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ABSTRACT 

In this paper we propose a technique for learning efficient strategies for solving a certain class of 
problems. The method, RWM, makes use of two separate methods, namely, refinement and macro 
generation. The former is a method for partitioning a given problem into a sequence of easier 
subproblems. The latter is for efficiently learning composite moves which are useful in solving the 
problem. These methods and a system that incorporates them are described in detail. The kind of 
strategies learned by RWM are based on the GPS problem solving method. Examples of strategies 
learned for different types of problems are given. RWM has learned good strategies for some 
problems which are difficult by human standards. 

1. Introduction 

Search is the basic technique underlying most computer  problem solving 
methods. Exhaustive search methods explore all possible paths to a goal state 
during the problem solving process. However,  such methods are not feasible 
for problems with combinatorially large state spaces, because there are always 
practical limits on the amount of time and storage available. For many tasks it 
is possible to state principles or rules of thumb, so-called heuristics, to help 
reduce the search. Any such technique used to speed up the search depends on 
special information about the problem. Heuristics are used in different ways in 
different problem solving techniques; e.g., test functions in hill-climbing [22], 
estimate functions in A* [20]. However ,  Korf  showed that for many difficult 
problems such as Rubik's Cube, no such heuristic functions are of any direct 
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use [9]. On the other hand, the heuristics used by the General  Problem Solver 
(GPS) are based on "differences" between problem states [3]. These differ- 
ences and the way they are used constitute a strategy for solving the problem. 
Refinement with macros (RWM) is a method for essentially learning the 
heuristic information that GPS needs to know to solve a problem. 

The kind of strategy that the system learns is typified by the one it learned 
for the 2 x 2 x 2 Rubik's Cube, which is difficult by human standards. The goal 
of this puzzle is to make all eight cubies have the same color on their adjacent 
facelets. ~ The primitive operators are the 90 ° counterclockwise rotations of 
front (F),  upper (U) and right (R) halves of the cube, The following strategy 
was learned by RWM: 

( t )  Make the two lower left cubies have the same color on each pair of their 
adjacent facelets. 

(2) Make the lower front right cubic and the lower left cubies have the same 
color on each pair of adjacent facelets. 

(3) Make the cubies on the lower half have the same color on each pair of 
adjacent facelets. 

(4) Make upper left front cubic and the cubies on the lower half have the 
same color on each pair of adjacent facelets. 

(5) Make upper right back cubic, upper left front cubie and the cubies on 
the lower half have the same color on each pair of adjacent facelets. 

(6) Make upper right front cubie, upper left back cubie and the rest of the 
cubies have the same color on the adjacent facelets. 

Implicit in this strategy is that the goals are solved in the given order and 
once a goal is achieved it is not violated later in the solution process. For this 
reason, RWM also learns good moves for solving each subproblem. A move is 
either a primitive operator or a sequence of operators,  which is called a macro. 
For example, (UFFFRF)  is one of the moves learned for the third stage. A 
useful property of this macro is that it is safe over the goals of the first two 
subproblems in the sense that if these goals are satisfied before applying this 
macro, they will remain satisfied after applying the macro. 

This strategy is similar in some respect to those used by humans (see [6], for 
example). Such strategies divide the problem into a number of subproblems 
such as getting a portion of the cube in its correct position. In solving these 
subproblems the goals of the previous subproblems are not violated. This is 
accomplished by the way that subproblems are solved: each subproblem is 
solved by a search process which only uses moves that are safe over all of the 
goals of the previous subproblems. Thus, the order of the subproblems is very 
important because the moves that are learned for a subproblem will have such 
safety properties. 

The terminology used here is standard in the literature of Rubik's Cube [6]. 
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Another  example is the Mod-3 problem, which we will use throughout the 
paper since it is easier to visualize than Rubik's  cube. The Mod-3 Puzzle 2 is 
played on a 3 × 3 board. Each square can take any value between 0 and 2. A 
move consists of playing on a square, which will increment the value of each 
square that is in the same row or the same column as the square played on. 
Each increment adds 1 mod 3 to the number. The goal is to have the same 
value on every square. An initial state has arbitrary values, e.g., 

2 0 1 

0 1 2 

1 2 0 

Although this problem appears to be easy, it is not so obvious how one 
should go about solving it. The reader is invited to try solving the puzzle from 
the initial state given above. Usually one starts by making the numbers in the 
first row equal. However,  one soon realizes that it is difficult to make the 
numbers in the second row equal to the ones in the first row without changing 
the numbers in the first row. The nature of the difficulty is that lots of squares 
have to be made equal, and when making a square equal to the others, the 
relevant operators usually violate the equality of some of the squares which 
were previously made equal. Also it is not clear in what order the squares 
should be made equal. An exhaustive search is not reasonable because usually 
it takes more than 8 operators to solve the problem, and the branching factor is 
9. 

Our approach is to use a strategy in which each step makes a few squares 
equal while maintaining the accomplishments of the previous stages. The 
strategy learned by the RWM method for the Mod-3 Puzzle is shown in Fig. 1. 

1. Make sn = s12 using 
2. Make s23 = s33 using 
3. Make all the squares 
4. Make s21 = s31 using 
5. Make s22 = s32 using 
6. Make s22 = s23 using 
7. Make sn = s21 using 
8. Make all the squares 

moves o2a and/or 022. 
moves (02,022) and/or (03,0a2). 
in the first row equal using moves o23 and (o21o32). 
moves (023o22031) and/or (o3302,032). 
moves (o23o~1o32) and/or (o3~o~2o~1). 
moves o12 and/or o13. 
move (o12o1~). 
equal using o11. 

Fig. 1. The strategy learned for the Mod-3 Puzzle. 

2 This is essentially the "One to Five" puzzle given in [21]. 
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The first stage of the strategy is to get the squares Sll and s~2 equal; ssj denotes 
the value in row i and column j'. The problem solver solves this subproblem by 
searching for a state in which Sl~ and Sl2 have equal values. During this search 
only moves o21 and 022 are used, where o~j denotes the move on square sij. For 
example,  022 and 02102~022 are two of the possible solutions that the search 
considers. In the second stage squares s23 and s33 will be made equal while 
maintaining what was done in the first stage. The macro moves (021022) and 
(03~032) will be used to accomplish this. The macro move (02~022) denotes first 
playing on square s21 and then on square s22. Notice that although playing on 
s21 will change the equality of sll and Sl2, the goal of the first stage, it will be 
restored when s22 is played on next. Therefore ,  the macro move (02~022) is 
"safe"  over the goal of the first stage since it does not affect the equality of the 
squares Sll and Sl2. And, since it affects the equality of s23 and s33, the goal of 
the second stage, it is used for that stage. The moves 02~ and (02~032) are safe 
over the goals of the first two stages, and effective in making sL~ and the other 
squares of the first row equal. Thus,  they are the moves in the third stage of 
the strategy which makes the squares in the first row the same while maintain- 
ing the previous stages. A similar situation holds for the remaining stages. The 
problem solver continues to use this process one stage at a time until a state 
satisfying the goal s tatement  of the last stage is found; such a state also satisfies 
the goal of the whole problem. 

1.1. GPS 

The General  Problem Solver (GPS) implements the problem solving technique 
called means-ends analysis. Means-ends analysis refers to the process of 
comparing what is given or known to what is desired, and on the basis of this 
comparison,  selecting a " reasonable"  thing to do next [5]. 

GPS is designed to work on state space problems. A state space problem 
consists of an initial state, a set of goal states and a set of operators. Each 
operator  is a partial function on the set of states. A solution to a problem is a 
sequence of operators  which transforms the initial state into a goal state. Each 
intermediate state produced by one of these operators  must be in the domain 
of the next opera tor  in the sequence. 

If the initial state is not a goal state, GPS detects differences between them, 
and then at tempts to reduce the largest of these differences. To do this GPS 
selects an operator  which is relevant to the largest difference and applies it to 
the initial state. This results in a new state, and the process is repeated by 
comparing it to the goal state and detecting the differences. If the initial state is 
not in the domain of an operator ,  the goal of reducing the largest difference 
between the initial state and the domain of that opera tor  is created. Operators  
which are relevant to this difference are used to reduce it. This will produce a 
state in the domain of the opera tor  which can then be applied. 
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Information about differences is a problem-dependent  parameter  to GPS; its 
purpose is to make the search more efficient. Some of these differences are 
more difficult to remove than others, and thus they are ordered according to 
their difficulty. GPS employs the heuristic of removing differences in the order 
of their difficulty, the most difficult first. In the process of reducing a 
difference, a previously removed difference must not be reintroduced. Any 
operator  will be relevant to removing some differences but not others. Only 
the operators which are relevant to a difference are used to reduce it. This use 
of the difference ordering and operator  relevance restricts the number of 
operators used to remove a difference to some fraction of the total number of 
operators. 

Note that an operator  which is relevant to a difference is not guaranteed to 
remove the difference. It is also possible that the search for reducing a 
difference may be unsuccessful; in that case backtracking must take place. 

RWM is designed to learn the differences, their ordering, and the moves 
relevant to removing each difference for a given problem. One way to learn 
such a strategy could be to look for orthogonal groupings of moves such that 
once a set of differences is satisfied, no move outside the set will modify it. 
However,  for many interesting problems such a method would not result in an 
efficient strategy. For example, the moves of the Mod-3 Puzzle can be grouped 
only into two sets, { o ~ 2 , . . . ,  O33 } and {o~}.  The strategy corresponding to 
this grouping is: first get s~1 = s 1 2  = $13 = $21 ~- $31 a n d  $22 = $ 2 3  ~-  $32 = $33 using 
the moves {o12 . . . . .  O33}, then get s H = s22 using 011. However  this strategy is 
not efficient since the first stage is almost as hard as the Mod-3 Puzzle itself. 
Therefore,  more powerful techniques are needed for learning efficient 
strategies. 

1.2. Learning GPS-based strategies 

The aim of our research is to develop methods for learning GPS-based efficient 
strategies. There were several early attempts to learn differences and differ- 
ence orderings for GPS. The proposal by Newell, Simon and Shaw in [14] is 
conceptually interesting, but was never implemented nor is its implementation 
straightforward. The method by Newell [15] did not take into account the way 
differences interact with one another,  and did not consider using macros. Thus, 
it cannot learn the kinds of strategies that RWM learns. A nice discussion of 
these issues is given in [16]. 

