. In the process of reducing a
difference, a previously removed difference must not be reintroduced. Any
operator will be relevant to removing some differences but not others. Only
the operators which are relevant to a difference are used to reduce it. This use
of the difference ordering and operator relevance restricts the number of
operators used to remove a difference to some fraction of the total number of
operators.

Note that an operator which is relevant to a difference is not guaranteed to
remove the difference. It is also possible that the search for reducing a
difference may be unsuccessful; in that case backtracking must take place.

RWM is designed to learn the differences, their ordering, and the moves
relevant to removing each difference for a given problem. One way to learn
such a strategy could be to look for orthogonal groupings of moves such that
once a set of differences is satisfied, no move outside the set will modify it.
However, for many interesting problems such a method would not result in an
efficient strategy. For example, the moves of the Mod-3 Puzzle can be grouped
only into two sets, { o ~ 2 , . . . , O33 } and {o~}. The strategy corresponding to
this grouping is: first get s~1 = s 1 2 = $13 = $21 ~- $31 a n d $22 = $ 2 3 ~- $32 = $33 using
the moves {o12 O33}, then get s H = s22 using 011. However this strategy is
not efficient since the first stage is almost as hard as the Mod-3 Puzzle itself.
Therefore, more powerful techniques are needed for learning efficient
strategies.

1.2. Learning GPS-based strategies

The aim of our research is to develop methods for learning GPS-based efficient
strategies. There were several early attempts to learn differences and differ-
ence orderings for GPS. The proposal by Newell, Simon and Shaw in [14] is
conceptually interesting, but was never implemented nor is its implementation
straightforward. The method by Newell [15] did not take into account the way
differences interact with one another, and did not consider using macros. Thus,
it cannot learn the kinds of strategies that RWM learns. A nice discussion of
these issues is given in [16].

There are two successful methods that also learn GPS-based strategies; Ernst
and Goldstein's [4] DGBS discovery system and Korf's [9] learning method for
MPS, which is closely related to GPS. In order to learn a strategy, DGBS first
finds the basic invariants, which are the properties that are left invariant when
applying an operator. Such invariants are found by matching the input state to
the output state of an operator. Those basic invariants are then combined to

214 H. ALTAY GIJVENIR AND G.W. ERNST

form high-level invariants (differences). A high-level invariant is implied by the
goal statement, in addition to being invariant over some operators. The
relationship between the high-level invariants and the operators are stored in a
boolean matrix. An element of this matrix is 0 if the operator of its column is
invariant over the high-level invariant of its row, 1 otherwise. The final step in
learning a strategy is to make permutations and to combine rows and columns
to triangularize this matrix. Such a triangular matrix constitutes a strategy for
solving the problem using GPS.

As described in the previous section, GPS uses an ordered set of differences,
or subgoals, and a set of operators that are relevant to removing a difference
and do not reintroduce previously removed differences. A set of subgoals with
this property is called serializable. On the other hand, there are problems that
cannot be solved sequentially by any ordering of subgoals. A good example of
this is the Rubik's Cube puzzle. Korf has developed a problem solving method
called macro problem solving (MPS), and a method for learning strategies
based on MPS. Korf used macro operators to overcome the problem of
nonserializable subgoals. A strategy given to MPS is a macro table, which is a
table whose column headings are state components (differences in GPS), and
whose row headings are the values of state components. The table entries are
the macro operators. At any point in solving a problem the macro mii will be
applied if the first i - 1 state components have their goal values and if the
current value of component i is j. That is, the macros in the ith column are
used to remove the difference on the state component i. Korf has written
programs that generate macro tables for a number of problems. The basic idea
is to "work backwards" from a known goal state by applying the inverse of the
"primitive" operators. Given the ordering of the state components, this space
is searched for a state s that has goal values in its first i - 1 components and
some non-goal value j in its ith component . Then, the sequence of operators on
the path from the goal state to s is the inverse of a macro which belongs to row
i, column j of a macro table. A macro table is learned by searching from the
goal state for all possible values for i and j.

This previous work on mechanical discovery systems is extended by our
research. The main extension to Korf's work is the way that RWM learns a
good ordering for subproblems. RWM can also learn strategies for multiple
goal states. The strategies learned by Korf's method will be compared with the
ones learned by RWM later in the discussion. The primary extension to Ernst
and Goldstein's work is the use of macro operators in the strategies learned.
The strategies learned by all of these methods are similar to ones used by GPS.
Other researchers are working on the machine learning of other kinds of
strategies and heuristics, e.g., Pearl [20], Amarel [1] and Mitchell [13]. Like
Korf's method, RWM uses some of the techniques developed by Sims [23] and
Banerji [2]. Minton [12] has developed an explanation-based learning system,
called PRODIGY, which learns meta-level concepts for efficient search con-

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 215

trol. Laird et al. [11] have developed a learning mechanism, called chunking,
for the rule-based general problem solving architecture, SOAR. Chunking
acquires rules and macro operators from goal-based experiences. SOAR is
designed to solve problems at different levels of abstraction, each of which
corresponds to a different problem space. These problem spaces are given to
SOAR. The strategies learned by RWM can be given to SOAR as abstract
problem spaces.

There are four main sections to the paper. The next section introduces the
basic concepts and the relevant terminology. Examples of the concepts are
given using the Mod-3 puzzle. Section 3 presents RWM with its two methods,
refinement and macro generation. A step-by-step trace of the refinement of the
Mod-3 problem is given. Section 4 deals with the complexity of the RWM
method. It also presents empirical results and strategies that RWM has learned
for some difficult problems. Section 5 compares RWM with other techniques.

2. Basic Concepts and Terminology

Before describing the RWM method, we define the basic concepts on which it
is based. Examples will be given for motivation using the Mod-3 problem.

A problem will be represented as a quadruple P = (I(s) , G(s), M, S) . S is
the set of states for the problem. G(s) is the goal statement which specifies the
goal states. G(s) will be true if and only if s is a goal state. The goal statement
of the Mod-3 Puzzle is "Every square in state s has the same value." I(s) is the
initial statement which will be true for any initial state. In the Mod-3 Puzzle I(s)
is true since the initial state can be any state, whereas I(s) for the subproblem
at the second stage is {Sl~ = s~2 } because the first stage produces such states. M
is the set of moves to be used in solving the problem. In the Mod-3 Puzzle
there are 9 moves available, M = {01~, o ~ 2 , . . . , o33}, namely one move for
each square.

A problem instance p is a pair (P, s~oit) of problem P and a particular initial
state si,it E S, for which I(si,it) is true.

In this work, an atomic statement is a binary predicate with two arguments.
This representation is due to the fact that every n-ary atomic statement can be
written using binary predicates [10], which are easier to process. Arguments of
an atomic statement can be constants or state components. State components
are the values manipulated by the operators. For example, s~ through s33 are
the state components of the Mod-3 Puzzle. A statement is a set of atomic
statements with the implied AND connective in between them. For instance, in
the Mod-3 Puzzle, Sll = s~2 is an atomic statement. The goal statement is the
statement {sll = s12 , Sll = s13 , Sll = s21 , . . . , s32 = s33 }. Every statement Q(s)
represents the set of problem states {s I Q(s)}. Therefore , statements will be
used to describe the sets of states. An empty statement is true, and represents

216 H. ALTAY GIJVENIR AND G.W. ERNST

S, the set of all p rob lem states. The union of two s ta tements represents the
intersection of the sets of states represented by these s tatements . If Q(s) is a
subset of R(s), then every p rob lem state s that satisfies R(s) also satisfies Q(s),
that is, R(s) logically implies Q(s). This class of s ta tements does not exhaust all
possibilities because disjunctions are not used; only conjunct ions are used.
A l though this is a l imitation which simplifies the computa t ions pe r fo rmed by
R W M , most of the problems we have looked at, and their associated sub-
problems can be natural ly represented by this special class of s ta tements .

A move is represented by a pair (PC(s) , A) , where PC(s) is the precondi-
tion statement, possibly empty , and A is the set of assignments which describe
the result of the move. Formal ly , a move m : {slPC(s)}--+ S, where S is the set
of all p rob lem states. If PC(s) is true for all s, then m is a total function f rom S
to S.

Each assignment defines the value that a state c o m p o n e n t will have after the
application of the move. A n assignment a i E A has the form: ai : s~ ~-- t~, where
s i is a state c o m p o n e n t and t i iS a term. A term is a constant , a state
componen t , or a function applied to one or more terms. 3 As an example, the
o1~ move of the Mod-3 Puzzle has the following form:

oll = (~, (sl,~---inc3(sll))

(s,2"--inc3(s12))

(s,3~---inc3(s,3))

(s2,~--inc3(Szl))

(s31+--inc3(s31))),

where inc3(x) is (x + 1)mod 3.
The moves given in the p rob lem description are called primitive moves (or

operators). A macro move (or macro for short) is a finite sequence of
operators . Move will be used as a general term for bo th opera tors and macros .
In both cases, m(s) will deno te the state obta ined by applying move m to state

S.
A move m is safe over state Q(s) if, when move m is applied to a state s for

which Q(s) is true, the resulting state will also satisfy Q(s); i .e. , Q(m(s)) will
also be true. Formal ly , this is

Vs {Q(s) ~ Q(m(s))} .

