
protocol testing ____________ _

Estelle-based test
generation tool

Beh«;et Sarikaya, Behdad Forghani* and Srinivas Eswara* pres~nt a test
design tool, using an extended FSM model, for functional analys1s and test

derivation of protocols

A test design tool for functional analysis and test derivation
of protocols formally specified using an extended ~in~te­
state machine model is presented. The formal descrtpt1on
language supported is Estelle. The tool's main components
include a compiler, a normalizer, a multiple module
transition tour generator and several interactive programs.
The tool is based on a static analysis of Estelle called
normalization, which is explained in detail with various
examples. The normalized specification facilitates graphical
displays of the control and data flow in the specification by
the interactive tools. Next discussed is test generation,
which is based on verifying the control and data flow. First
the data flow graph must be decomposed into blocks
where each block represents the data flow in a protocol
function. From the control graph the tool generates
transition tours, and then test sequences are derived from
the transition tour to test each function. The performance
of the tool on various applications ·is also included.

Keywords: specification languages, conformance testing,
functional testing, data flow graphs

Distribution system specification and analysis have
recently been an area of active research and development.
An area of distributed system research that is of interest to

Department of Computer and Information Sciences. Bilkent University,
Bikent, Ankara 06533, Turkey
*Department of Electrical and Computer Engineering, Concordia University,
1455 de Maisonneuve West, Montreal, Quebec, Canada H3G 1M8
Paper received: 6 December 1990. Revised paper received: 23 February
1991

us in this paper is communication protocols (providing
reliable communication in distributed systems).

To provide reliable communication among computers
from different manufacturers the Open Systems Inter­
connection (OSI) reference model has been defined to
structure protocols in various layers. What makes OSI
work is the standardization of its protocols and services.
Standard definitions are presently given in natural language,
and because of this the definitions contain ambiguities
and are imprecise. Standardization institutions such as
ISO and the CCITI have defined formal languages with
which protocols and services can be specified. The
language which is of interest to us in this paper is Estelle 1•

Estelle is based on an extended finite-state machine
model.

Protocols and services of OSI are complex. They have
to be thoroughly tested before being incorporated in the
system. Another related activity is testing for confor~anc.e
to the protocol specification. Conformance test1ng 1s
usually undertaken by national or international institu­
tions. There are two major aspects of conformance
testing: defining the environment in which an i~~le­
mentation under test (IUT) will be tested; and defmmg
the tests to be applied to the IUT2

.

Automated test design for protocols can be done using
an FSM model and deriving test sequences from this
model. However, FSMs lead to state-explosion when one
tries to model important features of protocols such as
interaction parameters and certain features of data
transfer such as sequence numbers.

The computer-aided test design tool, nick-named
Contest-Est!, is an implementation of a functional formal
specification (Estelle)-based test design methodology3•

0140-3664/91 /009534-11 © 1991 Butterworth-Heinemann Ltd

534 computer communications

While the tests obtained from FSM-based tools can only
have a limited control flow coverage, our tool provides
facilities to derive tests to fully cover the control and data
flow. We introduce Estelle below, along with the structure
of the tool. The compiler and the normalizer are
discussed, and the interactive tools examined. Per­
formance of the tool on various applications is also
given.

EXTENDED FINITE-STATE MACHINE MODEL

EFSM model describes the system (protocol) as a
collection of modules. Each module is a finite-state
machine capable of having memory, i.e. extended finite­
state machine. Modules of an entity can communicate
with each other as well as with the environment over
channels (FIFO queues). Service primitives (exchanged
with bottom and upper layer entities) and internal
interactions (with other modules) are communicated in
the channels. Protocol data units (PDUs), i.e. messages
exchanged between two protocol entities, need not be
explicitly defined, but are encoded and introd.uced as
parameters to the service primitives. Decomposition of an
entity into modules is usually functional: a module for
timer management; a mapping module to map the PDUs
into interactions with the environment, i.e. abstract
service primitives (ASP); an abstract protocol module for
handling service primitives and forming PDUs, etc. .