There are two successful methods that also learn GPS-based strategies; Ernst 
and Goldstein's [4] DGBS discovery system and Korf's [9] learning method for 
MPS, which is closely related to GPS. In order to learn a strategy, DGBS first 
finds the basic invariants, which are the properties that are left invariant when 
applying an operator.  Such invariants are found by matching the input state to 
the output state of an operator.  Those basic invariants are then combined to 
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form high-level invariants (differences). A high-level invariant is implied by the 
goal statement, in addition to being invariant over some operators. The 
relationship between the high-level invariants and the operators are stored in a 
boolean matrix. An element of this matrix is 0 if the operator  of its column is 
invariant over the high-level invariant of its row, 1 otherwise. The final step in 
learning a strategy is to make permutations and to combine rows and columns 
to triangularize this matrix. Such a triangular matrix constitutes a strategy for 
solving the problem using GPS. 

As described in the previous section, GPS uses an ordered set of differences, 
or subgoals, and a set of operators that are relevant to removing a difference 
and do not reintroduce previously removed differences. A set of subgoals with 
this property is called serializable. On the other hand, there are problems that 
cannot be solved sequentially by any ordering of subgoals. A good example of 
this is the Rubik's Cube puzzle. Korf has developed a problem solving method 
called macro problem solving (MPS), and a method for learning strategies 
based on MPS. Korf  used macro operators to overcome the problem of 
nonserializable subgoals. A strategy given to MPS is a macro table, which is a 
table whose column headings are state components (differences in GPS),  and 
whose row headings are the values of state components.  The table entries are 
the macro operators. At any point in solving a problem the macro mii will be 
applied if the first i -  1 state components have their goal values and if the 
current value of component  i is j. That is, the macros in the ith column are 
used to remove the difference on the state component  i. Korf  has written 
programs that generate macro tables for a number of problems. The basic idea 
is to "work backwards" from a known goal state by applying the inverse of the 
"primitive" operators. Given the ordering of the state components,  this space 
is searched for a state s that has goal values in its first i - 1 components and 
some non-goal value j in its ith component .  Then,  the sequence of operators on 
the path from the goal state to s is the inverse of a macro which belongs to row 
i, column j of a macro table. A macro table is learned by searching from the 
goal state for all possible values for i and j. 

This previous work on mechanical discovery systems is extended by our 
research. The main extension to Korf's work is the way that RWM learns a 
good ordering for subproblems. RWM can also learn strategies for multiple 
goal states. The strategies learned by Korf's method will be compared with the 
ones learned by RWM later in the discussion. The primary extension to Ernst 
and Goldstein's work is the use of macro operators in the strategies learned. 
The strategies learned by all of these methods are similar to ones used by GPS. 
Other researchers are working on the machine learning of other kinds of 
strategies and heuristics, e.g., Pearl [20], Amarel  [1] and Mitchell [13]. Like 
Korf's method,  RWM uses some of the techniques developed by Sims [23] and 
Banerji [2]. Minton [12] has developed an explanation-based learning system, 
called PRODIGY,  which learns meta-level concepts for efficient search con- 
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trol. Laird et al. [11] have developed a learning mechanism, called chunking, 
for the rule-based general problem solving architecture, SOAR. Chunking 
acquires rules and macro operators from goal-based experiences. SOAR is 
designed to solve problems at different levels of abstraction, each of which 
corresponds to a different problem space. These problem spaces are given to 
SOAR. The strategies learned by RWM can be given to SOAR as abstract 
problem spaces. 

There are four main sections to the paper. The next section introduces the 
basic concepts and the relevant terminology. Examples of the concepts are 
given using the Mod-3 puzzle. Section 3 presents RWM with its two methods, 
refinement and macro generation. A step-by-step trace of the refinement of the 
Mod-3 problem is given. Section 4 deals with the complexity of the RWM 
method. It also presents empirical results and strategies that RWM has learned 
for some difficult problems. Section 5 compares RWM with other techniques. 

2. Basic Concepts and Terminology 

Before describing the RWM method,  we define the basic concepts on which it 
is based. Examples will be given for motivation using the Mod-3 problem. 

A problem will be represented as a quadruple P = (I(s) ,  G(s), M, S) .  S is 
the set of states for the problem. G(s) is the goal statement which specifies the 
goal states. G(s) will be true if and only if s is a goal state. The goal statement 
of the Mod-3 Puzzle is "Every  square in state s has the same value." I(s) is the 
initial statement which will be true for any initial state. In the Mod-3 Puzzle I(s) 
is true since the initial state can be any state, whereas I(s) for the subproblem 
at the second stage is {Sl~ = s~2 } because the first stage produces such states. M 
is the set of moves to be used in solving the problem. In the Mod-3 Puzzle 
there are 9 moves available, M = {01~, o ~ 2 , . . .  , o33}, namely one move for 
each square. 

A problem instance p is a pair (P, s~oit ) of problem P and a particular initial 
state si,it E S, for which I(si,it ) is true. 

In this work, an atomic statement is a binary predicate with two arguments. 
This representation is due to the fact that every n-ary atomic statement can be 
written using binary predicates [10], which are easier to process. Arguments of 
an atomic statement can be constants or state components. State components 
are the values manipulated by the operators. For example, s~ through s33 are 
the state components of the Mod-3 Puzzle. A statement is a set of atomic 
statements with the implied AND connective in between them. For instance, in 
the Mod-3 Puzzle, Sll = s~2 is an atomic statement. The goal statement is the 
statement {sll = s12 , Sll = s13 , Sll = s21 , . . .  , s32 = s33 }. Every statement Q(s) 
represents the set of problem states {s I Q(s)}. Therefore ,  statements will be 
used to describe the sets of states. An empty statement is true, and represents 
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S, the set of  all p rob lem states. The  union of  two s ta tements  represents  the 
intersection of  the sets of  states represented  by these s tatements .  If Q(s) is a 
subset of  R(s), then every p rob lem state s that  satisfies R(s) also satisfies Q(s), 
that  is, R(s) logically implies Q(s). This class of  s ta tements  does not  exhaust  all 
possibilities because disjunctions are not  used; only conjunct ions  are used. 
A l though  this is a l imitation which simplifies the computa t ions  pe r fo rmed  by 
R W M ,  most  of  the problems we have looked at, and their associated sub- 
problems can be natural ly represented  by this special class of  s ta tements .  

A move is represented  by a pair (PC( s ) ,  A) ,  where PC(s) is the precondi- 
tion statement, possibly empty ,  and A is the set of  assignments which describe 
the result of  the move.  Formal ly ,  a move  m : {slPC(s)}--+ S, where S is the set 
of  all p rob lem states. If PC(s) is true for all s, then m is a total function f rom S 
to S. 

Each  assignment defines the value that a state c o m p o n e n t  will have after the 
application of  the move.  A n  assignment a i E A has the form: ai : s~ ~-- t~, where  
s i is a state c o m p o n e n t  and t i iS a term. A term is a constant ,  a state 
componen t ,  or  a function applied to one  or  more  terms. 3 As an example,  the 
o1~ move  of  the Mod-3 Puzzle has the following form: 

oll = (~, (sl,~---inc3(sll)) 

(s,2"--inc3(s12)) 

(s,3~---inc3(s,3)) 

(s2,~--inc3(Szl)) 

(s31+--inc3(s31))), 

where  inc3(x ) is (x + 1)mod 3. 
The  moves  given in the p rob lem description are called primitive moves (or 

operators). A macro move (or macro for  short)  is a finite sequence of  
operators .  Move will be used as a general  term for bo th  opera tors  and macros .  
In both cases, m(s) will deno te  the state obta ined  by applying move  m to state 

S. 
A move m is safe over  state Q(s) if, when  move  m is applied to a state s for 

which Q(s) is true, the resulting state will also satisfy Q(s);  i .e. ,  Q(m(s)) will 
also be true. Formal ly ,  this is 

Vs {Q(s)  ~ Q(m(s))} . 

For  example,  the moves  o~3 and (o2~o22) are safe over  the s ta tement  {stL = 

S12}. 

In the implementation of RWM we used only unary functions. 
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A move m is irrelevevant to going from Q(s) to R(s) if m is safe over  Q(s) 
and when applied to a state that satisfies Q(s) but not R(s) the result state m(s) 
will never  satisfy R(s); i.e., R(m(s)) will never be true. In other  words, m is 
also safe over  Q(s)&-qR(s). For example,  the move o13 is irrelevant to going 
from {sll = S12 } to  {$23 = s33 }. 

A move m is relevant to going from Q(s) to R(s) if m is safe over  Q(s) and 
not irrelevant to going from Q(s) to R(s). That  is, there is a chance that 
R(m(s)) will be true if Q(s) is true and R(s) is false. For example,  the move 
(021022) is relevant to going from { S l l  = S12 } to {S23 = $33 } . 

A move m is potentially applicable to a state that satisfies Q(s) if the 
precondition statement PC(s) of m does not conflict with Q(s), that is, 

3s {O(s) PC(s)}. 

Moves m~ and mj have the same effect with respect to s tatement  Q(s) if 

Vs { Q(mi(s)) <::> Q(mj(s))} . 

For instance, the moves 021 and 031 have the same effect with respect to the 
s tatement  {sll = s12 }. 