For example, the moves o~3 and (o2~o22) are safe over the s ta tement {stL =

S12}.

In the implementation of RWM we used only unary functions.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 217

A move m is irrelevevant to going from Q(s) to R(s) if m is safe over Q(s)
and when applied to a state that satisfies Q(s) but not R(s) the result state m(s)
will never satisfy R(s); i.e., R(m(s)) will never be true. In other words, m is
also safe over Q(s)&-qR(s). For example, the move o13 is irrelevant to going
from {sll = S12 } to {$23 = s33 }.

A move m is relevant to going from Q(s) to R(s) if m is safe over Q(s) and
not irrelevant to going from Q(s) to R(s). That is, there is a chance that
R(m(s)) will be true if Q(s) is true and R(s) is false. For example, the move
(021022) is relevant to going from { S l l = S12 } to {S23 = $33 } .

A move m is potentially applicable to a state that satisfies Q(s) if the
precondition statement PC(s) of m does not conflict with Q(s), that is,

3s {O(s) PC(s)}.

Moves m~ and mj have the same effect with respect to s tatement Q(s) if

Vs { Q(mi(s)) <::> Q(mj(s))} .

For instance, the moves 021 and 031 have the same effect with respect to the
s tatement {sll = s12 }.

A strategy for the problem P = (I(s), G(s), M, S) is a sequence of
subproblems P~, P2, . • • , P,,, which we call stages. Let Pi = (Ig(s), Gi(s), Mi,
S) ; then the strategy must satisfy the following conditions:

I,(s)¢,/(s), (1)

Ii(s)<=>I i 1(s) & Gi_,(s) for l < i < n , (2)

O(s)<=>O,(s) O=(s) O.(s), (3)

M i ~ 0 , M i C M,

Vm C Mi, m is relevant to going f rom Ii(s) to Gi(s) . (4)

The first condition says that the initial s tatement of the first subproblem must
be the same as the initial s tatement of the given problem. The initial s tatement
for any other subproblem is equal to the conjunction of the initial s tatement
and the goal s tatement of the preceding subproblem, as stated in (2). For
instance, the initial s tatement of the third subproblem, I3(s) in Fig. 1 is
{Si1 = S 1 2 , $ 2 3 = $ 3 3 }. The conjunction of the goal statements of all sub-
problems must be the same as the goal s tatement of the given problem, as
formulated in (3). The last condition guarantees that for every subproblem
there are some relevant moves. Normally such subproblems are easier than the
main problem because the subproblem goals are part of the main goal.

218 H. A L T A Y G U V E N I R A N D G.W. E R N S T

3. The RWM Method

In the first section we gave two example strategies which are similar to the ones
learned and used by human problem solvers. In this section we will explain
how these strategies can be learned mechanically using the RWM method. The
step-by-step process of learning the strategy shown in Fig. 1 for the Mod-3
Puzzle will be given for motivation. RWM method consists of two separate
processes, namely refinement and macro generation. These two methods and
the way they are used will be explained in detail. The result of RWM is a
GPS-based strategy. How this strategy maps onto GPS, and is used by the
problem solver, will be explained in detail. The result of RWM is a GPS-based
strategy. How this strategy maps onto GPS, and is used by the problem solver,
will be explained in detail.

3.1. A trace of RWM

Having defined the basic concepts used in RWM, we can now walk through the
steps of learning the strategy for Mod-3 Puzzle shown in Fig. 1. RWM first tries
to refine the given problem into a sequence of easier subproblems.

Step 1. The first step of the refinement process is to determine the relevant
moves for each atomic statement of the goal. Some of the 36 atomic statements
of the goal of the Mod-3 Puzzle are shown in Table 1 with their relevant
moves.

Step 2. At this step, the atomic statements that have exactly the same set of
relevant moves are grouped into one statement. This results in 15 statements;
some of them are given in Table 2.

Step 3. The goal of the first subproblem will be the statement with the largest
number of safe moves over it. Therefore, for each of the above statements, the

Table 1
Atomic statements and their relevant moves in the Mod-3

problem

Atomic s ta tement Relevant moves

Sll = sl2 {021,022,031,0", 2 }
Sll =S13 {02~, 023, 03~, 0~3}
Sil =$21 {Ot2, O13, O22, O23}
Stl --S22 {O1t,O13, O22"O23, O31'O32}
SII = $23 {O11, OI2, 022, 023 , O31, 033}

$23 = $31 {Oil, O137 022 , O23! 031 , 032 }
$23 =S32 {Ot2, 0t3, 02t, 023" 031' 032}
S23 = S33 {021, 022, O31, 032}
s3t =s3e { o l L , ° t 2 , ° e t , ° 2 2 }
$31 ~ $3~ {OII, O13, O21~ 023 }
$32 = S3g {O12, O13, 022 , 023}

L E A R N I N G PROBLEM SOLVING STRATEGIES USING RWM

Table 2

Statements and their relevant moves in the Mod-3 problem

Statement Relevant moves

Sll ~ S12 ~ $23 : $33 }

{Sll : S13 , $22 : $32 }

{Sll = $21 , $32 = $33 }

{SI1 = $22 , Sl 3 = $32 , $32 = S31 }

{S13 = S33 , $21 = $22 }

021 O221 031 , 032}

{021, 023, 031 , 033}

{O12, O13 , 022 , 023}

{OI1, O13 , 022 , 023, 031 , 032}

{O11 , O12, 031 , 032}

219

moves that are safe over that statement will be determined. There are 10
statements with the highest number of 5 safe moves, and the other 5 statements
have 3 safe moves each. Any one of the former is eligible to be the goal
statement of the first subproblem; the one chosen is {sii = Sl2 , s23 = s33 }. The
moves that are safe over this statement are {011 , o12 , 013 , 023 , 033}, and these
are the only moves that will be used in solving the remainder of the problem.

Step 4. To determine the adequacy of these 5 moves we will check whether
each of the remaining 34 atomic statements of the goal statement, G(s)-
{ S l l = S12 , $23 = $ 3 3 } , has at least one move relevant to it. Since this is true, we
have discovered the first subproblem of the strategy. Its moves are those which
are relevant to its goal; its initial statement is true since it is the first stage of
the strategy and the initial statement of the problem is true.

This refinement process will continue on the rest of the problem until no
more refinement is possible.

Step 1'. This time we will use the m o v e s {Oll , O12 , O13 , 023 , 033 } since those
are the only moves that will not violate the goal of the first subproblem. The
new goal is the original goal excluding the goal of the first subproblem; i.e.,
G (S) - - {$11 ~ S12 , $23 = $ 3 3 } . The relevant moves for each atomic statement of
this new goal are determined as in Step 1. Some of these 34 atomic statements
and their relevant moves are shown in Table 3.

Table 3

Atomic statements and their relevant moves
during the refinement of the rest of the Mod-3

problem

Atomic statement Relevant moves

S~l = si3 {023, 033}
SII = $21 { 0 1 2 , O13 , O23}

Sll = $22 {O11, O13, 023 }
s n = s23 {011, 012,023, 033}

•

S31 = S33 {011, 013, 023}
S32 : $33 {012, 013 , 023}

220 H. ALTAY GI~IVENIR AND G.W. ERNST

Table 4
Statements and their relevant moves during the refinement of the rest of the Mod-3
problem

Statement Relevant moves

{sl~ = s l 3 . $ 1 2 = s , 3 , s21 - - s 3 ~ , s 2 2 = s ~ 2 } { 0 : ~ , 0 ~ }

{Sll = $21" S12 -- "~'21 ' S13 -- S31' $23 = S32' S32 = S33} {1')12" O13, 023}

{a l l = "422' El: = "~'22" SI1 = S32' "~'23 = S ' l " S3I = "~'~,3 } {O11" O13' 023}
{S,, = '%-3, s t , - - " 3 ~ . "¢,~, -- '%_,. "'*2 = s3, , "~':1 = ",,~, se'_ = s3*} { 0 , , . 0 , ~ . 0 : , , 03, }
{s1, = s,1. s~2 = s31. s,~ = s~ t . s2e = s._,. s22 = s,3 } { 0,_~. 0 , , . 03, }

{ s i i = s32 , Six = s32 , si3 = $22 , S2l = $23 , $21 = S3:~} 1011. O l , , O,1}

{S13 = $23 , SI3 = ~t~33 , $21 = $22 , $1 l : 5"32 } {Oi1 , O12 }

Step 2'. These a tomic s t a t emen t s a re g r o u p e d into 7 s t a t emen t s such that
each a tomic s t a t e m e n t o f a g roup has the same set o f r e l evan t moves as in
Tab le 4.

Step 3'. F o r each of these s t a t emen t s the safe moves are c o m p u t e d . The
s t a t emen t with the larges t n u m b e r of safe moves will be se lec ted as the goal of
the second s u b p r o b l e m . O f the 7 s t a t emen t s , 2 have 3, 4 have 2 and 1 has only

1 safe move . The s t a t emen t {sll = s~3, s12 I $13, $21 = $3l, $22 = $ 3 2 } with the
safe moves {0~1,012, 0~3 } is chosen as a c and ida t e for the goal of the second
s u b p r o b l e m .