The language of Estelle is based on Pascal w1th
extensions to facilitate protocol specification. To save
space we only describe the constructs related to transi­
tions. FROM/TO clauses define initial/final state(s) of the
finite-state machine, respectively. The arrival of an input
interaction is expressed using WHEN. Transitions with no
WHEN clause are called spontaneous. The conditions for
firing the transition are described in~ PROV.IDED ~la.u~e,
which is a Boolean expression on mteract1on pnm1t1ve
parameters and variables of the module. Variables of the
module are called context variables. Finally, the action of
the transition is contained in a BEGIN block which can
have assignments to context variables, calls to internal
procedures, Pascal conditional statements and produce
output with the OUTPUT statement.

Estelle supports nondeterminism (internal decisions of
the entity, for example) by way of spont~~eous transiti?ns,
and by allowing more than one trans1t1on from a g1ven
major state to have their predicates enabled. Once a
transition is enabled, its execution is atomic. Abstractness
of the specification, i.e. being away from implementation
considerations could be achieved through the use of
incomplete type definitions using the three-dot notation,
such as in:

buffer_type = ... ;

and the use of abstract data types (buffer_type above is
an abstract data type) with their operations defined as
primitive procedures and functions.

It is possible to semi-automatically generate execut~ble
code from Estelle specifications. To this end, vanous
translators (so called compilers) of Estelle have been

vol14 no 9 november 1991

protocol testing

developed4
•

5
. Semantics of Estelle is discussed in

Courtiat 896
, validation tools based on Estelle have been

developed7
, and test design for different phases of

protocols is discussed in Boyce and Probert8.

The specification in Estelle of a simplified transport
protocol, hereafter called TP2, will be used as an example
in the paper. This specification describes the transport
entity composed of two modules: the Abstract Protocol
Module (called ap_body) which handles protocol
functions and interacts with the users; and the Mapping
Module (called map_body), which handles the mapping
of the transport PDUs into network service data units, and
vice versa. The ap_body module body contains 20
transitions and the map_body has four transitions.

Contest-Est! accepts all of the constructs of Estelle. It
extends the subset of Estelle that is covered by the test
design methodology3 to handle modular specifications,
nondeterminism and all Pascal constructs except pointers.
No specific action is taken for Estelle features such as
dynamic module creation/destruction, (system) process/
activity, and transition priorities in the present version.

TOOL STRUCTURE

Contest-Est! takes an Estelle specification and semi­
automatically produces tests for the input specification.
Figure 1 shows the global structure of the tool. Each of ~he
three components are explained in detail in the followmg
sections, while this section gives an overview of each.

After compilation the normalizer is activated. The
process of normalization transforms t~~ i~put sp~ci­
fication into another (Estelle) speof1cat1on whiCh
(possibly) contains more transitions, each having si~gle
paths. Such a specification is called a normaltzed
specification. In a normalized specification we identify
two types offlows: control flow, which models major state
changes from one transition to another; and data flow,
which models flow from input primitive parameters
(service primitives and/or PDUs) to context variables, and
from context variables to the output primitive parameters.
The normalizer generates intermediary forms for these
graphs which are passed to the interactive tools.

The interactive tools display the control and data flow
graphs, and finally generate test. sequences. A: repres:nta­
tion of various protocol funct1ons can be mteract1vely
obtained from the data flow graph. The transition
subtours obtained from the control graph yield the
sequences of interactions to effectively test each function.
Most of these functions can be tested independent of
each other with the application of the transition subtours.

COMPILER

To ensure a correct specification for the normalizer, the
input specification is syntactically and semantically

Estelle
spec.

Figure 1. Global structure of Contest-Est/

Tests

535

protocol testing ___________ _

analysed. There are virtually four phases of processing the
input Estelle specification: lexical analysis, syntactic
analysis, semantic analysis and global parse tree and
symbol table construction. In the actual implementation
we combine all these phases together into a single pass
through the Estelle source code. Our compiler module is
implemented using the standard tools Lex and Yacc
available in the Unix operating system, and its structure is
inspired from the NIST Estelle compiler5•

Since normalization is implemented in Prolog, we
convert the parse tree to a Prolog clause using a
conversion program written in C. This program converts
the symbol table into a sorted tree structure called a
dictionary9. A dictionary is defined recursively:

die(<name>,<value>,<dic-1 >,<dic-2>)

pairs <name> with <value>, where <dic-1 >and <dic-2>
are subdictionaries. The dictionary is ordered with respect
to <name>.