A strategy for the problem P =  (I(s), G(s), M, S) is a sequence of 
subproblems P~, P2, .  • • , P,,, which we call stages. Let Pi = (Ig(s), Gi(s), Mi, 
S) ;  then the strategy must satisfy the following conditions: 

I,(s)¢,/(s), (1) 

Ii(s)<=>I i 1(s) & Gi_,(s ) for l < i < n ,  (2) 

O(s)<=>O,(s) O=(s) O.(s), (3) 

M i ~ 0 , M i C M, 

Vm C Mi, m is relevant to going f rom Ii(s ) to Gi(s ) . (4) 

The first condition says that the initial s tatement  of the first subproblem must 
be the same as the initial s tatement  of the given problem. The initial s tatement  
for any other subproblem is equal to the conjunction of the initial s tatement  
and the goal s tatement  of the preceding subproblem, as stated in (2). For 
instance, the initial s tatement  of the third subproblem, I3(s) in Fig. 1 is 
{Si1 = S 1 2 , $ 2 3  = $ 3 3  }. The conjunction of the goal statements of all sub- 
problems must be the same as the goal s tatement  of the given problem,  as 
formulated in (3). The last condition guarantees that for every subproblem 
there are some relevant moves. Normally such subproblems are easier than the 
main problem because the subproblem goals are part  of the main goal. 
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3. The RWM Method 

In the first section we gave two example strategies which are similar to the ones 
learned and used by human problem solvers. In this section we will explain 
how these strategies can be learned mechanically using the RWM method. The 
step-by-step process of learning the strategy shown in Fig. 1 for the Mod-3 
Puzzle will be given for motivation. RWM method consists of two separate 
processes, namely refinement and macro generation. These two methods and 
the way they are used will be explained in detail. The result of RWM is a 
GPS-based strategy. How this strategy maps onto GPS, and is used by the 
problem solver, will be explained in detail. The result of RWM is a GPS-based 
strategy. How this strategy maps onto GPS, and is used by the problem solver, 
will be explained in detail. 

3.1. A trace of RWM 

Having defined the basic concepts used in RWM, we can now walk through the 
steps of learning the strategy for Mod-3 Puzzle shown in Fig. 1. RWM first tries 
to refine the given problem into a sequence of easier subproblems. 

Step 1. The first step of the refinement process is to determine the relevant 
moves for each atomic statement of the goal. Some of the 36 atomic statements 
of the goal of the Mod-3 Puzzle are shown in Table 1 with their relevant 
moves. 

Step 2. At this step, the atomic statements that have exactly the same set of 
relevant moves are grouped into one statement. This results in 15 statements; 
some of them are given in Table 2. 

Step 3. The goal of the first subproblem will be the statement with the largest 
number of safe moves over it. Therefore,  for each of the above statements, the 

Table 1 
Atomic statements and their relevant moves in the Mod-3 

problem 

Atomic  s ta tement  Relevant  moves  

Sll = sl2 {021,022,031,0",  2 } 
Sll =S13 {02~, 023, 03~, 0~3} 
Sil =$21 {Ot2, O13, O22, O23} 
Stl --S22 {O1t,O13, O22"O23, O31'O32} 
SII = $23 {O11, OI2, 022, 023 , O31, 033} 

$23 = $31 {Oil, O137 022 , O23! 031 , 032 } 
$23 =S32 {Ot2, 0t3, 02t, 023" 031' 032} 
S23 = S33 {021, 022, O31, 032} 
s3t =s3e { o l L , ° t 2 , ° e t , ° 2 2 }  
$31 ~ $3~ {OII, O13, O21~ 023 } 
$32 = S3g {O12, O13, 022 , 023} 



L E A R N I N G  PROBLEM SOLVING STRATEGIES USING RWM 

Table 2 

Statements and their relevant moves in the Mod-3 problem 

Statement Relevant moves 

Sll ~ S12 ~ $23 : $33 } 

{Sll : S13 , $22 : $32 } 

{Sll = $21 , $32 = $33 } 

{SI1 = $22 , Sl 3 = $32 , $32 = S31 } 

{S13 = S33 , $21 = $22 } 

021 O221 031 , 032} 

{021, 023, 031 , 033} 

{O12, O13 , 022 , 023} 

{OI1, O13 , 022 , 023, 031 , 032} 

{O11 , O12, 031 , 032} 
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moves that are safe over that statement will be determined. There are 10 
statements with the highest number of 5 safe moves, and the other 5 statements 
have 3 safe moves each. Any one of the former is eligible to be the goal 
statement of the first subproblem; the one chosen is {sii = Sl2 , s23 = s33 }. The 
moves that are safe over this statement are {011 , o12 , 013 , 023 , 033}, and these 
are the only moves that will be used in solving the remainder of the problem. 

Step 4. To determine the adequacy of these 5 moves we will check whether 
each of the remaining 34 atomic statements of the goal statement, G(s)- 
{ S l l  = S12 , $23 = $ 3 3 } ,  has at least one move relevant to it. Since this is true, we 
have discovered the first subproblem of the strategy. Its moves are those which 
are relevant to its goal; its initial statement is true since it is the first stage of 
the strategy and the initial statement of the problem is true. 

This refinement process will continue on the rest of the problem until no 
more refinement is possible. 

Step 1'. This time we will use the m o v e s  {Oll , O12 , O13 , 023 , 033 } since those 
are the only moves that will not violate the goal of the first subproblem. The 
new goal is the original goal excluding the goal of the first subproblem; i.e., 
G ( S )  - -  {$11 ~ S12 , $23 = $ 3 3 } .  The relevant moves for each atomic statement of 
this new goal are determined as in Step 1. Some of these 34 atomic statements 
and their relevant moves are shown in Table 3. 

Table 3 

Atomic statements and their relevant moves 
during the refinement of the rest of the Mod-3 

problem 

Atomic statement Relevant moves 

S~l = si3 {023, 033} 
SII = $21 { 0 1 2 ,  O13 , O23} 

Sll = $22 {O11, O13, 023 } 
s n = s23 {011, 012,023, 033} 

• . . . . . 

S31 = S33 {011, 013, 023} 
S32 : $33 {012, 013 , 023} 
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Table 4 
Statements and their relevant moves during the refinement of the rest of the Mod-3 
problem 

Statement Relevant moves 

{sl~ = s l 3 . $ 1 2  = s , 3 ,  s21 - - s 3 ~ , s 2 2  = s ~ 2  } { 0 : ~ , 0 ~ }  

{Sll  = $21" S12 -- "~'21 ' S13 -- S31' $23 = S32' S32 = S33} {1')12" O13, 023} 

{a l l  = "422' El:  = "~'22" SI1 = S32' "~'23 = S ' l "  S3I = "~'~,3 } {O11" O13' 023} 
{S,,  = '%-3, s t ,  - - " 3 ~ .  "¢,~, -- '%_,.  "'*2 = s3, ,  "~':1 = ",,~, se'_ = s3*} { 0 , , .  0 , ~ .  0 : , ,  03, } 
{s1, = s,1.  s~2 = s31. s,~ = s~ t .  s2e = s._,. s22 = s,3 } { 0,_~. 0 , , .  03, } 

{ s i i  = s32 , Six = s32 , si3 = $22 , S2l = $23 , $21 = S3:~} 1011.  O l , ,  O,1} 

{S13 = $23 , SI3 = ~t~33 , $21 = $22 , $1 l : 5"32 } {Oi1 ,  O12 } 

Step 2'. These  a tomic  s t a t emen t s  a re  g r o u p e d  into  7 s t a t emen t s  such that  
each a tomic  s t a t e m e n t  o f  a g roup  has the  same set o f  r e l evan t  moves  as in 
Tab le  4. 

Step 3'. F o r  each of  these  s t a t emen t s  the  safe moves  are  c o m p u t e d .  The  
s t a t emen t  with the  larges t  n u m b e r  of  safe moves  will be se lec ted  as the  goal  of  
the  second  s u b p r o b l e m .  O f  the  7 s t a t emen t s ,  2 have  3, 4 have  2 and  1 has only 

1 safe move .  The  s t a t emen t  {sll  = s~3, s12 I $13, $21 = $3l, $22 = $ 3 2 }  with the  
safe moves  {0~1,012, 0~3 } is chosen  as a c and ida t e  for  the  goal  of  the  second  
s u b p r o b l e m .  

Step 4'. Since one  of  these  safe moves  is r e l evan t  to each of  the  30 a tomic  
s t a t emen t s  in the  rest  of  the  goal ,  we have  d i scove red  the second  s u b p r o b l e m .  
Its moves  are  the  ones  that  a re  safe ove r  its init ial  s t a t e m e n t  which is the  goal  
of  the first s tage and re levan t  to its goal .  

We con t inue  this p rocess  on  the  rest  of  the  goal ,  G(s)- {S,l = s,2, s23 = s33, 

S I I  = S13 , S12 = S13 , $21 = $31  , $ 2 2  = $ 3 2 } ,  using the  moves  {o11, O i 2  , O i 3  } in the  
same  way as above ,  which resul ts  in two m o r e  s u b p r o b l e m s .  The  resul t  of  the  
r e f inement  process  is the  four - s t age  s t ra tegy  shown in Fig.  2. The  a tomic  
s t a t emen t s  tha t  a re  impl i ed  by  the ones  in the  figure are  not  shown;  e .g . ,  

Subproblem PI: Goal : {sn = s1~, s2a = saa} 

Moves: {o21, o~2, oal, o32} 

Subproblem P2: Goal : {811 = S13 , .321 ~- 831,  822 = $32 } 

Moves: {o2a, o3a} 
Subproblem Pa: Goal : {su = s2i, s22 = s23} 

Moves: {Ol2, o13} 
Subproblem P4: Goal : {sn = s22} 

Moves: {o11} 

Fig. 2. The strategy for the Mod-3 Puzzle obtained after the first refinement. 
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Pl l :  Go~l : {811 = ,S12 ) 
Moves: {o21, o2~} 

P12: Goal: {s2a = sa3} 
Moves: {(021022), (031032)} 

Fig. 3. Stage 1 after refinement with new moves. 

S12 = S13 is not shown in the second stage, because it is implied by $11 = S12 and 
Sll = s13. The first stage of the strategy in Fig. 2 corresponds to the first two 
stages of the one in Fig. 1. 

Sometimes subproblems are too difficult to solve directly. In these cases it is 
desirable to learn finer-grain strategies for their solution; e.g., the first stage of 
Fig. 2. Let  us try to further refine that stage. Since each of the moves 021 , 022 , 
031 and 032 are relevant to both s1i = s12 and $23 = $33 , this stage cannot be 
refined with the given set of moves.  What  is needed is some moves that are 
safe over  a part  of its goal and relevant to going from that part  to the rest of 
the goal. In order  to discover such moves,  we generate new macro moves by 
combining two operators .  At  this point we know that moves 
{O21 , 022 , O31 , 032 ) a r e  relevant to going from any state to each of the atomic 
statements in {Sll = s12, s23 = s33}, and moves {011 , Oa2 , 013 , 023 , 033 ) are ir- 
relevant. During the macro generation,  either two relevant moves or, one 
irrelevant and one relevant move will be combined. For the first stage of the 
strategy in Fig. 2, 30 such macro moves are generated; 28 of them are found to 
be relevant for this subproblem. 