Step 4'. Since one of these safe moves is r e l evan t to each of the 30 a tomic
s t a t emen t s in the rest of the goal , we have d i scove red the second s u b p r o b l e m .
Its moves are the ones that a re safe ove r its init ial s t a t e m e n t which is the goal
of the first s tage and re levan t to its goal .

We con t inue this p rocess on the rest of the goal , G(s)- {S,l = s,2, s23 = s33,

S I I = S13 , S12 = S13 , $21 = $31 , $ 2 2 = $ 3 2 } , using the moves {o11, O i 2 , O i 3 } in the
same way as above , which resul ts in two m o r e s u b p r o b l e m s . The resul t of the
r e f inement process is the four - s t age s t ra tegy shown in Fig. 2. The a tomic
s t a t emen t s tha t a re impl i ed by the ones in the figure are not shown; e .g . ,

Subproblem PI: Goal : {sn = s1~, s2a = saa}

Moves: {o21, o~2, oal, o32}

Subproblem P2: Goal : {811 = S13 , .321 ~- 831, 822 = $32 }

Moves: {o2a, o3a}
Subproblem Pa: Goal : {su = s2i, s22 = s23}

Moves: {Ol2, o13}
Subproblem P4: Goal : {sn = s22}

Moves: {o11}

Fig. 2. The strategy for the Mod-3 Puzzle obtained after the first refinement.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 221

Pl l : Go~l : {811 = ,S12)
Moves: {o21, o2~}

P12: Goal: {s2a = sa3}
Moves: {(021022), (031032)}

Fig. 3. Stage 1 after refinement with new moves.

S12 = S13 is not shown in the second stage, because it is implied by $11 = S12 and
Sll = s13. The first stage of the strategy in Fig. 2 corresponds to the first two
stages of the one in Fig. 1.

Sometimes subproblems are too difficult to solve directly. In these cases it is
desirable to learn finer-grain strategies for their solution; e.g., the first stage of
Fig. 2. Let us try to further refine that stage. Since each of the moves 021 , 022 ,
031 and 032 are relevant to both s1i = s12 and $23 = $33 , this stage cannot be
refined with the given set of moves. What is needed is some moves that are
safe over a part of its goal and relevant to going from that part to the rest of
the goal. In order to discover such moves, we generate new macro moves by
combining two operators . At this point we know that moves
{O21 , 022 , O31 , 032) a r e relevant to going from any state to each of the atomic
statements in {Sll = s12, s23 = s33}, and moves {011 , Oa2 , 013 , 023 , 033) are ir-
relevant. During the macro generation, either two relevant moves or, one
irrelevant and one relevant move will be combined. For the first stage of the
strategy in Fig. 2, 30 such macro moves are generated; 28 of them are found to
be relevant for this subproblem.

Armed with these new moves, we can further refine this subproblem by the
refinement process described above. The goal s tatement is {Sll = s12, $23 =

s33), and the moves are {o21, 022 , O31 , 032 , (Oi iO21) , (Oi1022) , (O11031),
(011032), (012021), (012022), (012031), (012032), (013021), . . . }. The refinement
process results in the two subproblems shown in Fig. 3.

If several relevant moves have the same effect with respect to the goal
s ta tement of a subproblem, only the shortest one is reported. For example, in
the first subproblem, 031 , (011021), (021023), (O21033), (O22022), (023031) and
(031033) a r e not repor ted since they have the same effect as o21 with respect to
{Sll = s12). The first stage of the strategy in Fig. 2 is replaced by the two
subproblems found as its refinement, resulting in a five-stage strategy for the
Mod-3 Puzzle. If the same process of macro generation and refinement is
applied to the third and fourth stages, the strategy given in Fig. 1 will be
obtained.

3.2. Relation of RWM to GPS

RWM produces a list of subproblems P1, P2 P, . This result is a GPS-
based strategy to solve a problem P. The goal s t a t e m e n t Gi(s) of each

222 H . A L T A Y G O V E N I R A N D G.W. E R N S T

subproblem Pi = (I~(s), Gi(s), M~, S) corresponds to a difference for GPS.
The ordering of differences is defined by the order of the subproblems, i.e., P~
corresponds to the most difficult difference and Pn to the easiest difference.
The problem solver solves a problem P by first solving the subproblem P~, then
P2, and so on. When solving a subproblem P~, the problem solver conducts a
search using only the moves in M s to find the states that satisfy G~(s), which
corresponds to removing that difference in GPS nomenclature. Thus, the
moves in M i are the ones that GPS considers "relevant" to this difference.
Backtracking may occur, since an initial state satisfying Ii(s) may be a dead-end
state for this subproblem. In that case, another state satisfying li(s) is chosen,
and the search continues. Of course, such a state would correspond to another
solution to Pi-1 which may be generated by backtracking in previous stage.

The moves in the set M~ are safe over the initial statement l~(s) by the
definition of a stage in (1)- (4) . Therefore , these moves are also safe over the
goal statements of the previous stages, that is, they do not reintroduce any
previously removed differences. Furthermore, the moves in M~ are relevant
(not irrelevant) to going from Ii(s) to G~(s).

The solutions to the last subproblem are also solutions to the problem as a
whole. Since those states satisfy the initial statement of the last stage I,,(s) =
I(s) & G~(s) & " " & G n ~(s) and its goal statement G~(s), they satisfy the
goal of the problem P.

3.3. Refinement

Refinement is our method for learning differences and their ordering along
with the set of relevant moves for each difference. In more formal terms,
refinement is a method for generating subproblem goals G ~ , . . . , G n from the
goal statement G(s) of a given problem P = (I(s), G(s), M, S) and finding the
sets of relevant moves M l, M 2 , Mn, such that P1, P2,. • •, Pn satisfy the
conditions required to be a strategy for P in (1) - (4) , where Pi =
(I i (s) ,Gi (s) ,Mi , S). If such a strategy is found, then the sequence
P1, P2 Pn is returned. If no refinement is possible with the given set of
moves, problem P is returned unchanged. The formal description of the
refinement method is shown in Fig. 4.

The first step of the refinement process is to find the relevant moves for each
atomic statement of the goal. Whether or not a move is relevant to an atomic
statement depends on the domain-dependent knowledge (e.g., properties of
inc 3 function in Mod-3 Puzzle) and how it is determined will be explained in
the next section. If there is an atomic statement for which no relevant moves
are found, the refinement method considers this problem as "unsolvable."
Assuming that every atomic statement of the goal has some relevant moves,
this situation will not occur. On the other hand, since the refinement method is
defined recursively, this heuristic is used to estimate whether or not the rest of
the problem after the creation of a subproblem is solvable.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 223

refine (< I(s), G(s), M, S >):

1. For each atomic statement gi(s) E G(s), find the set of moves, Mi, that are
relevant to going from I(s) to {gi(s)}. If there is any atomic statement gi(s)
with no relevant moves, return "unsolvable."

2. Form statements, Gi(s), by grouping the atomic statements with the same set
of relevant moves into one statement. If there is only one statement, return
< I(s), G(s), M, S >.

3. For each statement Gi(s), determine the set of moves, MSI, that are
safe over and potentially applicable to I(s) U Gi(s), and form a candidate
< Gi(s), Mi, MSI >. Sort the list of candidates so that [MSi[>_ [MSI+I[.

4. While the list of candidates is not empty do:

Choose the first candidate < Gl(s), M1, MS1 >.

Let rest be refine (< I(s) U Gl(S), G(s) -- G,(s), MS1, S >).

If rest is not "unsolvable" then return < I(s), Gl(s), M1, S" > followed by rest,

else remove the first candidate from the list of candidates.

End of while. Return < I(s), G(s), M, S >.

Fig. 4. The refinement method.

The a tomic s ta tements gi(s) that have exactly the same set o f relevant moves
are g rouped toge ther to form s ta tements Gi(s) in the second step. The heurist ic
used here is that if a set of a tomic s ta tements have exactly the same set of
re levant moves , then there is a high amoun t of interact ion be tween them, and
therefore they should be satisfied at the same time. If all the moves in M are
relevant to every a tomic s ta tement in G(s), then no more ref inement is
possible, and the ref inement process terminates by returning the p rob lem P
unchanged.

In the third step, the set of moves MS i that are safe over and potential ly
applicable to both I(s) and G~(s) are calculated for each G~(s). Dur ing this
process all the moves in M are tested. This is to de te rmine the moves that can
be used in the latter stages, if the s t a t emen t a i (s) is selected to be the goal of
the first stage. For each s ta tement Gi(s), a candidate (G~(s),M~,MS~) is
formed. Then this list of candidates is sor ted on the size of MS i, so that the
candidate with the largest n u m b e r of safe moves is the first in the list.

