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Ballistic transport through a quantum point contact: Elastic scattering by impurities

E. Tekman and S. Ciraci
Department ofPhysics, Bilkent University, Bilkent, 06533 Ankara, Turkey

(Received 5 March 1990; revised manuscript received 15 May 1990)

The effects of elastic scattering due to impurities in a quasi-one-dimensional constriction are in-
vestigated with an exact calculation of the conductance. It is found that the quantization of con-
ductance is distorted owing to scattering by a single impurity which exists in an infinite constriction.
The extent of deviation from quantized values depends on the strength, position, and lateral range
of the scattering potential. The resonance structure due to interference of current-carrying waves is
still apparent for a constriction of finite length containing an impurity. However, both the magni-
tude and position of these oscillations in the resonance structure are affected as a result of elastic
scattering. A resonant tunneling effect is found due to a state bound to the attractive impurity po-
tential.

I. INTRODUCTION

Using high-mobility two-dimensional (2D) electron gas
(EG) and split-gate structures, van Wees et al. ' and
Wharam et al. fabricated quantum point contacts (QPC)
with length scales smaller than the electron mean free
path and comparable with the Fermi wavelength A,F.
They observed that the two-terminal conductance of the
QPC is quantized in units of 2e /h as a function of the
width of the constriction m. Recently, assuming that the
transport is ballistic, several groups developed
theories to explain the quantization of conductance.
Furthermore, they predicted resonances superimposed on
the quantized plateaus. The deviations from exact quant-
ization and the lack of the resonance structure in the ex-
perimental results' have become important issues, and
were attributed to various effects. For example, Glazman
et a1. showed that the current-carrying states evolve adi-
abatically without reflection and without intersubband
scattering in certain hornlike connections to the reser-
voirs. The authors, on the other hand, showed that
sharply quantized conductance G (w ) devoid of resonance
structure can occur even if the adiabaticity requirements
are not satisfied for certain QPC geometries. The elastic
scattering by impurities in a ballistic channel can also
affect the above-mentioned quantization of conductance
and the resonance structure. Earlier works ' ' have indi-
cated such a possibility, but a clear understanding of im-
purity effects on experimentally relevant systems is not
fully developed yet. Therefore, scattering by an impurity
in a QPC has several interesting features which deserve
further study.

In this paper we investigate the effects of elastic
scattering by an impurity in a ballistic channel. Using a
Green's-function technique, we obtain the expression for
conductance for an infinite quasi-1D constriction with a
single impurity represented by a model potential. The
form of the model potential is realistic and enables us to
obtain exact solutions for scattering events. Moreover, it
is appropriate to carry out a systematic analysis on the

effects of the position and lateral extent of the impurity.
The formalism developed for an infinite constriction is
further extended to treat a finite-length QPC with a single
impurity. Our results are in overall agreement with the
results of the earlier studies, ' ' which were obtained by
using completely different approaches. Present study in-
vestigates several aspects of scattering by an impurity in a
QPC (which were not treated earlier) by using more real-
istic scattering potentials and boundary conditions. In
Sec. II we describe the method of calculation and intro-
duce the model potential. A critical comparison of our
method with the earlier ones is also presented in this sec-
tion. In Sec. III we present the results obtained by using
this formalism for the infinite and finite constrictions and
discuss the similarities and differences with those of the
earlier ones. Important aspects of our study are stressed
by way of conclusions in Sec. IV.

II. METHOD

We first consider an infinite constriction, for which z is
the propagation direction and y is the transverse direc-
tion as described by the inset in Fig. 1. We also assume
that the confinement in the x direction is complete. The
eigenstates for such a uniform quasi-1D constriction
(electron wave guide) in the presence of a scattering po-
tential ut(y, z) can be written as

g, (y, z)=e ' P (y)+ J dy' Jdz'g(z —z', y, y')

Xut(y', z')@ (y', z') .