Armed  with these new moves,  we can further refine this subproblem by the 
refinement process described above. The goal s tatement is {Sll = s12, $23 = 

s33 ), and the moves are {o21, 022 , O31 , 032 , (Oi iO21) ,  (Oi1022) ,  (O11031), 
(011032), (012021), (012022), (012031), (012032), (013021), . . .  }. The refinement 
process results in the two subproblems shown in Fig. 3. 

If several relevant moves have the same effect with respect to the goal 
s ta tement  of a subproblem, only the shortest one is reported.  For example,  in 
the first subproblem,  031 , (011021), (021023), (O21033), (O22022), (023031) and 
(031033) a r e  not repor ted since they have the same effect as o21 with respect to 
{Sll = s12 ). The first stage of the strategy in Fig. 2 is replaced by the two 
subproblems found as its refinement,  resulting in a five-stage strategy for the 
Mod-3 Puzzle. If  the same process of macro generation and refinement is 
applied to the third and fourth stages, the strategy given in Fig. 1 will be 
obtained. 

3.2. Relation of RWM to GPS 

RWM produces a list of  subproblems P1, P2 . . . . .  P, .  This result is a GPS- 
based strategy to solve a problem P. The goal s t a t e m e n t  Gi(s ) of each 
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subproblem Pi = (I~(s), Gi(s), M~, S)  corresponds to a difference for GPS. 
The ordering of differences is defined by the order  of the subproblems, i.e., P~ 
corresponds to the most difficult difference and Pn to the easiest difference. 
The problem solver solves a problem P by first solving the subproblem P~, then 
P2, and so on. When solving a subproblem P~, the problem solver conducts a 
search using only the moves in M s to find the states that satisfy G~(s), which 
corresponds to removing that difference in GPS nomenclature. Thus, the 
moves in M i are the ones that GPS considers "relevant"  to this difference. 
Backtracking may occur, since an initial state satisfying Ii(s) may be a dead-end 
state for this subproblem. In that case, another  state satisfying li(s ) is chosen, 
and the search continues. Of course, such a state would correspond to another 
solution to Pi-1 which may be generated by backtracking in previous stage. 

The moves in the set M~ are safe over the initial statement l~(s) by the 
definition of a stage in (1)- (4) .  Therefore ,  these moves are also safe over the 
goal statements of the previous stages, that is, they do not reintroduce any 
previously removed differences. Furthermore,  the moves in M~ are relevant 
(not irrelevant) to going from Ii(s ) to G~(s). 

The solutions to the last subproblem are also solutions to the problem as a 
whole. Since those states satisfy the initial statement of the last stage I,,(s) = 
I(s) & G~(s) & " "  & G n ~(s) and its goal statement G~(s), they satisfy the 
goal of the problem P. 

3.3. Refinement 

Refinement is our method for learning differences and their ordering along 
with the set of relevant moves for each difference. In more formal terms, 
refinement is a method for generating subproblem goals G ~ , . . . ,  G n from the 
goal statement G(s) of a given problem P = (I(s),  G(s), M, S) and finding the 
sets of relevant moves M l, M 2 . . . .  , Mn, such that P1, P2,. • •, Pn satisfy the 
conditions required to be a strategy for P in (1) - (4) ,  where Pi = 
( I i ( s ) ,Gi ( s ) ,Mi ,  S ). If such a strategy is found, then the sequence 
P1, P2 . . . . .  Pn is returned. If no refinement is possible with the given set of 
moves, problem P is returned unchanged. The formal description of the 
refinement method is shown in Fig. 4. 

The first step of the refinement process is to find the relevant moves for each 
atomic statement of the goal. Whether  or not a move is relevant to an atomic 
statement depends on the domain-dependent knowledge (e.g., properties of 
inc 3 function in Mod-3 Puzzle) and how it is determined will be explained in 
the next section. If there is an atomic statement for which no relevant moves 
are found, the refinement method considers this problem as "unsolvable." 
Assuming that every atomic statement of the goal has some relevant moves, 
this situation will not occur. On the other hand, since the refinement method is 
defined recursively, this heuristic is used to estimate whether or not the rest of 
the problem after the creation of a subproblem is solvable. 
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refine (< I(s), G(s), M, S >): 

1. For each atomic statement gi(s) E G(s), find the set of moves, Mi, that are 
relevant to going from I(s) to {gi(s)}. If there is any atomic statement gi(s) 
with no relevant moves, return "unsolvable." 

2. Form statements, Gi(s), by grouping the atomic statements with the same set 
of relevant moves into one statement. If there is only one statement, return 
< I(s), G(s), M, S >. 

3. For each statement Gi(s), determine the set of moves, MSI, that are 
safe over and potentially applicable to I(s) U Gi(s), and form a candidate 
< Gi(s), Mi, MSI >. Sort the list of candidates so that [MSi[ >_ [MSI+I[. 

4. While the list of candidates is not empty do: 

Choose the first candidate < Gl(s), M1, MS1 >. 

Let rest be refine (< I(s) U Gl(S), G(s) -- G,(s), MS1, S >). 

If rest is not "unsolvable" then return < I(s), Gl(s), M1, S" > followed by rest, 

else remove the first candidate from the list of candidates. 

End of while. Return < I(s), G(s), M, S >. 

Fig. 4. The refinement method. 

The  a tomic  s ta tements  gi(s) that  have exactly the same set o f  relevant  moves  
are g rouped  toge ther  to form s ta tements  Gi(s ) in the second step. The  heurist ic 
used here  is that  if a set of  a tomic  s ta tements  have exactly the same set of  
re levant  moves ,  then there is a high amoun t  of  interact ion be tween  them,  and 
therefore  they should be satisfied at the same time. If  all the moves  in M are 
relevant  to every a tomic  s ta tement  in G(s), then no more  ref inement  is 
possible, and the ref inement  process terminates  by returning the p rob lem P 
unchanged.  

In  the third step, the set of  moves  MS i that  are safe over  and potential ly 
applicable to both  I(s) and G~(s) are calculated for each G~(s). Dur ing  this 
process all the moves  in M are tested. This is to de te rmine  the moves  that  can 
be used in the latter stages, if the s t a t emen t  a i ( s  ) is selected to be the goal of  
the first stage. For  each s ta tement  Gi(s), a candidate  (G~(s),M~,MS~) is 
formed.  Then  this list of  candidates  is sor ted on the size of  MS i, so that  the 
candidate  with the largest n u m b e r  of  safe moves  is the first in the list. 

The  actual order ing  of  the stages takes place in the four th  step. The  first 
candidate  G 1 (s) in the list is selected. In o rder  for this candidate  to be the first 
stage o f  the ref inement ,  the rest of  the p rob lem should be solvable. The  rest of  
the p rob lem has as its goal the  original goal G(s) with Gl(s ) r emoved .  Its 
moves  are the moves  that  are safe over  (and potential ly applicable to) its initial 
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statement  which is GI(S ) added to l(s). The test of solvability is done by trying 
to refine the rest of the problem recursively. If the result is a message 
indicating that the rest is unsolvable, then the next candidate in the list is tried. 
Otherwise the result of the refinement is a list whose first e lement  is the 
subproblem representing the selected candidate and the rest of the list is the 
refinement found for the rest of the problem. If all the candidates are 
exhausted, the refinement process terminates unsuccessfully returning the 
problem P unchanged. 

3.4. Macro generation 

As seen in the Mod-3 example,  more  relevant moves are needed to further 
refine a "difficult" subproblem. The macro generation method of RWM 
described below is designed to find such moves for a given problem (or a 
subproblem) P = ( l (s) ,  G(s),  M, S }. 

Since only such moves are used in solving P, the new moves needed must be 
safe over l(s). The macro generation method uses all the moves in MS, the set 
of moves that are safe over l(s). The following theorem guarantees that macro 
moves generated by composing two moves from MS are also safe over I(s). 

Theorem 3.1. Given moves m and m'  that are safe over Q(s), a macro move 
(mm' ) ,  generated by composing m and m', is also safe over Q(s). 

Proof. Since m is safe over  Q(s), Q(s) implies Q(m(s))  for all s E S. Similarly 
Q(s) implies Q(m'(s))  for all s E S. Therefore ,  Q(m(s))  implies Q(m'(m(s) ) ) ,  
which can be rewritten as Q((mm') ( s ) ) .  [] 

During the macro generation, two moves f rom MS are composed to produce 
a new macro move.  Such a macro move looks like just another  move to the 
refinement process and the problem solver. 

Two kinds of moves are needed. Primarily, we need moves that are safe over 
a subset of the goal s tatement  and relevant to going from that part  to the rest 
of the goal. Such moves are required to further refine the given problem. 
Secondarily, we need moves that have a different effect, than the other  moves 
in M, with respect to the goal s tatement  G(s). Such moves enlarge the set of 
states from which a goal state can be reached. Therefore ,  these moves increase 
the efficiency of the strategy by reducing the amount  of backtracking during 
the problem solving process. 

An important  issue for efficiency is the choice of the moves to be used. The 
moves in MS can be separated into two classes; M is the set of moves that are 
relevant to G(s), and MI = MS - M being the set of moves that are irrelevant 
to each of the atomic statements in G(s). The following theorem shows that a 
macro move generated by composing two irrelevant moves is also an irrelevant 
move,  and therefore need not be considered. 
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Theorem 3.2. Let m and m' be irrelevant to going from Q(s) to R(s). Then 
(mm') is also irrelevant to going from Q(s) to R(s). 

Proof. Since m and m '  are both irrelevant to going from Q(s) to R(s),  they 
both are safe over  Q(s) & --qR(s). By Theorem 3.1, (mm') is also safe over  
Q(s) & ~R(s). Hence it is irrelevant to going f rom Q(s) to R(s). [] 

That  is, if m and m '  are in MI, then (mm') is also irrelevant to going from 
I(s) to G(s). Hence such composit ions do not yield moves that we are looking 
fo r .  