The actual order ing of the stages takes place in the four th step. The first
candidate G 1 (s) in the list is selected. In o rder for this candidate to be the first
stage o f the ref inement , the rest of the p rob lem should be solvable. The rest of
the p rob lem has as its goal the original goal G(s) with Gl(s) r emoved . Its
moves are the moves that are safe over (and potential ly applicable to) its initial

224 H. ALTAY GIJVENIR AND G.W. ERNST

statement which is GI(S) added to l(s). The test of solvability is done by trying
to refine the rest of the problem recursively. If the result is a message
indicating that the rest is unsolvable, then the next candidate in the list is tried.
Otherwise the result of the refinement is a list whose first e lement is the
subproblem representing the selected candidate and the rest of the list is the
refinement found for the rest of the problem. If all the candidates are
exhausted, the refinement process terminates unsuccessfully returning the
problem P unchanged.

3.4. Macro generation

As seen in the Mod-3 example, more relevant moves are needed to further
refine a "difficult" subproblem. The macro generation method of RWM
described below is designed to find such moves for a given problem (or a
subproblem) P = (l (s) , G(s), M, S }.

Since only such moves are used in solving P, the new moves needed must be
safe over l(s). The macro generation method uses all the moves in MS, the set
of moves that are safe over l(s). The following theorem guarantees that macro
moves generated by composing two moves from MS are also safe over I(s).

Theorem 3.1. Given moves m and m' that are safe over Q(s), a macro move
(mm') , generated by composing m and m', is also safe over Q(s).

Proof. Since m is safe over Q(s), Q(s) implies Q(m(s)) for all s E S. Similarly
Q(s) implies Q(m'(s)) for all s E S. Therefore , Q(m(s)) implies Q(m'(m(s))) ,
which can be rewritten as Q((mm') (s)) . []

During the macro generation, two moves f rom MS are composed to produce
a new macro move. Such a macro move looks like just another move to the
refinement process and the problem solver.

Two kinds of moves are needed. Primarily, we need moves that are safe over
a subset of the goal s tatement and relevant to going from that part to the rest
of the goal. Such moves are required to further refine the given problem.
Secondarily, we need moves that have a different effect, than the other moves
in M, with respect to the goal s tatement G(s). Such moves enlarge the set of
states from which a goal state can be reached. Therefore , these moves increase
the efficiency of the strategy by reducing the amount of backtracking during
the problem solving process.

An important issue for efficiency is the choice of the moves to be used. The
moves in MS can be separated into two classes; M is the set of moves that are
relevant to G(s), and MI = MS - M being the set of moves that are irrelevant
to each of the atomic statements in G(s). The following theorem shows that a
macro move generated by composing two irrelevant moves is also an irrelevant
move, and therefore need not be considered.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 225

Theorem 3.2. Let m and m' be irrelevant to going from Q(s) to R(s). Then
(mm') is also irrelevant to going from Q(s) to R(s).

Proof. Since m and m ' are both irrelevant to going from Q(s) to R(s), they
both are safe over Q(s) & --qR(s). By Theorem 3.1, (mm') is also safe over
Q(s) & ~R(s). Hence it is irrelevant to going f rom Q(s) to R(s). []

That is, if m and m ' are in MI, then (mm') is also irrelevant to going from
I(s) to G(s). Hence such composit ions do not yield moves that we are looking
fo r .

Let us now consider a macro move (mm') which is generated by composing
a relevant move m E M followed by an irrelevant move m' E MI. Because of
the way refinement procedure groups the atomic statements, m ' is irrelevant to
every atomic s tatement gi(s)E G(s). Hence, (mm') is safe over I(s) & gi(s)
and relevant to going to ge(s) only if m has the same property. Therefore ,
(mm') does not help in the refinement of the given problem. Fur thermore , for
all s satisfying l(s) if (mm')(s) satisfies the goal G(s) then m(s) satisfies G(s) as
well. That is, (ram') is not any bet ter than m for the problem solver either.
Hence such moves need not be generated. Therefore , during macro generation

4 for a given problem P, either two relevant moves, or one irrelevant move
followed by a relevant move are composed. This selective generation of macros
helps speed up the macro generation process and reduces the number of moves
to be tested for relevancy.

Another issue that requires attention is the precondition statements of
moves. If either of the two moves used has a precondition, then the composi-
tion will have a precondition as well. If PCm(S) is the precondition s ta tement of
m, and PCm,(S) is that of m', then the precondition s tatement of the composi-
tion (mm') is PCm(s) & PCm,(m(s)). That is, it is the precondition of the first
move and the precondition of the second which is modified to reflect the effect
of the first move. If this s tatement turns out to be always false, then m ' can not
be applied after m, and (mm') is not generated.

Above we have described a single level of macro generation. In some cases,
this does not produce moves which would allow the given subproblem to be
refined. In this case, another level of macro generation is needed which has as
input all the safe moves including the ones generated by the first level. Since
each level of macro generation can double the length of macros, the length of
macros generated by the second level may be four times as long as those input
to the first level. Also the number of macros generated grows at the same
exponential rate. This is the reason why it is important to focus on only those
composit ions that are likely to yield relevant moves; the above theorems allow
a large number of macros to be removed from consideration. The number of

4 In our implementation of RWM, M1 is saved for each stage along with M.

226 H. ALTAY GOVENIR AND G.W. ERNST

levels of macro generation to be used is determined by the user of the system
because this gives the user direct control over the exponential part of the
process. Even though this process tries to eliminate as many macros as
possible, this reduction may not sufficiently reduce the exponential growth of
the moves. In some problems, such as Pyraminx the available memory was
exhausted before all the difficult subproblems were refined. For such problems,
only the moves that have a different effect with respect to the goal of the stage,
instead of all relevant moves, were saved. This decision is also under direct
user control. 5

3.5. Creation of subproblems for preconditions

In some problems moves may have preconditions, and such a move can only be
applied if its precondition s ta tement is satisfied first. In order to use a move m
with a precondition in solving a subproblem Pi, not only must it be relevant to
going from Ii(s) to Gi(s), but also it must be potentially applicable to I~(s).
That is, I~(s) and the precondition s tatement PCm(S) must not conflict. RWM
creates a separate subproblem for using such a move in a particular stage. The
goal of this subproblem is the precondition s tatement of the move, and the
initial s tatement is the same as the initial s ta tement of the stage for which the
move is relevant. Such subproblems are treated the same way as the main
problem and can be refined into sequences of subproblems. During the
problem solving process, the problem solver has to solve this subproblem to
find a state satisfying the precondition of the move, and then it can apply the
move to the resulting state. GPS also provides for this by generating differ-
ences between a state and the domain of an operator .

A good example of subproblem creation can be seen in the Tower of Hanoi
problem [3, 22]. A strategy learned by RWM for solving the 3-disk Tower of
Hanoi problem is shown in Fig. 5. The goal s tatement is {s 1 = C, s2 = C, s 3 =
C}, where s i is the position of the ith disk. Oij k denotes the move of disk i f rom

/91: Goal: {sa = C}
Moves: {O3Ac, oaBc}

P2: Goal: {s2 = C}
Moves: {o2Ac, o2Bc}

P3: Goal: {sl = C}
Moves: {O1AC, 01BC}

Fig. 5. A strategy for the 3-disk Tower of Hanoi.

5 This option was used for Pyraminx and the Trillion Puzzle.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 227

peg] to peg k. All moves except O1BA, O1CA, O1A B and 01c s are safe over
{s 1 = C).

All disk-1 and disk-3 moves, o2a c and o2B c are safe over {s z = C); and all
disk-1 and disk-2 moves, 03A C and 03B c are safe over {s 3 = C}. Among the
moves that are safe over {s I = C} only 02Ae, 02BA, 03A ~ and 03B A are also
potentially applicable to {s 1 = C). All disk-1 moves, 03A B and o3B A (a total of
8 moves), are both safe over and potentially applicable to {s 2 = C}. However,
there are 12 moves, all disk-1 and disk-2 moves, that are both safe over and
potentially applicable to {s 3 = C}. Since {s 3 = C} yields the largest number of
moves that can be used to solve the rest of the problem, it is selected first. The
rest of the goal statement is {sl = C, s 2 = C}. The moves that can be used to
achieve the rest of the goal are all disk-1 and disk-2 moves. Since the rest of
the goal is solvable, in the sense that each of the atomic statements in the rest
of the goal has a relevant move among these moves, {s 3 = C} becomes the
goal of the first stage of the strategy. There are two moves that can be used in
the first stage; they are 03AC, which moves disk-3 from peg A to peg C, and
o3B c , which moves disk-3 from peg B to peg C. The problem solver selects the
right move to apply according to the position of disk-3 in the initial state. That
is, it selects 03A C since disk-3 is on peg A; 03B c is selected if it is on peg B.
Similarly, {s 2 = C) is the goal of the second subproblem because the precondi-
tions of the disk-1 moves do not involve the position of disk-2. To be more
precise, all disk-1 moves are both safe over and potentially applicable to
{s 2 = C} whereas only 02A B and 02B A are safe over and potentially applicable
to {s~ = C}. Thus, more moves are safe over and potentially applicable to
{s 2 = C} which is the reason it is selected as the goal of the second sub-
problem. The remaining statement {s~ = C} becomes the goal of the final
subproblem.