Normalizer

The normalizer works in two steps: first, a kind of symbolic
execution is applied to the input specification to trans­
form it to a normalized specification. The normalized
specification can be inspected and modified by the user.
Next, we use the compiler module again to do syntactic
and semantic checks on this normalized specification,
and extract the control and data flow information from it
to be used by the interactive tools.

Symbolic execution is a technique for static program
analysis 10. It has been used for program verification and
testing. An Estelle specification can be symbolically
executed for the purpose of identifying all the control
paths. It is also possible to express these paths as distinct
transitions using the Estelle syntax.

In Contest-Est! we use Prolog for normalizing Estelle
specifications. Prolog has been used for implementing
language processors including compilers in a compact
way (possibly less efficient in terms of execution time) 11

•

Other uses of Prolog in protocol analysis and testing are
discussed in Sidhu 11 and Ural and Probert13.

Normalization is done in various steps. Basic nor­
malization, as described elsewhere3

, is implemented as
follows: body replacements are done for local procedure
and function calls; conditional statements (IF, CASE) are
eliminated; FROM and TO clauses are processed so that
each transition contains at most a single major state
change. Provided clauses are put into disjunctive normal
form with the elimination of ORs. Extensions to the basic
normalization include the following: declarations are
processed to simplify the complex data structures such as
variant records; WITH statements are removed by record
structure replacements. Each module of the specification
is treated independently, resulting in a normalized
specification for each module. Steps of normalization are
detailed in what follows.

Processing the declarations
Variant records are converted into records enumerating all

536

case constants. For example, the following variant record
defining the PDUs of the alternating bit protocol:

ld_type = (DT,AK);
Ndata_type =

record
Conn: Cep_type;
case ld: ld_type of
DT: (Data: U_Data_type);
ACK: (Seq: Seq_type);

end;
gets expanded to:

ndata_type_dt =

record
conn: cep_type;
data: u_data_type

end;
ndata_type_ack =

record
conn: cep_type;
seq: seq_type

end;

Procedure/function call elimination
Each procedure/function body definition is converted to
an internal representation to facilitate replacement
procedure. Local variables are converted to global
variables with unique identifiers, and a global variable is
sometimes created for each parameter which is called by
value, i.e. when the parameter is assigned a value. For the
result returned by each function, a global variable is
created.

All procedure/function calls are replaced by the
corresponding begin-end block. In replacing a procedure
call, here is what happens:

• The begin-end block is obtained from the dictionary.
• For each value parameter which is assigned in the body

of the procedure, an assignment statement is placed
before call replacement occurs.

• All other parameters are symbolically replaced by the
actual parameters.

As an example, the procedure definition:

procedure P (v,x:integer; var y:integer);
var z:integer;
begin

z: = x;
x: = v + z + y;

end;

with the following call:

P(1, 2, k)

produces the code:

p _x: = 2;
p ___z: = p _x;

p _x: = 1 + p ___z + k;

Function call replacement is similar, and is explained in
Barbeau and Sarikaya14

. Recursion is not handled in the
present version of the tool.

computer communications

____________ protocol testing

Conditional statement elimination
Conditional statements in the transitions can be eliminated
by creating two or more equivalent transitions and
modifying the PROVIDED clause to reflect the condition
for taking this path. As an example, the transition of the
example protocol:

WHEN Map.transfer
PROVIDED PDU.kind = DT
FROM open TO same

begin
if (RCr <> 0) and (PDU.sendseq = TRseq) then
begin

end

TRseq: = TRseq + 1;
RCr: = RCr- 1;
OUTPUT TS.TDAT Aind(PDU.user_data,
PDU.end_of_ TSDU)

else error;
end;

produces the following normalized transitions:

trans
j015f
when Map.transfer
provided (PDU.kind = DT) and (RCr < > 0) and
(PDU.sendseq = TRseq)
from open
to open
begin

TRseq: = TRseq + 1;
RCr: = RCr - 1 ;
OUTPUT TS.TDATAind(PDU.user_data,
PDU.end_of_ TSDU)
end;

trans
j016f
when Map.transfer
provided (PDU.kind = DT) and not ((RCr < > 0)
and (PDU.sendseq = TRseq))
from open
to open
begin

error ja primitive procedure}
end;

Note that the normalized transitions are sequentially
numbered for each module, and all the transitions in the
second module (the AP module in the example protocol)
contain a 0 (zero) in the front, the third module a 00, and
so on.