The first term on the right-hand side represents the in-
cident wave, which is the unperturbed solution for
the jth subband with the wave function P (y), the
eigenenergy c, and the corresponding wave vector

y~ =2m*(E —
EJ )/A' along the z direction. Details for

the unperturbed solutions for the current-carrying states
and the variation of conductance calculated thereof for
the uniform and tapered quasi-1D constrictions can be
found in Refs. 5 and 7. The above expression in Eq. (1) is
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where T„(k) is given by

(2)

T„(k)=V„(k—y )

+ g fdk'V„(k —k')G (k')T (k') . (3)

Note that the Fourier transforms of g, vi, and t are ma-
trices Cx (diagonal), V, and T, respectively. An element
of such matrices are calculated from the integral de-
scribed by the following expression:

F„(k)=f dy t))„(y)P (y) f dz e '"'f (y, z) . (4)

By solving Eq. (3) for T, one obtains the solution for the

the well-known Lippmann-Schwinger equation adapted
to quasi-1D systems with the retarded Green's function g.
The exact solution of Eq. (I) can be written using the t
operator as

g, (y, z) =e ' P, (y)+ g P„(y)f dk e'"'G„(k)T„(k),

scattering problem for a right-going incident wave in the
jth subband. The solution P, (y, z) is found similarly for a
left-going incident wave.

It is important to note that in the present study we cal-
culate the conductance of the constriction by using a
two-terminal geometry. That is, two reservoirs are con-
nected to the ends of the constriction (or the 2D EG for
the finite constriction) so that the voltage difference be-
tween the reservoirs is just the difference of the electro-
chemical potential deep in the reservoirs (which is taken
to be infinitesimal). The conductance G „(w) of an
infinite constriction is then calculated from the expecta-
tion value of the momentum operator,

2 OCC

G„(to)= g (g, lP, l (l, ) .
j 7 J

The solution of Eq. (3) for a general potential ui(y, z) is
complicated and may require extensive computations. In
order to obtain an analytical solution which leads to a
clear picture of the effects of elastic scattering, we use the
following model potential for a scat terer located at
(yi, z, ):

2

UI(y, z)= exp( —
qly

—yi l
)5(z —zi ),m* (6)
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FIG. 1. The conductance G„vs the width w of an infinite
constriction containing an impurity. (a) yl =0 and q =10k,~ ',
the strength pl varying (in units of kF ). (b) r pr =0.6kr and

q = 10XF ', the position y, varying (in units of A, F ). Solid
(dashed) curves correspond to repulsive (attractive) impurities,
and are vertically offset by an amount 1.5X(2e /h) for clarity.
The geometry of the channel is described by the inset.

which is a Dirac 5 function in the z direction, and has the
exponentially decaying form in the y direction with a de-
cay length of q '. The strength of this potential is set by
the magnitude of P, which may be both attractive (P(0)
and repulsive (P) 0). For this form of the potential, Eq.
(3) is exactly solvable and the T matrix is given by
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where Q=u(I'+iu) 'I with f', =$, y, and

u,
&

=13f dy p;(y)pj(y)exp( qly yil ) .

The conductance for an infinite constriction containing
an elastic scatterer as described in Eq. (6) is expressed in
terms of these matrices as

Im[(Q), ] Re[(Q I 'Q)., ]G„= — g I+2 ' +
h y XJ

(c &E~. jj

(9)

It should be noted that the effect of the evanescent waves
with c, )Ez is included in the above formalism of G„.
This is provided through the intersubband coupling in 6
and yields novel effects described in Sec. III. These
effects do not exist in strictly 1D systems.