The precondition statement for the move 03A C is {S I ~--- B, s 2 = B, s 3 = A) . m
separate subproblem for finding a state that satisfies this precondition is
created. The refinement of this subproblem results in the strategy shown in Fig.
6.

PI: Goal: {s3 = A}

Moves : {03BA, 03CA)
P2: Goal: {s2 = B}

Moves: {O~As, O2cB}

P3: Goal: {sl = B}
Moves: {OlAB, OlcB}

Fig. 6. A strategy for solving the precondition of 03A C in the first stage of the Tower of Hanoi
problem.

228 H. ALTAY GUVENIR AND G.W. ERNST

The stages of this strategy are ordered in the same way as in the strategy for
the main problem. The first stage deals with disk-3 because all of the disk-1 and
disk-2 moves are safe and potentially applicable after solving this stage.
Similarly, only disk-1 moves, O3c a and OAC can be used after {s 2 = B}, and
only 02CA, 02A c, 03C A, 03A c are safe over and potentially applicable to
{s T = B}. Note that, the first stage of this strategy is redundant, since O3A c will
be selected only when disk-3 is on peg A, in which case the initial state satisfies
the goal of the first subproblem.

Similarly, separate subproblems are created for the other operator precondi-
tions and each is refined in a similar manner. For example, the precondition of
O~A 8 is refined into two subproblems whose goals are {s 2 = A} and {s t = C}.
Like P~ in Fig. 6, the first stage will always be satisfied since the operator is
only selected by the problem solver when disk-2 is on peg A. Note that disk-3
operators are not used in this strategy for the precondition of 02A B because the
disk-3 operators are not safe over P~ in Fig. 5. Thus, they are not eligible for
solving P2 and P3 in Fig. 5 and subproblems arising from the preconditions of
the operators used to solve them.

It is instructive to compare this strategy with the one learned by Korf's [9]
method for the 3-disk Tower of Hanoi problem. The first stage of the Korf's
strategy is to move disk-1 (the smallest disk) to the goal peg. The next step is
to move disk-2 to the goal peg. Of course, this step requires disk-1 to be
removed from the goal peg and then to be moved back. The next step is to
move disk-3 to the goal peg which is accomplished by removing disk-1 and
disk-2 from the goal peg and then returning them again. Although this
behavior seems wasteful, it is necessary for Korf's method because this is the
only ordering of state components which results in serial decomposability. Korf
also allows for intermediate target values which are different than goal values.
This is a form of subgoaling which reduces the kind of wasteful behavior
described above, but unfortunately is not sufficiently powerful to eliminate it.
The subproblems that RWM generates for the Tower of Hanoi give rise to a
classical solution in which the correct operator is selected at each point in
solving the problem. This is the same solution GPS found [3], but GPS was
given the strategy and RWM learns it mechanically. DGBS also learned the
same strategy [4].

3.6. The RWM system

The RWM system for learning strategies is based on taking a problem and
refining it into a sequence of "easier" subproblems, which collectively consti-
tute a strategy for solving the given problem. In order for a subproblem to be
easier than the given problem, the goal statement of the subproblem must be
easier to satisfy than the goal of the problem. The statement Q(s) will be
considered easier to satisfy than the statement R(s) if R(s) implies Q(s) . For

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 229

instance, in the Mod-3 Puzzle the s t a t e m e n t {Sll = S12 , $23 = $33 } is easier to
satisfy than the goal statement.

The RWM system first applies the refinement method to the given problem.
This should result in a sequence of subproblems whose goal statements are
easier than that of the problem in hand. Some of these subproblems may still
be difficult to solve themselves. Such a subproblem cannot be refined further,
since all the moves of that subproblem are relevant to all the atomic statements
of its goal. More relevant moves need to be found first. Therefore , RWM
generates new macro moves for such a subproblem. These new moves are
tested for relevancy. The ones that are relevant are added to the move set of
the subproblem. Some of these newly generated moves may be relevant to the
further stages of the strategy as well. Therefore , after generating a set of moves
for stage i, the move sets of all stages] t> i are updated with these moves.

When generating moves for a difficult stage, it is possible that no new moves
are found. In that case, RWM generates moves for the previous stage. This
backtracking continues until some new moves for the difficult stage are found.

The block diagram of the RWM system is shown in Fig. 7. The refiner and
the macro generator directly implement the refinement and the macro genera-
tion methods described earlier.

In various stages of the process of learning a strategy, questions such as
whether a move is safe over a s tatement, or if it is relevant to going from one
s ta tement to another are raised. In order to answer such questions, problem
domain-related knowledge is needed. This knowledge is provided to the RWM
system along with the description of a problem, and stored in the domain-
dependent knowledge base (DDKB) . The domain-related knowledge can be
thought of as a set of general rules that describe the effect of the functions used
in the moves and the predicates used in the statements. D D K B also contains

user

description [
of a problem l Executive 1. .strategy

Refiner

domain dependent .[
knowledge

I
T

DDKB

Macro Generator]

T
Fig. 7. Block diagram of the RWM system.

230 H. ALTAY GUVENIR AND G.W. ERNST

informat ion about composi t ions of functions. For example, the D D K B for
Mod-3 problem includes the fact that inc3(inc3(inc3(x))) = x. For problems that
use the same set of predicates and functions the same D D K B can be used. For
instance, the same D D K B is used for Rubik ' s Cube, Pyraminx and the Eight

Puzzle.
D D K B is designed to answer quest ions of the form,

" D o e s Q(s) imply r(m(s))?"

where Q(s) is a set of a tomic s ta tements and r(m(s)) is an a tomic s tatement .
D D K B answers "yes" to such a quest ion if it can infer r(m(s)) f rom Q(s) using
the domain dependen t knowledge provided. Otherwise, the answer is simply
" d o n ' t know." That is, the input to D D K B is a s ta tement Q(s), an a tomic
s ta tement r(s) and a move m; and its output is "yes" or " d o n ' t know." For
example, the safety of move m over an initial s ta tement l(s) is de te rmined by

asking the quest ion,

" D o e s l(s) imply ii(m(s))?"

for each a tomic s ta tement iv(s) in l(s). If the answer is "yes" for all a tomic
s ta tements in l(s), then m is safe over l(s).

If the move m has a precondi t ion s ta tement PCm(S) = {pc, , , .~(s), . . . ,
pCm~k(S)}, then m also has to be potential ly applicable to the initial s ta tement
l(s). This is de te rmined by asking the class of quest ions,

" D o e s l(s) & pCm.l(S) & "'" & pCm,, I(S) imply ~pc,,,.i(s)?"

for 1 ~< i ~< k. If the answer is "yes" for any i, then m is not applicable to l(s),
otherwise it is potential ly applicable. For instance, to de te rmine the applicabili-
ty of O3A ~ , whose precondi t ion s ta tement is {s E = B, s 2 = B, s t = A}, to the
s ta tement {s 2 = C} in the Tower of Hanoi problem, the refiner first asks

D D K B the quest ion,

" D o e s {s 2 = C} imply s I ¢ B ? "

Since the answer is " d o n ' t know" , the refiner asks the second quest ion,

" D o e s {s 2 = C, s~ = B} imply s~ ~ B ? "

Because s, is equal to C, which is different f rom B, the answer is "ye s . "
T h e r e f o r e , 03A c is not potent ial ly applicable to {s 2 = C}, i.e., there cannot be
any state satisfying both {s: = C} and {s I = B, s 2 = B, s 3 = A}.

Dur ing the ref inement process, moves that are relevant to going f rom an

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 231

initial s tatement I(s) to an atomic s tatement gi(s) of a goal are sought. In order
to determine the relevancy of a move m, the refiner asks the question,

"Does I(s) & -Tgi(s) imply -Tgg(m(s))?"

If the answer is "yes , " then the move is irrelevant, otherwise it is considered as
relevant to gi(s). For example, in the second stage of the Mod-3 Puzzle,
(021022) is relevant to s23 = s33, since the answer to the question,

"Does {sll = s12, s23 ¢ $33 } imply inc3(inc3(s23)) ~ $33 ?' '

is "don ' t know." On the other hand, o~3 is irrelevant at the same stage,
because the answer to the question,

"Does {sll = s12 , $23 ~& $33 } imply inc3($23) ~ inc3($33)?"

is "yes . " That is, if $23 and s33 are not equal before the application of 013, they
will remain unequal afterwards as well.

Note that since the effect of predicates and functions are separated from the
RWM as domain-dependent knowledge, RWM can be used with any kind of
predicates and functions.

The executive's task is to handle the interaction between the various parts of
the RWM system and the user. It first reads the description of a problem along
with the relevant D D K B . Then the problem is refined by the refiner, and the
problem is replaced with its refinement. This refinement constitutes a raw
strategy for solving the problem. If the user "es t imates" that some subproblem
is difficult, then new moves are generated by the macro generator for this
subproblem. The moves of the current and the latter stages are updated by
adding the newly generated moves that are safe over their initial statements.
Then the difficult subproblem is tried for further refinement.

The user may choose to create subproblems for some moves with precondi-
tions. In that case a separate subproblem whose goal s tatement is the precondi-
tion s tatement of a move selected by the user is created. Then this subproblem
is refined to obtain a strategy for the precondition of this move.