Modification of the PROVIDED clause is complicated
in cases where the Boolean expression of the conditional
statement contains variables assigned in the same
transition before the conditional statement. Normalizer's
symbolic replacement feature is invoked in these cases.
The symbolic value of the variable is computed by
symbolic ~xecution, and this value replaces the variable
in the Boolean expression of the conditional statement 15

.

Elimination of the CASE statement is a generalization of
the IF statement, i.e. several transitions are created

vol 14 no 9 november 1991

corresponding to each arm of the case statement. Loop
statements (for and while) are eliminated by repeating the
body of the loop for every index variable value. In cases
where exhaustive enumeration is not possible, a limited
number (usually three) executions of the loop body is
considered.

FROM/TO clauses
This step simplifies FROM/TO clauses in a given specifica­
tion. State sets are eliminated by creating more than one
transition, one for each state in the set, such as in (taken
from alternating bit protocol):

from EITHER
to same

when U.RECEIVE_request
provided not buffer_empty(Recv_buffer)
begin

Q.Msgdata: = Retrieve(Recv_buffer);
output U.RECEIVE_response(Q.Msgdata);
Remove(Recv _buffer)

end;

where EITHER is a state set containing the states
ACK_WAIT and ESTAB. This transition transforms into:

trans
j2f
when u.receive_request
provided not buffer_empty(recv_buffer)
from estab
to estab
begin

l same as above f
end;

trans
j3f
when u.receive_request
provided not buffer_empty(recv_buffer)
from ack_wait
to ack_wait
begin

l same as above f
end;

WITH statements removal
The record variable access in a WITH structure is
appended to the beginning of each variable access inside
WITH's scope, provided that this variable is a field of the
type of the record variable access. For example, this WITH
statement block:

with B do
begin

ld : = ACK;
empty (Data); l no data for an ACKf
Seq : = Q.Msgseq;

end;

is changed to:

em pty(b_ack.data);
b_ack.seq: = q.msgseq;

537

protocol testing ___________ _

PDU field identification
The first phase of the normalizer produces a normalized
specification which should be submitted to the second
phase. The second phase has the aim of identifying the
PDU fields and making the PDU processing explicit in
both the channel definitions and transitions. Identification
of individual fields of all the input/output interactions is
necessary for the data flow graphs. For ASPs, Estelle
specifications contain an explicit list of fields, but such is
not the case of the PDUs. It is common practice to define
a single variant record for PDUs and identify them using an
identification field. In the example protocol specification
TPDUandCtrffnf is used to define the fields of all the PDUs
(DT, CR, CC, etc.), each identified by the field id_type.
The name of the variant record that defines the PDU fields
is provided by the user.

The normalizer modifies the channel definitions to
explicitly list the PDUs exchanged in interactions
happening on the channels. The channel definition
modifications for the example protocol follows. The
external interaction point ncepprims gets redefined as:

channel ncepprims(user, provider);
by user:

ndatareq_cc(nsdufragm:tpduandctrlinf_cc;
lastnsdufragm:boolean);

n datareq_cr(nsd ufragm :tpd uandctrl i nf _cc;
lastnsdufragm:boolean);

... jother PDUs, such as DR, DT, etc.f
by provider:

ndatareq_cc(nsdufragm:tpduandctrlinf_cc;
lastnsdufragm:boolean);

ndatareq_cr(nsdufragm:tpduandctrlinf_cc;
lastnsdufragm:boolean);

... jother PDUs, such as DR, DT, etc.f

The internal interaction pointpduandctrlprims becomes:

channel pduandctrlprims (protocol mapping);
by mapping:

transfer_cc(pdu:tpductrlinf_cc);

by protocol:
transfer_cc(pdu:tpductrlinf_cc);

After having processed the declaration part, the transitions
have to be modified so that input and output interactions
and assignment statements will explicitly indicate the
PDUs being exchanged or modified. First the PROVIDED
clause of the transition is scanned to find out if the
interaction name in the WHEN clause refers to one of the
PDUs. On the affirmative, the interaction name is changed
to the corresponding name in the channel definition. The
transition block is scanned next. Any references to the
PDU variant record are replaced in accordance with the
variant record's enumeration. OUTPUT statements are
modified to reflect the specific PDU which is the
output.