Let us now consider a macro move (mm') which is generated by composing 
a relevant move m E M followed by an irrelevant move m' E MI. Because of 
the way refinement procedure groups the atomic statements,  m '  is irrelevant to 
every atomic s tatement  gi(s)E G(s). Hence,  (mm') is safe over  I(s) & gi(s) 
and relevant to going to ge(s) only if m has the same property.  Therefore ,  
(mm') does not help in the refinement of the given problem. Fur thermore ,  for 
all s satisfying l(s) if (mm')(s) satisfies the goal G(s) then m(s) satisfies G(s) as 
well. That  is, (ram') is not any bet ter  than m for the problem solver either. 
Hence such moves need not be generated.  Therefore ,  during macro generation 

4 for a given problem P, either two relevant moves,  or one irrelevant move 
followed by a relevant move are composed.  This selective generation of macros 
helps speed up the macro generation process and reduces the number  of moves 
to be tested for relevancy. 

Another  issue that requires attention is the precondition statements of 
moves. If either of the two moves used has a precondition, then the composi- 
tion will have a precondition as well. If  PCm(S ) is the precondition s ta tement  of 
m, and PCm,(S ) is that of m', then the precondition s tatement  of the composi- 
tion (mm') is PCm(s ) & PCm,(m(s)). That  is, it is the precondition of the first 
move and the precondition of the second which is modified to reflect the effect 
of the first move.  If this s tatement  turns out to be always false, then m '  can not 
be applied after m, and (mm') is not generated.  

Above  we have described a single level of macro generation. In some cases, 
this does not produce moves which would allow the given subproblem to be 
refined. In this case, another  level of macro generation is needed which has as 
input all the safe moves including the ones generated by the first level. Since 
each level of macro generation can double the length of macros,  the length of 
macros generated by the second level may be four times as long as those input 
to the first level. Also the number  of macros generated grows at the same 
exponential  rate. This is the reason why it is important  to focus on only those 
composit ions that are likely to yield relevant moves;  the above theorems allow 
a large number  of macros to be removed from consideration. The number  of 

4 In our implementation of RWM, M1 is saved for each stage along with M. 
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levels of macro generation to be used is determined by the user of the system 
because this gives the user direct control over  the exponential  part  of the 
process. Even though this process tries to eliminate as many macros as 
possible, this reduction may not sufficiently reduce the exponential  growth of 
the moves. In some problems,  such as Pyraminx the available memory  was 
exhausted before all the difficult subproblems were refined. For such problems,  
only the moves that have a different effect with respect to the goal of the stage, 
instead of all relevant moves,  were saved. This decision is also under direct 
user control. 5 

3.5. Creation of subproblems for preconditions 

In some problems moves may have preconditions, and such a move can only be 
applied if its precondition s ta tement  is satisfied first. In order to use a move m 
with a precondition in solving a subproblem Pi, not only must it be relevant to 
going from Ii(s) to Gi(s ), but also it must be potentially applicable to I~(s). 
That  is, I~(s) and the precondition s tatement  PCm(S ) must not conflict. RWM 
creates a separate subproblem for using such a move in a particular stage. The 
goal of this subproblem is the precondition s tatement  of the move,  and the 
initial s tatement  is the same as the initial s ta tement  of the stage for which the 
move is relevant.  Such subproblems are treated the same way as the main 
problem and can be refined into sequences of subproblems.  During the 
problem solving process, the problem solver has to solve this subproblem to 
find a state satisfying the precondition of the move,  and then it can apply the 
move to the resulting state. GPS also provides for this by generating differ- 
ences between a state and the domain of an operator .  

A good example of subproblem creation can be seen in the Tower  of Hanoi  
problem [3, 22]. A strategy learned by RWM for solving the 3-disk Tower  of 
Hanoi  problem is shown in Fig. 5. The goal s tatement  is {s 1 = C, s2 = C, s 3 = 
C}, where s i is the position of the ith disk. Oij k denotes the move of disk i f rom 

/91: Goal: {sa = C} 
Moves: {O3Ac, oaBc} 

P2: Goal: {s2 = C} 
Moves: {o2Ac, o2Bc} 

P3: Goal: {sl = C} 
Moves: {O1AC, 01BC} 

Fig. 5. A strategy for the 3-disk Tower of Hanoi. 

5 This option was used for Pyraminx and the Trillion Puzzle. 
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peg ] to peg k. All moves except O1BA, O1CA, O1A B and 01c s are safe over 
{s 1 = C).  

All disk-1 and disk-3 moves, o2a c and o2B c are safe over {s z = C);  and all 
disk-1 and disk-2 moves, 03A C and 03B c are safe over {s 3 = C}. Among the 
moves that are safe over {s I = C} only 02Ae,  02BA, 03A ~ and 03B A are also 
potentially applicable to {s 1 = C). All disk-1 moves, 03A B and o3B A (a total of 
8 moves), are both safe over and potentially applicable to {s 2 = C}. However,  
there are 12 moves, all disk-1 and disk-2 moves, that are both safe over and 
potentially applicable to {s 3 = C}. Since {s 3 = C} yields the largest number of 
moves that can be used to solve the rest of the problem, it is selected first. The 
rest of the goal statement is {sl = C, s 2 = C}. The moves that can be used to 
achieve the rest of the goal are all disk-1 and disk-2 moves. Since the rest of 
the goal is solvable, in the sense that each of the atomic statements in the rest 
of the goal has a relevant move among these moves, {s 3 = C} becomes the 
goal of the first stage of the strategy. There are two moves that can be used in 
the first stage; they are 03AC, which moves disk-3 from peg A to peg C, and 
o3B c ,  which moves disk-3 from peg B to peg C. The problem solver selects the 
right move to apply according to the position of disk-3 in the initial state. That 
is, it selects 03A C since disk-3 is on peg A; 03B c is selected if it is on peg B. 
Similarly, {s 2 = C) is the goal of the second subproblem because the precondi- 
tions of the disk-1 moves do not involve the position of disk-2. To be more 
precise, all disk-1 moves are both safe over and potentially applicable to 
{s 2 = C} whereas only 02A B and 02B A are safe over and potentially applicable 
to {s~ = C}. Thus, more moves are safe over and potentially applicable to 
{s 2 = C} which is the reason it is selected as the goal of the second sub- 
problem. The remaining statement {s~ = C} becomes the goal of the final 
subproblem. 

The precondition statement for the move 03A C is {S I ~--- B, s 2 = B, s 3 = A) .  m 
separate subproblem for finding a state that satisfies this precondition is 
created. The refinement of this subproblem results in the strategy shown in Fig. 
6. 

PI: Goal: {s3 = A} 

Moves : {03BA, 03CA) 
P2: Goal: {s2 = B} 

Moves: {O~As, O2cB} 

P3: Goal: {sl = B} 
Moves: {OlAB, OlcB} 

Fig. 6. A strategy for solving the precondition of 03A C in the first stage of the Tower of Hanoi 
problem. 



228 H. ALTAY GUVENIR AND G.W. ERNST 

The stages of this strategy are ordered in the same way as in the strategy for 
the main problem. The first stage deals with disk-3 because all of the disk-1 and 
disk-2 moves are safe and potentially applicable after solving this stage. 
Similarly, only disk-1 moves, O3c a and OAC can be used after {s 2 = B}, and 
only 02CA, 02A c,  03C A, 03A c are safe over and potentially applicable to 
{s T = B}. Note that, the first stage of this strategy is redundant,  since O3A c will 
be selected only when disk-3 is on peg A, in which case the initial state satisfies 
the goal of the first subproblem. 

Similarly, separate subproblems are created for the other operator  precondi- 
tions and each is refined in a similar manner. For example, the precondition of 
O~A 8 is refined into two subproblems whose goals are {s 2 = A} and {s t = C}. 
Like P~ in Fig. 6, the first stage will always be satisfied since the operator  is 
only selected by the problem solver when disk-2 is on peg A. Note that disk-3 
operators are not used in this strategy for the precondition of 02A B because the 
disk-3 operators are not safe over P~ in Fig. 5. Thus, they are not eligible for 
solving P2 and P3 in Fig. 5 and subproblems arising from the preconditions of 
the operators used to solve them. 

It is instructive to compare this strategy with the one learned by Korf's [9] 
method for the 3-disk Tower  of Hanoi problem. The first stage of the Korf's 
strategy is to move disk-1 (the smallest disk) to the goal peg. The next step is 
to move disk-2 to the goal peg. Of course, this step requires disk-1 to be 
removed from the goal peg and then to be moved back. The next step is to 
move disk-3 to the goal peg which is accomplished by removing disk-1 and 
disk-2 from the goal peg and then returning them again. Although this 
behavior seems wasteful, it is necessary for Korf's method because this is the 
only ordering of state components which results in serial decomposability. Korf  
also allows for intermediate target values which are different than goal values. 
This is a form of subgoaling which reduces the kind of wasteful behavior 
described above, but unfortunately is not sufficiently powerful to eliminate it. 
The subproblems that RWM generates for the Tower of Hanoi give rise to a 
classical solution in which the correct operator  is selected at each point in 
solving the problem. This is the same solution GPS found [3], but GPS was 
given the strategy and RWM learns it mechanically. DGBS also learned the 
same strategy [4]. 

3.6. The RWM system 

The RWM system for learning strategies is based on taking a problem and 
refining it into a sequence of "easier"  subproblems, which collectively consti- 
tute a strategy for solving the given problem. In order  for a subproblem to be 
easier than the given problem, the goal statement of the subproblem must be 
easier to satisfy than the goal of the problem. The statement Q(s)  will be 
considered easier to satisfy than the statement R(s )  if R(s )  implies Q(s) .  For 
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instance, in the Mod-3 Puzzle the s t a t e m e n t  {Sll  = S12 , $23 = $33 } is easier to 
satisfy than the goal statement.  