Through the executive, the user has a control over the course of the process
of learning a strategy. The user can choose to refine a subproblem, generate
moves for a given subproblem, or create a new subproblem for the precondi-
tion of a move at a given stage. Since the decision on whether a subproblem is
difficult or whether to create subproblems for moves is left to the user, the
RWM system can be used to learn strategies that satisfy certain user criteria.
Although RWM is a man-mach ine system, the user 's role is somewhat
indirect. Never does the user give RWM direct information about the strategy
like the goal of a particular stage should be a particular s tatement or like the

232 H. ALTAY GfJVENIR AND G.W. ERNST

order of different stages. However, the user has some control over such things
as the number of stages in a strategy and the length of the macros used in the
strategy.

4. Complexity of RWM and Empirical Results

In this section, the refinement and the macro generation processses will be
analyzed in terms of the time required to refine a problem and the time
required to generate macro moves for a given problem, respectively

4.1. Time complexity of the refinement

Let a problem P = (l (s) , G(s), M, S> be input to the refinement procedure
shown in Fig. 4. The first step is to determine the relevant moves for each
atomic statement gi(s) in G(s). The relevancy of a move m, where m is safe
over l(s), to an atomic statement gi(s) is determined by asking the following
question to the DDKB (domain-dependent knowledge base),

"Does l(s) & -Tgi(s) imply -Tgi(rn(s))?"

Let r be the response time of DDKB to such a question. Then, the time
required for determining the relevant moves for all atomic statements in G(s) is
]G(s)].]Ml.r, where IG(s)] denotes the number of atomic statements in G(s).
Solvability of a problem is tested by checking that the set of relevant moves for
each atomic statement of G(s) is non-empty. Since the response time of a
DDKB question is much longer than the time required for any list comparison,
the response time is the dominant factor in the time complexity of the
refinement process. Also, r is constant for a given DDKB. Therefore , the
complexity of the refinement method will be calculated in terms of the number
of questions that will be asked to the DDKB. Thus, the time complexity of the
first step is O(]G(s)] .]M]).

The complexity of the second step can be omitted because it does not involve
asking any question to the DDKB. In the third step, the moves that are safe
over l(s) & Gj(s) are determined for each group. Since all the moves in M are
known to be safe over I(s), only their safety over Gi(s) needs to be checked.
Safety of a move rn over @(s) is determined by asking the question,

"Does l(s) & G~(s) imply gi,k(m(s))?"

for e a c h gj.k(S) in Gj(s), which takes IGj(s)[.r time. If m has a precondition
PCm(S), then it has to be potentially applicable to @(s) as well, which requires
IPC,,,(s)L • r time in the worst case. Therefore , the time complexity of determin-
ing the moves that are safe over and potentially applicable to l(s) & Gj(s) for a

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 233

group Gj is

O(([Gj(s)l + np). IM[),

where np is the average number of atomic statements in a precondition of a
move. This will be repeated for each group Gj. Let ng be the number of groups
resulting from the second step of refinement process. Since E j [Gj(s)[= [G(s)],
the time complexity of the third step is

O((IO(s) I + ngnp)" IM[).

The total complexity of the first three steps is

O(IG(s)[" IMI + [G(s)l. IMI + ngn o • IM[)

= O((2[G(s)[+ ngno)" IMI).

The complexity of ordering the groups in the fourth step is omitted because
it does not require asking any questions to the DDKB.

In order to determine the first stage of the strategy, the first three steps can
be executed at most rtg times, which in turn requires

O((2[G(s)[+ ngnp).ng. [MI)

calls to the DDKB. In the worst case, ng ---- [G(s)[, the complexity of finding the
first stage is

O([G(s)l 2. (2 + %). IMI).

If the total number of stages that will result is ns, then the total time
complexity of the refinement process is

O([G(s)l 2. (2 + np). IMI" ns).

In the case of IG(s)[stages, the worst case in terms of time complexity, the
total number of calls to the DDKB during the refinement process is

O(IG(s)[3. (2 + %). IM[).

As an example, experimentally measured times required for the refinement
of the Mod-3 Puzzle played on 3 x 3, 4 x 4 and 5 x 5 boards are shown in Table
5. The strategies obtained by refining the 4 x 4 and 5 x 5 Mod-3 Puzzles are
given in [7]. For each size of the Mod-3 Puzzle, the rest of the problem is found

234 H. ALTAY GUVENIR AND G,W. ERNST

Table 5
Measured times for refining the Mod-3 Puzzle on different boards sizes

Board size I ~(s)l I MI n, Measured time (sec.)

3 × 3 36 9 4 6.2
4 × 4 120 16 8 76
5 x 5 300 25 12 458

to be solvable for each stage, that is, the number of questions asked to the
D D K B is a function of Ia(s) l rather than [G(s)] 2. Also np = 0 since the moves
do not have preconditions. According to the calculations given above, the
maximum number of questions that will be asked to the D D K B in the Mod-3
Puzzle is 2 .] G (s) l . I M l . n , . The response time of the D D K B used for the
Mod-3 Puzzle is about 2 milliseconds. Therefore , the t ime for the refinement of
the 3 x 3 Mod-3 Puzzle should have been 5.2 seconds. The difference betweeen
the calculated and the measured times is due to the time spent for grouping
and sorting in the second and the fourth steps. The time for the refinement of
the Mod-3 Puzzle on a 4 x 4 board is measured to be 12.2 times longer than
that of a 3 x 3 board. This agrees very well with the analytical results. Also the
refinement time for the 5 x 5 Mod-3 Puzzle is measured to be 69.4 times that of
3 x 3 Mod-3 Puzzle which is predicted by the analysis.

4.2. The time complexity of macro generation

When generating macro moves for a given subproblem, either two relevant
moves or an irrelevant move and a relevant move are composed. Therefore ,
the time complexity of the macro generation process is O((]M[+ IMll)" [MI),
where [M I is the number of relevant moves and [MI I is the number of
irrelevant moves of the subproblem. However , the macro generation normally
takes place more than once because one set of new moves might not lead to the
refinement of the problem at hand. Therefore , the number of macros gener-
ated increases exponentially. This is because the total number of newly
generated moves is the total number of all old safe moves times the number of
old relevant moves.

Another issue here is the length of the macros. Since two moves are
composed to generate a new macro, the length of some of the newly generated
macros is twice the length of the old moves, and each level of macro generation
has this length doubling potential. Therefore , the macros generated using this
method may be longer than the optimal macros for the same task. The
generation of macros is the main bott le-neck in the RWM method because of
its exponential nature. This is also the case with Korf 's method even though its
macro generation process is very different than that of RWM. The difficulty is
very problem dependent because good strategies for some problems require

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 235

macros that are relatively long and there are exponentially many macros of this
required length. This leads to difficulties in both the time and the space
complexity.

4.3. Empirical results

A program implementing the RWM method has been written in LISP and runs
on a VAX 11/780. We now sketch some test problems and the empirical results
of RWM on these problems. The detailed description of these problems can be
found in [7] along with the strategies learned.

Mod-3 Puzzle

The strategy learned for the Mod-3 Puzzle played on a 3 x 3 board is shown in
Fig. 1. During the process of learning this strategy 57 macros were generated.
It took RWM 13 seconds to learn this strategy.

2 ;< 2 x 2 Rubik 's Cube

This is a 2 x 2 x 2 version of the 3 x 3 x 3 Rubik's Cube puzzle. A six-stage
strategy, shown in Section 1, for solving this puzzle was learned by RWM in
397 seconds. The first stage of the strategy is to make the adjacent facelets of
the two bottom left cubies the same color. The following two stages make the
lower half of the cube have the same colors on their adjacent facelets. The rest
of the strategy completes the puzzle. This strategy is also similar to the
strategies used by humans. During the process of learning this strategy a total
number of 1695 macro moves were generated. The longest macro contains 91
operator applications, and only swaps the cubies in the upper front right and
the upper back left corners. One reason that some of the macros are so long is
that only three operators are given in the problem specification; thus a
270-degree rotation is accomplished by a macro move consisting of three
applications of a 90-degree rotation.

Pyraminx

The puzzle, commercially available under the name of Pyraminx, can be
thought of as a pyramidal or tetrahedral version of the Rubik's Cube. There
are two kinds of rotations possible at each of four corners. Counterclockwise
rotations are defined in the operators. A clockwise rotation is accomplished by
two counterclockwise rotation. A strategy of twelve stages is learned in 138
seconds. During this process 285 macros are generated, by saving only the
moves that have a different effect with respect to the goal statement of each
stage. The longest macro is 75 operators long, but again some of this length is
due to the use of two operators to do a simple clockwise rotation. In the first
four stages the four small cubies are rotated until they have the same colors as
the adjacent big cubies. The following five stages make all the adjacent facelets

236 H. ALTAY GUVENIR AND G.W. ERNST

of the cubies in the front layer of the pyramid, the same color. The rest of the
strategy completes the puzzle. This strategy is very similar to the one learned
and used by humans for this puzzle [18].