To calculate the conductance for a QPC of finite length
d, we furthermore assume that the impurity potential
Ur(y, z) is zero outside the QPC region O~z ~d. Thus,
the solution of the Schrodinger equation in the 2D EG
(z ~ 0 and z ~ d) is a linear combination of plane waves,
each plane wave being a solution of the 2D EG reser-
voirs. This assumption simplifies the solution since elas-
tic scattering takes place only in the constriction, and
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thus the use of Green's function in the 2D EG is not
necessary. Note that the inodel potential in Eq. (6)
satisfies this condition if the impurity is located in the
constriction (i.e., 0 zI 1). The solution in the constric-
tion is expressed in terms of PJ and g as

%'(y, z)= g [A,g, (y, z)+B g, (y, z)] .
J

(10)

The boundary conditions at z=0 and z =d are used to
find the coefficients A and B. Next we express tp(y, z) in
terms of a linear combination of exponentials either for
0&z &zI orz& &z &d as

G~= I dg [(Q~ Re{I IQ~
—4 Re{I I4)

irh -iF k, (~)

+2Im(O Im{I I4)] . (12)

In Eq. (12) the coefficients Q and 4 depend on the param-
eters of the impurity, namely 0 and zI, as well as the pa-
rameters of the constriction. In the numerical studies
presented in Sec. III we used an infinite-well confinement
in the transverse direction. Nevertheless, Eqs. (1) and (3)
have general validity, and Eqs. (9) and (12) are valid for
the impurity potential given by Eq. (6).

At this point it is in order to compare our model with
the earlier ones. ' ' Haanapel and van der Marel used
the tight-binding method to analyze the effects of an im-
purity in or near the constriction for short QPC's. They
argued that the presence of the impurity in or near the
constriction prevents the quantization of conductance.
However, since the potential of the impurity was taken as
a 2D Dirac 5 function, their study was not able to reveal
the scattering effects in detail. Recently Chu and Sorbel-
lo calculated the conductance of an infinite constriction
in the presence of an impurity by using a scattering
theoretical formulation. They provided an exact analytic
solution for the conductance in terms of phase shifts
pointing out interesting features of impurity scattering.
However, the applicability of their analysis made by the
isotropic (s-like) scatterer in an infinite wave guide is lim-
ited for an experimentally relevant system. Masek and
co-workers employed the Anderson model to analyze the
conductance of a disordered quasi-1D conductor. Their
results may be significant for ensemble-averaged effects of
impurities. Although their results are in agreement with
those obtained by other methods, the microscopic aspects
of scattering due to a single impurity cannot be extracted
from that study. The present model provides exact and
partly analytical solution for the conductance. As seen,
the form of the potential and thus the formalism is versa-
tile and enables us to study various parameters such as
the position, lateral extent, and strength of the impurity.
The weakness of the model potential used in this study is
that it is highly anisotropic. Consequently, a direct quan-
titative comparison with the experimental systems may

'p(y, z)= gp, (y)(e ' 8, +e ' 4, ) .
J

Finally, the conductance Gz(w) is expressed in terms of
these vectors of coefficients Q and 4 as described else-
where:

not be straightforward.
Finally, we comment on the effects of the self-

consistent potential and inelastic scattering. Earlier, Lan-
dauer' argued that self-consistent charge due to none-
quilibrium electrons is accumulated near the impurity,
which yields corrections to the conductance. This is
closely related to the question of which Landauer formu-
la, G —T or G —T/8 (T and R being transmission and
reflection probabilities, respectively), has to be applied.
An extensive discussion of this issue is beyond the scope
of our work, however. Relevant references, which
present comprehensive reviews of several efforts and de-
bates, are given in Ref. 10. It becomes clear now that a
different Landauer formula applies to different measure-
ment geometry. For the system we are considering, the
voltage difference is measured between the reservoirs. As
stated above, this is a two-terminal geometry. That is,
expressing in terms of relevant Landauer formula, ' the
conductance is given by G —T [for multichannel case"
Tr(t t ), t being the transmission matrix]. In the present
approach the finite temperature effects are also neglected.
Despite this, we think that progress towards a better un-
derstanding of elastic scattering in a ballistic channel is
made by the present work. Moreover, our findings have
close bearings to the resonant tunneling, especially in
scanning tunneling microscopy.