The RWM system first applies the refinement method to the given problem. 
This should result in a sequence of subproblems whose goal statements are 
easier than that of the problem in hand. Some of these subproblems may still 
be difficult to solve themselves. Such a subproblem cannot be refined further,  
since all the moves of that subproblem are relevant to all the atomic statements 
of its goal. More relevant moves need to be found first. Therefore ,  RWM 
generates new macro moves for such a subproblem. These new moves are 
tested for relevancy. The ones that are relevant are added to the move set of 
the subproblem. Some of these newly generated moves may be relevant to the 
further stages of the strategy as well. Therefore ,  after generating a set of moves 
for stage i, the move sets of  all stages ] t> i are updated with these moves. 

When generating moves for a difficult stage, it is possible that no new moves 
are found. In that case, RWM generates moves for the previous stage. This 
backtracking continues until some new moves for the difficult stage are found. 

The block diagram of the RWM system is shown in Fig. 7. The refiner and 
the macro generator  directly implement  the refinement and the macro genera- 
tion methods described earlier. 

In various stages of the process of learning a strategy, questions such as 
whether  a move is safe over  a s tatement,  or if it is relevant to going from one 
s ta tement  to another  are raised. In order  to answer such questions, problem 
domain-related knowledge is needed.  This knowledge is provided to the RWM 
system along with the description of a problem,  and stored in the domain- 
dependent knowledge base (DDKB ) .  The domain-related knowledge can be 
thought of as a set of  general rules that describe the effect of the functions used 
in the moves and the predicates used in the statements.  D D K B  also contains 

user 

description [ 
of a problem l Executive 1. .strategy 

Refiner 

domain dependent .[ 
knowledge 

I 
T 

DDKB 

Macro Generator ] 

T 
Fig. 7. Block diagram of the RWM system. 
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informat ion about  composi t ions  of  functions.  For  example,  the D D K B  for 
Mod-3 problem includes the fact that  inc3(inc3(inc3(x)) ) = x. For  problems that 
use the same set of  predicates  and functions the same D D K B  can be used. For  
instance,  the same D D K B  is used for Rubik ' s  Cube,  Pyraminx and the Eight 

Puzzle. 
D D K B  is designed to answer quest ions of  the form,  

" D o e s  Q(s) imply r(m(s))?" 

where  Q(s) is a set of  a tomic s ta tements  and r(m(s)) is an a tomic s tatement .  
D D K B  answers "yes"  to such a quest ion if it can infer r(m(s)) f rom Q(s) using 
the domain  dependen t  knowledge  provided.  Otherwise,  the answer is simply 
" d o n ' t  know."  That  is, the input to D D K B  is a s ta tement  Q(s), an a tomic  
s ta tement  r(s) and a move  m; and its output  is "yes"  or  " d o n ' t  know."  For  
example,  the safety of  move  m over  an initial s ta tement  l(s) is de te rmined  by 

asking the quest ion,  

" D o e s  l(s) imply ii(m(s))?" 

for each a tomic  s ta tement  iv(s ) in l(s). If the answer  is "yes"  for  all a tomic 
s ta tements  in l(s), then m is safe over  l(s). 

If  the move  m has a precondi t ion  s ta tement  PCm(S) = {pc, , , .~(s), . . . ,  
pCm~k(S)}, then m also has to be potential ly applicable to the initial s ta tement  
l(s). This is de te rmined  by asking the class of  quest ions,  

" D o e s  l(s) & pCm.l(S) & "'" & pCm,, I(S) imply ~pc,,,.i(s)?" 

for 1 ~< i ~< k. If the answer is "yes"  for any i, then m is not  applicable to l(s),  
otherwise it is potential ly applicable. For  instance,  to de te rmine  the applicabili- 
ty of  O3A ~ , whose precondi t ion s ta tement  is {s E = B, s 2 = B, s t = A},  to the 
s ta tement  {s 2 = C} in the Tower  of  Hanoi  problem,  the refiner first asks 

D D K B  the quest ion,  

" D o e s  {s 2 = C} imply s I ¢ B ? "  

Since the answer is " d o n ' t  know" ,  the refiner asks the second quest ion,  

" D o e s  {s 2 = C, s~ = B} imply s~ ~ B ? "  

Because s, is equal to C, which is different f rom B, the answer is "ye s . "  
T h e r e f o r e ,  03A c is not  potent ial ly applicable to {s 2 = C}, i.e., there cannot  be 
any state satisfying both {s: = C} and {s I = B, s 2 = B, s 3 = A}. 

Dur ing  the ref inement  process,  moves  that  are relevant  to going f rom an 
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initial s tatement  I(s) to an atomic s tatement  gi(s) of a goal are sought. In order  
to determine the relevancy of a move m, the refiner asks the question, 

"Does  I(s) & -Tgi(s) imply -Tgg(m(s))?" 

If the answer is "yes , "  then the move is irrelevant, otherwise it is considered as 
relevant to gi(s). For example,  in the second stage of the Mod-3 Puzzle, 
(021022) is relevant to s23 = s33, since the answer to the question, 

"Does  {sll = s12, s23 ¢ $33 } imply inc3(inc3(s23)) ~ $33 ?' '  

is "don ' t  know."  On the other hand, o~3 is irrelevant at the same stage, 
because the answer to the question, 

"Does  {sll = s12 , $23 ~& $33 } imply inc3($23 ) ~ inc3($33)?" 

is "yes . "  That  is, if $23 and s33 are not equal before the application of 013, they 
will remain unequal afterwards as well. 

Note that since the effect of predicates and functions are separated from the 
RWM as domain-dependent  knowledge, RWM can be used with any kind of 
predicates and functions. 

The executive's  task is to handle the interaction between the various parts of 
the RWM system and the user. It first reads the description of a problem along 
with the relevant D D K B .  Then the problem is refined by the refiner, and the 
problem is replaced with its refinement. This refinement constitutes a raw 
strategy for solving the problem. If the user "es t imates"  that some subproblem 
is difficult, then new moves are generated by the macro generator  for this 
subproblem. The moves of the current and the latter stages are updated by 
adding the newly generated moves that are safe over  their initial statements.  
Then the difficult subproblem is tried for further refinement. 

The user may choose to create subproblems for some moves with precondi- 
tions. In that case a separate subproblem whose goal s tatement  is the precondi- 
tion s tatement  of a move selected by the user is created. Then this subproblem 
is refined to obtain a strategy for the precondition of this move. 

Through the executive, the user has a control over  the course of the process 
of learning a strategy. The user can choose to refine a subproblem, generate 
moves for a given subproblem, or create a new subproblem for the precondi- 
tion of a move at a given stage. Since the decision on whether  a subproblem is 
difficult or whether  to create subproblems for moves is left to the user, the 
RWM system can be used to learn strategies that satisfy certain user criteria. 
Although RWM is a man-mach ine  system, the user 's role is somewhat  
indirect. Never  does the user give RWM direct information about  the strategy 
like the goal of a particular stage should be a particular s tatement  or like the 
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order of different stages. However,  the user has some control over such things 
as the number of stages in a strategy and the length of the macros used in the 
strategy. 

4. Complexity of RWM and Empirical Results 

In this section, the refinement and the macro generation processses will be 
analyzed in terms of the time required to refine a problem and the time 
required to generate macro moves for a given problem, respectively 

4.1. Time complexity of the refinement 

Let a problem P = ( l (s) ,  G(s), M, S> be input to the refinement procedure 
shown in Fig. 4. The first step is to determine the relevant moves for each 
atomic statement gi(s) in G(s). The relevancy of a move m, where m is safe 
over l(s), to an atomic statement gi(s) is determined by asking the following 
question to the DDKB (domain-dependent  knowledge base), 

"Does  l(s) & -Tgi(s ) imply -Tgi(rn(s))?" 

Let r be the response time of DDKB to such a question. Then, the time 
required for determining the relevant moves for all atomic statements in G(s) is 
]G(s)]. ]Ml.r, where IG(s)] denotes the number of atomic statements in G(s). 
Solvability of a problem is tested by checking that the set of relevant moves for 
each atomic statement of G(s) is non-empty. Since the response time of a 
DDKB question is much longer than the time required for any list comparison, 
the response time is the dominant factor in the time complexity of the 
refinement process. Also, r is constant for a given DDKB.  Therefore ,  the 
complexity of the refinement method will be calculated in terms of the number 
of questions that will be asked to the DDKB.  Thus, the time complexity of the 
first step is O(]G(s)] .  ]M]). 

The complexity of the second step can be omitted because it does not involve 
asking any question to the DDKB.  In the third step, the moves that are safe 
over l(s) & Gj(s) are determined for each group. Since all the moves in M are 
known to be safe over I(s), only their safety over Gi(s ) needs to be checked. 
Safety of a move rn over @(s) is determined by asking the question, 

"Does  l(s) & G~(s) imply gi,k(m(s))?" 

for e a c h  gj.k(S) in Gj(s), which takes IGj(s)[.r time. If m has a precondition 
PCm(S ), then it has to be potentially applicable to @(s) as well, which requires 
IPC,,,(s)L • r time in the worst case. Therefore ,  the time complexity of determin- 
ing the moves that are safe over and potentially applicable to l(s) & Gj(s) for a 
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group Gj is 

O(([Gj(s)l + np). IM[), 

where np is the average number of atomic statements in a precondition of a 
move. This will be repeated for each group Gj. Let ng be the number of groups 
resulting from the second step of refinement process. Since E j [Gj(s)[ = [G(s)], 
the time complexity of the third step is 

O((IO(s) I + ngnp)" IM[). 

The total complexity of the first three steps is 

O(IG(s)[" IMI + [G(s)l. IMI + ngn o • IM[) 

= O((2[G(s)[ + ngno)" IMI). 

The complexity of ordering the groups in the fourth step is omitted because 
it does not require asking any questions to the DDKB. 

In order to determine the first stage of the strategy, the first three steps can 
be executed at most rtg times, which in turn requires 

O((2[G(s)[ + ngnp).ng. [MI) 

calls to the DDKB. In the worst case, ng ---- [G(s)[ ,  the complexity of finding the 
first stage is 

O([G(s)l 2. (2 + %).  IMI). 

If the total number of stages that will result is ns, then the total time 
complexity of the refinement process is 

O([G(s)l 2. (2 + np). IMI" ns). 