Tower of Hanoi problem

The refinement of the 3-disk Tower of Hanoi problem results in a three stage
strategy. In the first stage of the strategy the largest disk, in the second stage
the medium, and in the third stage the smallest disk are moved to the goal peg.
Moving the largest disk in the first stage requires that a precondition involving
the other smaller disks be satisfied. Similarly, to move the medium disk a
precondition involving the smallest disk must be satisfied. Separate sub-
problems are created for the preconditions of the operators used in the first
two stages. These subproblems are refined individually which results in sepa-
rate strategies for solving the preconditions. This process took 16 seconds, and
no macros were generated.

Eight Puzzle

The Eight Puzzle has been extensively studied in the artificial intelligence
literature [24]. The refinement of this puzzle results in an eight-stage strategy.
At each stage one tile is moved to its goal position. Macros are generated for
the first six stages to enrich their move sets. A strategy for the Eight Puzzle was
learned in 631 seconds; and 711 macros were generated. The longest macro is
of length fourteen.

Monkey and Bananas problem

Although it is simple, the well-known Monkey and Bananas problem [22] has
several interesting properties. First, most of its operators have preconditions.
Second, the representation of this problem given to RWM is not serially
decomposable as is required by Korf's method [9]. Third, the goal statement of
the problem has only one atomic statement, therefore it cannot be directly
refined. This problem is used to show how different strategies can be learned
by either only creating subproblems for operator preconditions, or only
generating macros, or both.

The first strategy was learned by only generating macros. It was learned in 7
seconds and 7 macros were generated. The longest macro was of length 4. This
strategy has only one stage, which contains a macro for each possible position
of monkey and the box so that monkey can grab the bananas. The second
strategy was learned by creating subproblems for operator preconditions only,
and then refining them. RWM learned a two-stage strategy for grab, and
one-stage strategies for push and climb operators. This strategy was learned in
4 seconds. In the third strategy both techniques were used. This strategy was
learned in 5 seconds and 6 macros were generated. The longest macro was only
2 operators long. In learning this strategy, only a subproblem for the precondi-

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 237

tion of the grab operator was created and refined into a two-stage strategy.
Then, length-2 macros were generated for its stages.

Rubik' s Magic

This puzzle is commercially available under the name Rubik's Magic; it consists
of eight squares connected to each other by very thin cords. Each square is
attached to two others by these cords. The squares are marked by colored arcs.
The goal is to arrange the squares so that the overall picture is three whole
rings linked together. However, the shape of this goal figure is not given. A
three-stage strategy for solving this puzzle was learned in 115 seconds by
generating 22 macros. The longest macro was of length 3. The first stage is to
have the same colors on the adjacent edges of the two lower left squares. In
the second stage, upper left three and lower left two squares arranged so that
they make a complete picture. The third stage brings the puzzle to its goal
state. This strategy is also very similar to the one learned by humans for this
puzzle [19].

Trillion Puzzle

This is a commercially available puzzle which is quite difficult to solve. It
consists of four blue, four green, four red and one white chips placed on four
concentric circles and one center point. The circles are marked red, yellow,
green and blue, going outwards. The chips can be moved by three concentric
transparent rings and a slide lever, Fig. 8.

Moving the outer ring rotates the chips on the blue circle. The chips on the
green and the yellow circles are rotated by the middle ring. The inner ring
rotates the chips on the red circle. The slide lever pushes all the chips on the

Y2

B3 G3 Y3 WC

GO

]

Fig. 8. The Trillion Puzzle.

238 H. ALTAY GIJVENIR AND G.W. ERNST

vertical line up one position. While the lever is pushed the inner or the middle
rings can be rotated but not the outer ring. The goal is to get the chips of one
color on the circle of that color, and do this for all four colors.

RWM has learned a 14-step strategy for this problem in 10 minutes [8]. For
learning this strategy 2719 macros were generated. Some of the macros are
quite long (the longest one is 118 operators long); each clockwise rotation is
represented by three counterclockwise rotations which are primitive. The first
four stages put the blue colored chips on the outer ring. The next two stages
put the two, green chips on the G1 and G3 positions, postponing the other
green chips to the eighth and tenth stages. The seventh stage puts a yellow chip
on the Y2 position. The other yellow chips are put in their goal positions in the
ninth, eleventh and twelfth stages. The thirteenth stage puts a red chip on the
R2 position. The other red chips and the white chip are put on their goal
positions in the last stage. After a small amount of experimentation, it is
obvious that the blue chips should be done first. However , the rest of the
solution is not obvious because there is a lot of interaction between the
remaining positions. The ordering of the green and yellow chips is difficult to
discover, which is an important part of the strategy learned by the RWM.
Using the strategy results in long solutions; i.e., solutions that contain many
primitive operators. But it is also the only way we know of to solve this
problem. There may be a better way to solve it than to use the RWM strategy,
but we are quite sure there is no easy way to solve it.

The strategies learned by RWM have been tested on a large number of
problem instances, and a solution was found for all the initial states. Most of
these strategies seem to be efficient in the sense that the amount of search
required for each stage is relatively small. Also these strategies are quite
similar to the strategies used by humans. Humans often learn a number of
moves for each stage of their strategy, and apply a search using these moves in
solving a stage. This is quite different than the strategies learned by Korf's
method in which there is one macro learned for each possible next step in the
macro problem solving (MPS) process. Of course, Korf's strategies are very
efficient because no search is required, but also quite different from human
strategies.

Only the unique operators of a problem are given in its description. For
example, only counterclockwise rotations of the front layer of the Rubik's
Cube is defined, since a 180-degree turn of the front layer is equal to two
counterclockwise rotations of the same layer. Similarly a clockwise rotation is
equal to three counterclockwise turns. It is left to the macro generator to
generate these moves if they are really useful. However, this makes the macros
appear to be longer than they really are, because for example, a clockwise
rotation shows up as three separate rotations in the macro.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 239

5. Discussion

RWM is a method that learns efficient strategies for some problems such as the
Mod-3 Puzzle and Tower of Hanoi problem, but does not work for some others
such as the Fool's Disk. 6 Hence, an important issue is how to characterize the
problems for which RWM is able to learn good strategies. Before attempting to
characterize the class of problems applicable to RWM, we will look at the
characterization of Korf's method.

Korf [9] has been able to characterize the class of problems for which his
method is applicable. These problems, which he calls serially decomposable,
have the property that the value of the ith component of the result of an
operator is a function of only the first i components of the state to which the
operator is applied. MPS only applies macro m# to a state in which the first i -1
components have their goal values and the ith has j as its value. Since the first i
components of the input are known, these components of the output are also
known because of the serial decomposability. Thus, rnij performs the desired
function because of the way it is generated. The key property is that state
components other than the first i components have no effect on the first i
components of rnij's output.

This is an important characterization because if a problem does not have this
property then his method should not be considered, otherwise the method will
definitely learn a macro table to solve the problem. However it is important to
realize that decomposability is defined relative to an ordering on the state
components, and hence for some orders a problem may be serially decompos-
able while for others it is not. Moreover, this characterization is valid under the
assumption that every legal state is solvable in the sense that there is a path
from it to the goal state. However , many problems do not have this property
because there are "dead-end" states for which solutions do not exist. This
shows up in the macro table as empty slots. For such problems, even though
there may be solutions, Korf's method will fail because it does not backtrack
when it finds an empty entry in a macro table.

Another difficulty with such a characterization is that it does not say
anything about the efficiency of the strategy that will be learned. That is, even
if a problem is serially decomposable, the strategy may not be efficient. This
difficulty can be illustrated by the strategy learned for the Tower of Hanoi
problem, which is very inefficient as explained in Section 3.5.

The difficulty with the characterization of the problem solving and the
strategy learning methods is to capture the features such as efficiency. In fact,
this difficulty is present in all artificial intelligence techniques such as A* and
resolution-based strategies [17] because there are very few theoretical results
which characterize the efficiencies of such methods. Although the theory of
resolution theorem proving has many results on the completeness of different

6A strategy for solving this puzzle has been discovered by Ernst and Goldstein [4].

240 H. ALTAY GISVENIR AND G.W. ERNST

search strategies, very little is known about their efficiency. All these strategies
allow many legal inferences to be pruned from their search spaces, but they are
all inefficient on some theorems because their use increases the length of the
proofs to the point where much more search is required. Thus, the study of the
efficiency of strategies has been almost entirely limited to empirical investiga-
tions, and RWM is no exception. However, it is instructive to attempt to
characterize the class of problems for which RWM is useful in an informal way.

Because of the difficulties explained above, instead of giving a concrete
characterization (such as decomposability) of the problems that are suitable for
RWM, we will discuss the RWM method in terms of its restrictions and
efficiency in general.

5.1. Restrictions due to representation

RWM is designed for state space problems. The goal states of the problem
space should be represented by a statement which is a conjunction of lower-
level (atomic) statements about the values of state components. This is
necessary for the success of the refinement method since it tries to partition the
goal statement into a sequence of subgoals. However, this is not a requirement
for the RWM method in general. A good example of this is the Monkey and
Bananas problem, whose goal statement is {Monkey's hand= Bananas).
Although the problem itself cannot be refined because its goal contains only
one atomic statement, new subproblems can be created for the operator
preconditions.