III. RESULTS AND DISCUSSION

A. Infinite constriction

The variation of G„(w) for an infinite constriction
having a single impurity is shown in Figs. 1 and 2. As
seen, the ideal quantization is distorted in the presence of
the scatterer. If the potential of the impurity is weak
[e.g., ~p~

~ 0.5kF for q =10AF ' in Fig. 1(a)], G „(w) still
reflects a staircase structure with smoothed steps and
with plateaus very close to the quantized values, 2e N, /h
(N, being the number of subbands below Ez). Another
observation is that for weak scatterers the sign of the po-
tential does not have a pronounced effect on the conduc-
tance. This result is in compliance with the first-order
Born approximation, since the lowest-order correction to
the conductance is proportional to p in the perturbative
treatment of the impurity. Therefore, both repulsive
(p&0) and attractive (p(0) impurities have the same
effects on the transport. In order for the Born approxi-
mation to be valid, and thus for only a single scattering
event to take place, the velocity or equivalently the wave
vector of electrons has to be large. In the quasi-1D sys-
tem under investigation the related wave vector is the
propagation constant y and is equal to zero whenever a
new subband dips the Fermi leve1, i.e., m =Ã, A,F /2.
Thus, the Born approximation fails for m values just
above X,XF/2 and it is necessary to include the multiple
scattering events.

For relatively stronger impurities [0.5k+ 5 ~p~
~ kz for

q = 10k,F
' in Fig. 1(a)] not only the steps are smoothed,

but also the plateaus exhibit deviations from the quan-
tized values 2e X, /h. The most remarkable effect ob-
served in this range of p is the difference between the at-
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FIG. 2. The conductance G„vs the width m of an infinite
constriction containing an impurity. (a) y, =0 and q =kF, the
strength ~P~ varying (in units of kF). (b) ~P~ =0.6kF and

q =A,F, the position yz varying (in units of A,F ). Solid (dashed)
curves correspond to repulsive (attractive) impurities, and are
vertically offset by an amount 1.5 X (2e /h) for clarity.

tractive (p(0) and repulsive (p)0) scatters. Also for
strong scatterers the Born approximation begins to fail
for the whole range of w. As seen, for attractive impuri-
ties the dips in the G versus w curves appear below the
steps. The conductances at these minima are approxi-
mately equal to 2e (N, —I)lh for laterally confined im-

purities (i.e., large q), and there are sharp rises to the next
quantized value above these dips. One important point
we notice is that dips do not occur below all of the steps.
To analyze this, we calculated G„(w) for different trans-
verse positions (yr ) of the impurity as shown in Fig. 1(b),
and consider 6" given by Eq. (8). For a laterally confined
impurity (i.e., large q), 6 is approximately proportional
to ~PJ(yl)~ . To a first approximation, the effect of the
impurity is large on the N, th plateau when ~PN (yI ) ~

is a
C

maximum, but is small when it is negligible. For exam-
ple, for yl =0 the deviations from the quantized values
will be large on the odd-numbered plateaus and small on
the even-numbered ones. On the other hand, the size,
width, and existence of the dips below the X,th step for
the attractive impurities' are determined by magnitudes
of 6;z for i (X,. Analyzing these dips in detail we find

C

that they originate from the enhancement of backscatter-
ing due to the intersubband scattering. ' For the strictly
1D problem total backscattering is not allowed since the
boundary condition at z =zI for the derivative of the
wave function cannot be satisfied. For the quasi-1D case

there are subbands which may be coupled in the presence
of the impurity. Therefore, the total backscattering can
occur in a subband by inclusion of the evanescent states
in a quasi-1D system. Since the first-order Born approxi-
mation employs the equivalent 1D problem for each sub-
band, the dips cannot be obtained perturbatively. The
backscattering effect is visible in Fig. 2(a). For an impuri-
ty positioned at the center of the channel, even- and odd-
numbered subbands are completely decoupled. There-
fore, there is no dip below the second step, and the dip
below the third step is due to enhanced backscattering in
the first subband caused by the evanescent third-subband
state. In the presence of a large number of impurities,
all the subbands are mixed and it is possible to observe
dips below all of the steps.