In the case of IG(s)[ stages, the worst case in terms of time complexity, the 
total number of calls to the DDKB during the refinement process is 

O(IG(s)[ 3. (2 + %).  IM[). 

As an example, experimentally measured times required for the refinement 
of the Mod-3 Puzzle played on 3 x 3, 4 x 4 and 5 x 5 boards are shown in Table 
5. The strategies obtained by refining the 4 x 4 and 5 x 5 Mod-3 Puzzles are 
given in [7]. For each size of the Mod-3 Puzzle, the rest of the problem is found 
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Table 5 
Measured times for refining the Mod-3 Puzzle on different boards sizes 

Board size I ~(s)l I MI n, Measured time (sec.) 

3 × 3 36 9 4 6.2 
4 × 4 120 16 8 76 
5 x 5 300 25 12 458 

to be solvable for each stage, that is, the number  of questions asked to the 
D D K B  is a function of Ia(s) l  rather than [G(s)] 2. Also np = 0 since the moves 
do not have preconditions. According to the calculations given above,  the 
maximum number  of questions that will be asked to the D D K B  in the Mod-3 
Puzzle is 2 . ] G ( s ) l .  I M l . n , .  The response time of the D D K B  used for the 
Mod-3 Puzzle is about  2 milliseconds. Therefore ,  the t ime for the refinement of 
the 3 x 3 Mod-3 Puzzle should have been 5.2 seconds. The difference betweeen 
the calculated and the measured times is due to the time spent for grouping 
and sorting in the second and the fourth steps. The time for the refinement of 
the Mod-3 Puzzle on a 4 x 4 board is measured to be 12.2 times longer than 
that of a 3 x 3 board. This agrees very well with the analytical results. Also the 
refinement time for the 5 x 5 Mod-3 Puzzle is measured to be 69.4 times that of 
3 x 3 Mod-3 Puzzle which is predicted by the analysis. 

4.2. The time complexity of macro generation 

When generating macro moves for a given subproblem, either two relevant 
moves or an irrelevant move and a relevant move are composed.  Therefore ,  
the time complexity of the macro generation process is O((]M[ + IMll)" [MI), 
where [M I is the number  of relevant moves and [MI I is the number  of 
irrelevant moves of the subproblem. However ,  the macro generation normally 
takes place more than once because one set of new moves might not lead to the 
refinement of the problem at hand. Therefore ,  the number  of macros gener- 
ated increases exponentially. This is because the total number  of newly 
generated moves is the total number  of all old safe moves times the number  of 
old relevant moves. 

Another  issue here is the length of the macros. Since two moves are 
composed to generate a new macro,  the length of some of the newly generated 
macros is twice the length of the old moves,  and each level of macro generation 
has this length doubling potential.  Therefore ,  the macros generated using this 
method may be longer than the optimal macros for the same task. The 
generation of macros is the main bott le-neck in the RWM method because of 
its exponential  nature. This is also the case with Korf 's  method even though its 
macro generation process is very different than that of RWM. The difficulty is 
very problem dependent  because good strategies for some problems require 
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macros that are relatively long and there are exponentially many macros of this 
required length. This leads to difficulties in both the time and the space 
complexity. 

4.3. Empirical results 

A program implementing the RWM method has been written in LISP and runs 
on a VAX 11/780. We now sketch some test problems and the empirical results 
of RWM on these problems. The detailed description of these problems can be 
found in [7] along with the strategies learned. 

Mod-3 Puzzle 

The strategy learned for the Mod-3 Puzzle played on a 3 x 3 board is shown in 
Fig. 1. During the process of learning this strategy 57 macros were generated. 
It took RWM 13 seconds to learn this strategy. 

2 ;< 2 x 2 Rubik 's  Cube 

This is a 2 x 2 x 2 version of the 3 x 3 x 3 Rubik's Cube puzzle. A six-stage 
strategy, shown in Section 1, for solving this puzzle was learned by RWM in 
397 seconds. The first stage of the strategy is to make the adjacent facelets of 
the two bottom left cubies the same color. The following two stages make the 
lower half of the cube have the same colors on their adjacent facelets. The rest 
of the strategy completes the puzzle. This strategy is also similar to the 
strategies used by humans. During the process of learning this strategy a total 
number  of 1695 macro moves were generated. The longest macro contains 91 
operator  applications, and only swaps the cubies in the upper front right and 
the upper back left corners. One reason that some of the macros are so long is 
that only three operators are given in the problem specification; thus a 
270-degree rotation is accomplished by a macro move consisting of three 
applications of a 90-degree rotation. 

Pyraminx 

The puzzle, commercially available under the name of Pyraminx, can be 
thought of as a pyramidal or tetrahedral version of the Rubik's Cube. There 
are two kinds of rotations possible at each of four corners. Counterclockwise 
rotations are defined in the operators. A clockwise rotation is accomplished by 
two counterclockwise rotation. A strategy of twelve stages is learned in 138 
seconds. During this process 285 macros are generated, by saving only the 
moves that have a different effect with respect to the goal statement of each 
stage. The longest macro is 75 operators long, but again some of this length is 
due to the use of two operators to do a simple clockwise rotation. In the first 
four stages the four small cubies are rotated until they have the same colors as 
the adjacent big cubies. The following five stages make all the adjacent facelets 
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of the cubies in the front layer of the pyramid, the same color. The rest of the 
strategy completes the puzzle. This strategy is very similar to the one learned 
and used by humans for this puzzle [18]. 

Tower of Hanoi problem 

The refinement of the 3-disk Tower of Hanoi problem results in a three stage 
strategy. In the first stage of the strategy the largest disk, in the second stage 
the medium, and in the third stage the smallest disk are moved to the goal peg. 
Moving the largest disk in the first stage requires that a precondition involving 
the other smaller disks be satisfied. Similarly, to move the medium disk a 
precondition involving the smallest disk must be satisfied. Separate sub- 
problems are created for the preconditions of the operators used in the first 
two stages. These subproblems are refined individually which results in sepa- 
rate strategies for solving the preconditions. This process took 16 seconds, and 
no macros were generated. 

Eight Puzzle 

The Eight Puzzle has been extensively studied in the artificial intelligence 
literature [24]. The refinement of this puzzle results in an eight-stage strategy. 
At each stage one tile is moved to its goal position. Macros are generated for 
the first six stages to enrich their move sets. A strategy for the Eight Puzzle was 
learned in 631 seconds; and 711 macros were generated. The longest macro is 
of length fourteen. 

Monkey and Bananas problem 

Although it is simple, the well-known Monkey and Bananas problem [22] has 
several interesting properties. First, most of its operators have preconditions. 
Second, the representation of this problem given to RWM is not serially 
decomposable as is required by Korf's method [9]. Third, the goal statement of 
the problem has only one atomic statement, therefore it cannot be directly 
refined. This problem is used to show how different strategies can be learned 
by either only creating subproblems for operator preconditions, or only 
generating macros, or both. 

The first strategy was learned by only generating macros. It was learned in 7 
seconds and 7 macros were generated. The longest macro was of length 4. This 
strategy has only one stage, which contains a macro for each possible position 
of monkey and the box so that monkey can grab the bananas. The second 
strategy was learned by creating subproblems for operator preconditions only, 
and then refining them. RWM learned a two-stage strategy for grab, and 
one-stage strategies for push and climb operators. This strategy was learned in 
4 seconds. In the third strategy both techniques were used. This strategy was 
learned in 5 seconds and 6 macros were generated. The longest macro was only 
2 operators long. In learning this strategy, only a subproblem for the precondi- 
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tion of the grab operator was created and refined into a two-stage strategy. 
Then, length-2 macros were generated for its stages. 

Rubik' s Magic 

This puzzle is commercially available under the name Rubik's Magic; it consists 
of eight squares connected to each other by very thin cords. Each square is 
attached to two others by these cords. The squares are marked by colored arcs. 
The goal is to arrange the squares so that the overall picture is three whole 
rings linked together. However, the shape of this goal figure is not given. A 
three-stage strategy for solving this puzzle was learned in 115 seconds by 
generating 22 macros. The longest macro was of length 3. The first stage is to 
have the same colors on the adjacent edges of the two lower left squares. In 
the second stage, upper left three and lower left two squares arranged so that 
they make a complete picture. The third stage brings the puzzle to its goal 
state. This strategy is also very similar to the one learned by humans for this 
puzzle [19]. 

Trillion Puzzle 

This is a commercially available puzzle which is quite difficult to solve. It 
consists of four blue, four green, four red and one white chips placed on four 
concentric circles and one center point. The circles are marked red, yellow, 
green and blue, going outwards. The chips can be moved by three concentric 
transparent rings and a slide lever, Fig. 8. 

Moving the outer ring rotates the chips on the blue circle. The chips on the 
green and the yellow circles are rotated by the middle ring. The inner ring 
rotates the chips on the red circle. The slide lever pushes all the chips on the 

Y2 

B3 G3 Y3 WC 
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] 

Fig. 8. The Trillion Puzzle. 
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vertical line up one position. While the lever is pushed the inner or the middle 
rings can be rotated but not the outer ring. The goal is to get the chips of one 
color on the circle of that color, and do this for all four colors. 

RWM has learned a 14-step strategy for this problem in 10 minutes [8]. For 
learning this strategy 2719 macros were generated. Some of the macros are 
quite long (the longest one is 118 operators long); each clockwise rotation is 
represented by three counterclockwise rotations which are primitive. The first 
four stages put the blue colored chips on the outer  ring. The next two stages 
put the two, green chips on the G1 and G3 positions, postponing the other 
green chips to the eighth and tenth stages. The seventh stage puts a yellow chip 
on the Y2 position. The other yellow chips are put in their goal positions in the 
ninth, eleventh and twelfth stages. The thirteenth stage puts a red chip on the 
R2 position. The other red chips and the white chip are put on their goal 
positions in the last stage. After a small amount of experimentation, it is 
obvious that the blue chips should be done first. However ,  the rest of the 
solution is not obvious because there is a lot of interaction between the 
remaining positions. The ordering of the green and yellow chips is difficult to 
discover, which is an important part of the strategy learned by the RWM. 
Using the strategy results in long solutions; i.e., solutions that contain many 
primitive operators. But it is also the only way we know of to solve this 
problem. There may be a better way to solve it than to use the RWM strategy, 
but we are quite sure there is no easy way to solve it. 