There are no requirements on the operators, such as decomposability. For
example, the Monkey and Bananas problem as given to the RWM is not
serially decomposable. However, only unary functions are allowed in the
assignments of an operator. This restriction is imposed solely for the sake of
simplicity of the particular implementation developed in this research. A
different implementation could remove this restriction.

5.2. Safety of moves over portions of the goal

In order to refine a problem, its moves must be safe over some portions of the
goal statement and relevant to going from that portion to the rest. If a move is
safe over the whole goal statement, then this move is not going to be useful in
solving the problem. For example, a move that rotates the whole cube in the
Rubik's Cube puzzle cannot be used to solve that problem. On the other hand,
if a problem has no moves that are safe over only a portion of the goal in terms
of its atomic statements, then the refinement process will fail to refine that
problem, and return it unchanged. However , this is not a requirement for the
RWM method as a whole. In such cases, new macro moves that are safe over
portions of the goal statement can be generated. A good example of this
situation is a subproblem found as a stage after the refinement. All the moves
of a stage are unsafe over any portion of its goal. After generating new macro

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 241

moves for that subproblem, some of these moves may be safe over portions of
its goal. This situation can be true for the problem itself. Therefore , such a
requirement on the safety of the primitive operators over portions of the goal
statement does not constitute a characterization for the applicability of the
RWM method, but it is desirable for a problem to have this property. The
major requirement for RWM is that there exist macros, which are not " too
long," which are safe over some portions of the goal but not others. The
difficulty is that this information is not explicit in the problem specification and
must be inferred from it by a process such as RWM.

5.3. Subproblems for move domains

In order for a move to be used in a stage, it must be "potentially" applicable to
the initial statement of that stage. That is, the initial state does not have to
satisfy the precondition of that move. However, GPS allows giving separate
strategies for solving the problem of finding a state in the domain of such a
move. In such cases, GPS solves that new problem by using the strategy
provided for the domain of that move. Those separate strategies are needed for
the efficiency of the overall strategy. A good example of this is the strategy
learned for the Tower of Hanoi problem, where separate strategies are learned
for each move.

Generating separate strategies for move domains may not always be the best
strategy. For problems whose moves are relevant to each other 's precondition
this may lead to inefficient strategies or no strategy at all. In such cases,
generating macro moves may yield more efficient strategies. A good example
of this case is the Eight Puzzle, where each move is relevant to the precondi-
tion of some other moves. In the strategy learned for the Eight Puzzle only
macro moves are used; no subproblems for transforming a state into the
domain of an operator are used.

A combination of separate strategies for move domains and macro genera-
tion is also possible. An example of such a strategy is given for the Monkey
and Bananas problem. The strategies learned only by generating separate
strategies for move domains may have many stages while the strategies with
only macro moves may contain large number of moves. Therefore, a hybrid of
these two techniques seems to be appropriate for some problems.

6. Conclusions

RWM is a method for mechanically learning GPS based problem solving
strategies. It incorporates two separate methods, namely, refinement and macro
generation. The former is to partition a given problem into a sequence of easier
subproblems which constitutes a raw strategy to solve the problem. The latter
is to learn more relevant moves, so that a difficult subproblem can be further
refined.

242 H. A L T A Y GIJVENIR A N D G.W. ERNST

The RWM method is applicable to many state-space problems such as those
described in Section 4.3. However, its implementation explained in this
document has some restrictions over the representation of problems. For
example, only unary functions are allowed in the assignments of the operators.
The use of the available memory was not efficient; e.g., a complete strategy for
the 3 × 3 × 3 Rubik's Cube could not be found because of memory limitations.
A more serious deficiency is that refinement only generates subproblems whose
goals are subsets of the main goal. Thus, it could not learn a good strategy for
the Fool's Disk [4].

The RWM method has been used to learn strategies for a number of
problems. The strategies learned have been tested on a large number of
problem instances, and a solution was found for all the initial states tested.
Most of these strategies seem to be efficient in the sense that the amount of
search required for each stage is quite small. Also these strategies are in some
respects similar to the strategies used by humans.

Although RWM is a man-machine system, the user's role is quite indirect.
Never does the user give RWM direct information about the strategy, like the
goal of a particular stage should be a particular statement, or like the order of
different stages. However, the user has some control over such things as the
number of stages in a strategy and the length of the macros used in the
strategy.

Most of the research discussed in this paper is concerned with learning
GPSobased strategies. In addition to RWM, the methods of Korf [9] and Ernst
and Goldstein [4] have mechanically learned strategies of this type. Each
method has its strengths and weaknesses. For example, Ernst and Goldstein's
discovery system does not use macro moves that are shown here to be very
useful in strategies. Korf's technique is not designed to find an ordering of
subproblems which constitutes a very crucial part of a strategy, and does not
allow multiple goal states. However, these techniques have learned some
clever and non-obvious strategies for different types of problems. The RWM
method is based on the ideas in these previous learning methods; it shows how
they can be combined and expanded. Although the resulting method can learn
some strategies that the previous methods could not, the former cannot learn
all of the strategies learned by the latter. Thus something has been lost in the
combination and extension, but more importantly something has been gained.
Each of these research efforts contributes to the overall understanding of this
kind of learning, which is somewhat limited, but collectively the results of this
research are quite impressive.

A C K N O W L E D G E M E N T

This research was conducted at Case Western Reserve University. We would like to thank Leon
Sterling and David Helman for many useful comments . David Davenport and the referees
provided many helpful and greatly appreciated comments that improved the previous version of
this paper.

LEARNING PROBLEM SOLVING STRATEGIES USING RWM 243

REFERENCES

1. S. Amarel, Expert behaviour and problem representations, Laboratory for Computer Science
Research, Rutgers University, New Brunswick, NJ (1982).

2. R.B. Banerji, GPS and the psychology of the Rubik cubist: A study in reasoning about
actions, in: A. Elithorn and R. Banerji, eds., Artificial and Human Intelligence (North-
Holland, Amsterdam, 1983).

3. G.W. Ernst and A. Newell, GPS: A Case Study in Generality and Problem Solving (Academic
Press, New York, 1969).

4. G.W. Ernst and M.M. Goldstein, Mechanical discovery of classes of problem-solving
strategies, J. ACM 29 (1982) 1-23.

5. G.W. Ernst, Means-ends analysis, Encyclopedia of Artificial Intelligence (Wiley, New York,
1987).

6. A.H. Frey Jr and D. Singmaster, Handbook of Cubik Math (Enslow, Hillside, NJ, 1982).
7. H.A. Giivenir, Learning problem solving strategies using refinement and macro generation,

Tech. Rept. CES-87-22, Computer Engineering and Science Department, Case Western
Reserve University, Cleveland, OH (1987).

8. H.A. Giivenir and G.W. Ernst, A method for learning problem solving strategies, in:
Proceedings AAAI Spring Symposium Series, Stanford University, Stanford, CA (1988).

9. R.E. Korf, Macro-operators: A weak method for learning, Artificial Intelligence 26 (1985)
35-77.

10. R. Kowalski, Logic for Problem Solving (North-Holland, New York, 1979).
11. J.E. Laird, P.S. Rosenbloom and A. Newell, Chunking in Soar: The anatomy of a general

learning mechanism, Machine Learning 1 (1986).
12. S. Minton, Quantitative results concerning the utility of explanation-based learning, in:

Proceedings AAAI-88, St. Paul, MN (1988) 564-569.
13. T.M. Mitchell and R. Keller, Goal-directed learning, in: Proceedings International Machine

Learning Workshop, Urbana-Champaign, IL (1983).
14. A. Newell, H.A. Simon and J.C. Shaw, A variety of intelligent learning in a general problem

solver, in: M.C. Yovits and S. Cameron, eds. Self-Organizing Systems: Proceedings of an
Interdiciplinary Conference (Pergamon Press, Oxford, 1960) 153-189.

15. A. Newell, Learning, generality and problem solving, in: Proceedings 1FIP Congress (North-
Holland, Amsterdam, 1963) 407-412.

16. A. Newell and H.A. Simon, Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,
1972) 435-438.

17. N.J. Nilsson, Principles of Artificial Intelligence (Tioga, Palo Alto, CA, 1980).
18. J.G. Nourse, The Simple Solutions to Cubic Puzzles (Bantam Books, New York, 1981).
19. J.G. Nourse, Simple Solutions to Rubik's Magic (Bantam Books, New York, 1986).
20. J. Pearl, On the discovery and generation of certain heuristics, A1 Mag. 4 (1983) 23-33.
21. H. Renko and S. Edwards, Awesome Games for your Atari Computer (Addison-Wesley,

Reading, MA, 1984).
22. E. Rich, Artificial Intelligence (McGraw-Hill, New York, 1983).
23. C.C. Sims, Computational methods in the study of permutation groups, in: J. Leech, ed.,

Computational Problems in Abstract Algebra (Pergamon, New York, 1970).
24. P. Schofield, Complete solution of the eight puzzle, in: N.L. Collins and D. Michie, eds.,

Machine Intelligence 1 (Oliver & Boyd, Edinburgh, 1967).

Rece ived Sep tember 1988; revised version received A p r i l 1989