For laterally spread impurity potentials with small q
the deviations from the quantized steps [see Fig. 2(a)] are
enhanced compared to those with large q. For example,
the dips do not have conductance 2e (N, —1). This is
due to the large integrated strength -plq. Note that 6
given in Eq. (8) is determined by this integrated strength
and not solely by the strength p. Another observation is
that for attractive impurity potentials the dips are shifted
to values of w which are smaller than N, A.F l2 and appear
together with peaks. Since the impurity potential
influences a wide range of the constriction, the wave
function evaluated at yl cannot give an idea about the
effect of the scatterers. Although the deviations from the
quantized plateaus vary with yI [Fig. 2(b)], this effect is
not as drastic as it was for large q.

Comparing these results with those obtained by Chu
and Sorbello and Masek et al. , it is concluded that the
present model potential is more appropriate to analyze
the transport in a ballistic channel with a single impurity.
Although the dips were also found by those authors, '

all of the steps were alike in the results given by Chu and
Sorbello since the position of the scatterer is chosen to
yield coupling of all of the subbands. In addition to that,
their approach does not allow one to vary the strength
and the integrated strength independently. Therefore the
results presented in Fig. 2 are unique to the present
study. Another important advantage of the present ap-
proach is that it enables the control of the intersubband
coupling. For large values of q the scatterer looks like a
5 function, which enhances the intersubband interactions.
In contrast, the potential becomes flat in the lateral direc-
tion and the intersubband interaction vanishes for small
values of q. In this case the dips disappear.

B. Finite constriction

Having discussed elastic scattering due to a single im-
purity in an infinite constriction, we next consider the sit-
uation in a QPC of finite length d. Using the formalism
described in Sec. II, we calculated the conductance
Gd(w). The results are summarized in Fig. 3. As for the
impurity-free constriction, the main effect of finite
length is to smooth out the sharp changes in G „(w) (or
its first derivative) due to inclusion of evanescent states.
This effect is of major importance for short constrictions
(d ~A,z). For longer constrictions the effect of evanes-
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cent states decreases, but a new feature due to interfer-
ence of left- and right-going waves arises, namely the res-
onance structure. Since the effects of only elastic scatter-
ing by a single impurity are taken into account, neither a
phase breaking due to an inelastic event nor a phase
averaging due to a large number of scatterers can take
place. In other words, the system we are investigating
here is the quasiballistic regime, which still contains
well-defined interference effects leading to the resonance
structure in Fig. 3. The dramatic effect of the impurity is
revealed by comparing conductances of finite (neglecting
the contribution due to tunneling) and infinite constric-
tions. For an impurity-free channel the conductance of
the finite constriction is smaller than that of an infinite
constriction (i.e., smaller than the ideal quantized steps)
for all w. In contrast, for a constriction with a single im-

purity Gd(ttr) may be larger than G„(w). This is a result
of the combined scattering from the impurity and the
ends of the constriction (z=O and z =d). That is,
scattering from the ends may depress the effect of scatter-
ing by the impurity.

Clearly the main features of Gd(ttr) shown in Fig. 3, in

particular the heights and positions of the resonances and
antiresonances, are strongly dependent on the position of
the impurity along the z direction. That is, moving the
impurity along the channel will give rise to oscillations in
the conductance. The magnitude and period of the oscil-
lations are related to the length and width of the constric-
tion, as well as the properties of the impurity. A similar
effect is observed by moving defects in a metallic nano-
constriction. ' In Fig. 4 the resistance of a typical QPC
is shown when an impurity is present in the constriction.
Clearly, for large q the deviation from the quantized
values is approximately constant for a given X, and de-
creases with increasing N, . This result closely resembles
the experitnental observation of Wharam et al. ' These
examples show that it is possible to observe the effects of
elastic scattering in the channel. However, additional ex-
perimental studies are still needed to fully exploit this
conclusion.