The strategies learned by RWM have been tested on a large number of 
problem instances, and a solution was found for all the initial states. Most of 
these strategies seem to be efficient in the sense that the amount of search 
required for each stage is relatively small. Also these strategies are quite 
similar to the strategies used by humans. Humans often learn a number of 
moves for each stage of their strategy, and apply a search using these moves in 
solving a stage. This is quite different than the strategies learned by Korf's 
method in which there is one macro learned for each possible next step in the 
macro problem solving (MPS) process. Of course, Korf's strategies are very 
efficient because no search is required, but also quite different from human 
strategies. 

Only the unique operators of a problem are given in its description. For 
example, only counterclockwise rotations of the front layer of the Rubik's 
Cube is defined, since a 180-degree turn of the front layer is equal to two 
counterclockwise rotations of the same layer. Similarly a clockwise rotation is 
equal to three counterclockwise turns. It is left to the macro generator to 
generate these moves if they are really useful. However,  this makes the macros 
appear to be longer than they really are, because for example, a clockwise 
rotation shows up as three separate rotations in the macro. 
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5. Discussion 

RWM is a method that learns efficient strategies for some problems such as the 
Mod-3 Puzzle and Tower  of Hanoi problem, but does not work for some others 
such as the Fool's Disk. 6 Hence,  an important issue is how to characterize the 
problems for which RWM is able to learn good strategies. Before attempting to 
characterize the class of problems applicable to RWM, we will look at the 
characterization of Korf's method. 

Korf  [9] has been able to characterize the class of problems for which his 
method is applicable. These problems, which he calls serially decomposable, 
have the property that the value of the ith component  of the result of an 
operator  is a function of only the first i components of the state to which the 
operator  is applied. MPS only applies macro m# to a state in which the first i -1  
components  have their goal values and the ith has j as its value. Since the first i 
components of the input are known, these components of the output are also 
known because of the serial decomposability. Thus, rnij performs the desired 
function because of the way it is generated. The key property is that state 
components other than the first i components have no effect on the first i 
components of rnij's output. 

This is an important characterization because if a problem does not have this 
property then his method should not be considered, otherwise the method will 
definitely learn a macro table to solve the problem. However  it is important to 
realize that decomposability is defined relative to an ordering on the state 
components,  and hence for some orders a problem may be serially decompos- 
able while for others it is not. Moreover,  this characterization is valid under the 
assumption that every legal state is solvable in the sense that there is a path 
from it to the goal state. However ,  many problems do not have this property 
because there are "dead-end"  states for which solutions do not exist. This 
shows up in the macro table as empty slots. For such problems, even though 
there may be solutions, Korf's method will fail because it does not backtrack 
when it finds an empty entry in a macro table. 

Another  difficulty with such a characterization is that it does not say 
anything about the efficiency of the strategy that will be learned. That is, even 
if a problem is serially decomposable,  the strategy may not be efficient. This 
difficulty can be illustrated by the strategy learned for the Tower of Hanoi 
problem, which is very inefficient as explained in Section 3.5. 

The difficulty with the characterization of the problem solving and the 
strategy learning methods is to capture the features such as efficiency. In fact, 
this difficulty is present in all artificial intelligence techniques such as A* and 
resolution-based strategies [17] because there are very few theoretical results 
which characterize the efficiencies of such methods. Although the theory of 
resolution theorem proving has many results on the completeness of different 

6A strategy for solving this puzzle has been discovered by Ernst and Goldstein [4]. 
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search strategies, very little is known about their efficiency. All these strategies 
allow many legal inferences to be pruned from their search spaces, but they are 
all inefficient on some theorems because their use increases the length of the 
proofs to the point where much more search is required. Thus, the study of the 
efficiency of strategies has been almost entirely limited to empirical investiga- 
tions, and RWM is no exception. However,  it is instructive to attempt to 
characterize the class of problems for which RWM is useful in an informal way. 

Because of the difficulties explained above, instead of giving a concrete 
characterization (such as decomposability) of the problems that are suitable for 
RWM, we will discuss the RWM method in terms of its restrictions and 
efficiency in general. 

5.1. Restrictions due to representation 

RWM is designed for state space problems. The goal states of the problem 
space should be represented by a statement which is a conjunction of lower- 
level (atomic) statements about the values of state components.  This is 
necessary for the success of the refinement method since it tries to partition the 
goal statement into a sequence of subgoals. However,  this is not a requirement 
for the RWM method in general. A good example of this is the Monkey and 
Bananas problem, whose goal statement is {Monkey's hand= Bananas). 
Although the problem itself cannot be refined because its goal contains only 
one atomic statement, new subproblems can be created for the operator  
preconditions. 

There are no requirements on the operators,  such as decomposability. For 
example, the Monkey and Bananas problem as given to the RWM is not 
serially decomposable.  However,  only unary functions are allowed in the 
assignments of an operator.  This restriction is imposed solely for the sake of 
simplicity of the particular implementation developed in this research. A 
different implementation could remove this restriction. 

5.2. Safety of moves over portions of the goal 

In order to refine a problem, its moves must be safe over some portions of the 
goal statement and relevant to going from that portion to the rest. If a move is 
safe over the whole goal statement, then this move is not going to be useful in 
solving the problem. For example, a move that rotates the whole cube in the 
Rubik's Cube puzzle cannot be used to solve that problem. On the other hand, 
if a problem has no moves that are safe over only a portion of the goal in terms 
of its atomic statements, then the refinement process will fail to refine that 
problem, and return it unchanged. However ,  this is not a requirement for the 
RWM method as a whole. In such cases, new macro moves that are safe over 
portions of the goal statement can be generated. A good example of this 
situation is a subproblem found as a stage after the refinement. All the moves 
of a stage are unsafe over any portion of its goal. After generating new macro 
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moves for that subproblem, some of these moves may be safe over portions of 
its goal. This situation can be true for the problem itself. Therefore ,  such a 
requirement on the safety of the primitive operators over portions of the goal 
statement does not constitute a characterization for the applicability of the 
RWM method,  but it is desirable for a problem to have this property. The 
major requirement for RWM is that there exist macros, which are not " too 
long," which are safe over some portions of the goal but not others. The 
difficulty is that this information is not explicit in the problem specification and 
must be inferred from it by a process such as RWM. 

5.3. Subproblems for move domains 

In order  for a move to be used in a stage, it must be "potentially" applicable to 
the initial statement of that stage. That is, the initial state does not have to 
satisfy the precondition of that move. However,  GPS allows giving separate 
strategies for solving the problem of finding a state in the domain of such a 
move. In such cases, GPS solves that new problem by using the strategy 
provided for the domain of that move. Those separate strategies are needed for 
the efficiency of the overall strategy. A good example of this is the strategy 
learned for the Tower  of Hanoi problem, where separate strategies are learned 
for each move. 

Generating separate strategies for move domains may not always be the best 
strategy. For problems whose moves are relevant to each other 's precondition 
this may lead to inefficient strategies or no strategy at all. In such cases, 
generating macro moves may yield more efficient strategies. A good example 
of this case is the Eight Puzzle, where each move is relevant to the precondi- 
tion of some other moves. In the strategy learned for the Eight Puzzle only 
macro moves are used; no subproblems for transforming a state into the 
domain of an operator  are used. 

A combination of separate strategies for move domains and macro genera- 
tion is also possible. An example of such a strategy is given for the Monkey 
and Bananas problem. The strategies learned only by generating separate 
strategies for move domains may have many stages while the strategies with 
only macro moves may contain large number of moves. Therefore,  a hybrid of 
these two techniques seems to be appropriate for some problems. 

6. Conclusions 

RWM is a method for mechanically learning GPS based problem solving 
strategies. It incorporates two separate methods, namely, refinement and macro 
generation. The former is to partition a given problem into a sequence of easier 
subproblems which constitutes a raw strategy to solve the problem. The latter 
is to learn more relevant moves, so that a difficult subproblem can be further 
refined. 
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The RWM method is applicable to many state-space problems such as those 
described in Section 4.3. However,  its implementation explained in this 
document has some restrictions over the representation of problems. For 
example, only unary functions are allowed in the assignments of the operators. 
The use of the available memory was not efficient; e.g., a complete strategy for 
the 3 × 3 × 3 Rubik's Cube could not be found because of memory limitations. 
A more serious deficiency is that refinement only generates subproblems whose 
goals are subsets of the main goal. Thus, it could not learn a good strategy for 
the Fool's Disk [4]. 

The RWM method has been used to learn strategies for a number of 
problems. The strategies learned have been tested on a large number of 
problem instances, and a solution was found for all the initial states tested. 
Most of these strategies seem to be efficient in the sense that the amount of 
search required for each stage is quite small. Also these strategies are in some 
respects similar to the strategies used by humans. 

Although RWM is a man-machine  system, the user's role is quite indirect. 
Never does the user give RWM direct information about the strategy, like the 
goal of a particular stage should be a particular statement, or like the order of 
different stages. However,  the user has some control over such things as the 
number of stages in a strategy and the length of the macros used in the 
strategy. 

Most of the research discussed in this paper is concerned with learning 
GPSobased strategies. In addition to RWM, the methods of Korf  [9] and Ernst 
and Goldstein [4] have mechanically learned strategies of this type. Each 
method has its strengths and weaknesses. For example, Ernst and Goldstein's 
discovery system does not use macro moves that are shown here to be very 
useful in strategies. Korf's technique is not designed to find an ordering of 
subproblems which constitutes a very crucial part of a strategy, and does not 
allow multiple goal states. However,  these techniques have learned some 
clever and non-obvious strategies for different types of problems. The RWM 
method is based on the ideas in these previous learning methods; it shows how 
they can be combined and expanded. Although the resulting method can learn 
some strategies that the previous methods could not, the former cannot learn 
all of the strategies learned by the latter. Thus something has been lost in the 
combination and extension, but more importantly something has been gained. 
Each of these research efforts contributes to the overall understanding of this 
kind of learning, which is somewhat limited, but collectively the results of this 
research are quite impressive. 
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