Finally, we wish to point out a novel feature of attrac-
tive impurities. For short constrictions with an attractive
impurity placed near their center (zr =d/2) the conduc-
tance curve Gd(ttr) has sharp peaks just below the steps
[Fig. 3(b)]. The widths of these peaks decrease with in-

creasing d, and for very long constrictions the peaks can-
not even be resolved. Moving the impurity away from
the center of the constriction (by changing either the po-
sition of the impurity z~ or the length of the constriction
d) has the same effect. Similarly increasing the strength
or integrated strength of the impurity causes the peaks to
shift the lower w values. A detailed analysis of these re-
sults shows that these peaks are associated with resonant
tunneling through quasi-OD states bound to the impurity.
The properties of this resonant-tunneling effect are analo-
gous to those obtainable from the double-barrier reso-
nance tunneling structures. Hence, similar to formation
of quasi-OD states due to geometrical effects (local
widening of the constriction) in an impurity-free ballistic
channel, it is possible to obtain bound states in a constric-
tion in the presence of an attractive impurity potential.
A final remark about these resonances is that the peaks

2-2
~ 06

0

C

CL 0.2

/=06 kF.

y)= 0

d -PF
z(- 0 2PF q =10

FIG. 3. The conductance Gd vs the width w of a finite length
constriction for q =El.- ', yi =0, and (a) / =0.6k~, (b)
P= —0.6kF. The length of the constriction d is varying (in
units of XF }. Solid (dashed j curves denoting zI =0.2A, F
(zl =0.5A,F), and are vertically offset by an amount (2e'/h) for
clarity. The geometry of the channel is described by the inset.

W/ AF

FIG. 4. The resistance of a QPC of length d =AF containing
an impurity at (yl, z, )=(0;0.2)k~ with r(3=0.6kF. q is varying
(in units of A, F '). The dotted lines indicate the value corre-
sponding to the exact quantization.
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appear exactly at the same positions with the peaks above
the dips in G„(w). This is due to the presence of two or-
thogonal solutions, one being a quasi-OD state and the
other the current-carrying state with unity transmission.
Although G„(w) is calculated by including only the
current-carrying states, Gz(w) has contributions from
both of the above states. Therefore the effects of both
quasi-OD state and current-carrying states are visible in
Fig. 3. The resonant-tunneling effect is usually depressed
for laterally confined impurities (i.e., large q) since the
resonance peaks and steps are very close to each other,
yielding the overlap of corresponding features in G&(ta).
An important remark is about the difference of the
evanescent states leading to the dips and peaks. Al-
though the dips are formed as a result of the enhanced
backscattering stimulated by the intersubband scattering,
the peaks are related to bound (or resonance) states local-
ized around the impurity. By decreasing q it is possible
to turn off the intersubband scattering and thus to dis-
card the dips. On the other hand, the resonance states
become real bound states in the absence of subband mix-
ing. Thus, while the dips are specific to quasi-1D sys-
tems, the peaks are due to resonant tunneling and are
achievable for all dimensions.

IV. CONCLUSION

We investigate the effects of elastic scattering by an im-
purity in a ballistic channel. Using a model potential we

obtained exact expressions for the conductance both for
finite and infinite constrictions. We summarize the im-
portant findings of this study as follows. (i) In agreement
with the earlier studies, ' ' we found that the presence of
an impurity in the ballistic channel distorts the quantiza-
tion of conductance. The deviation from quantized
values increases with increasing strength or increasing in-
tegrated strength of the impurity potential. (ii) For at-
tractive impurity potentials the dips in the conductance
curve form as a result of complete reflection. The posi-
tion and strength of the impurity determines the struc-
ture of these dips. (iii) For finite constrictions the effect
of the impurity may be depressed by combined scattering
from the ends of the constriction. The resonance struc-
ture due to interference of current-carrying states is still
visible in the conductance curve. (iv) A resonant-
tunneling event takes place for attractive impurity poten-
tials. This is a result of formation of quasi-OD states
bound to the impurity.
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