Second phase of normalization

The second phase of the normalizer generates as outputs

538

Figure 2. Interactive tools global structure

Data flow
representation

a normalized Estelle specification in printable format, and
three types of intermediary files explained below. These
files become input to the interactive tools component.

The normalizer extracts the name of the main module,
as well as any submodules, and creates an intermediary
file (with the .struct suffix) to become the static structure
representation in the form of a tree.

For each module, the normalizer extracts the names of
the inputs (WHEN clause), present states (FROM clause),
next states (TO clause) and outputs (OUTPUT clause),
and creates an intermediary file (.ctrl suffix) to become the
FSM representation (see Figure 2) .

The input to the data flow generation tool is a
description of the action part of the transitions in the form
of a node list and an arc list (.dtf suffix), also on a per
module basis.

Arrays and sets
Some processing is required to represent each array (set)
used in the specification with a single node in the data
flow graph. Array/set references in the transitions must be
eliminated and replaced by procedure and function calls
for assigning to an array and for accessing an array
element, respectively. An assignment statement of the
type:

a[i]: = b; is converted to a procedure call:
assign_array(a,i,b);

and an assignment of the type:

b: = a[i];

is converted to a function call:

b: = index_array(b,i);

Similar processing is done for set operations in the
transitions. This processing changes only the input to the
data flow graph generation tool (.dat files), and the source
text of the normalized specification remains unchanged15.

computer communications

Simplification

In this step PROVIDED clauses of the normalized
transitions are processed. Simplification looks for pre­
dicates such as:

PROVIDED a orb
!the rest of the transition f

and generates three transitions (from the truth table of
logical or) to replace the one above:

PROVIDED a and b jthe rest of the transition!
PROVIDED not a and b jthe rest of the transition!
PROVIDED a and not b the rest of the transition

This step facilitates automatic test data generation, since
each PROVIDED clause can be satisfied by assigning a
single value to each parameter of the input primitive (PDU
or ASP)16

.

After normalization we obtain 49 transitions for the
Map and 37 for the AP modules of the example protocol.
After simplification, the total number of transitions
increased to 88, i.e. only two more transitions were
added.

INTERACTIVE TOOLS

This section explains three tools: cgtool, dfgtool and
testgen; cgtool to display the structure and control graphs,
dfgtool to display the data flow graph, and then testgen to
generate test sequences. The structure of the interactive
tools is shown in Figure 2, which describes cgtool, testgen
and dfgtool from left to right.

Cgtool

Static modular decomposition of an Estelle specification
can be visualized in the form of a tree, called a structure
tree.

Major state changes from one normalized transition
to another is called control flow. Control flow is best
shown by a state diagram.

Cgtool first displays the structure tree based on the
.struct file. Figure 3 shows the structure tree of the
example specification called simple_tp. It has a tp_body
module which is decomposed into two modules,
ap_body and map_body. By clicking the mouse on the
nodes corresponding to modules the user can visualize
the control flow graphs which are displayed using .ctrl
files.

Cgtool is implemented in C. The graphs (structure tree
and FSM) are displayed by cgtool using Sun workstation
graphics 17

• The cgtool displays the machine by first laying
out the first node (specification name of the .struct file or
the initial state of the .ctrl file) and then the transitions
from the first node along with their next states in the
graphics workspace. Self-loop transitions are shown as
small circles around the state. The initial state is distin­
guished from the others by a special representation. On

vol 14 no 9 november 1991

protocol testing

simple_tp

0

Figure 3. Structure tree of simple_tp

each arc shown are the label(s) of the normal form
transition(s) (except for .struct, where there are no
transition numbers).

After displaying the control graph of the specification,
cgtool becomes a menu-driven interactive tool to let the
user move the states left, right, up and down as well as
compress/expand it horizontally/vertically by means of
the mouse. The graph can be saved anytime by a save
command in the menu. In this case, cgtool saves the
coordinates of the states, the control points of the curves
(outgoing and self-loop transitions). The info command in
the menu is for obtaining more information about the
transitions. The input and output interactions of any
normalized transition can be obtained by typing the
transition number at the subwindow created by the info
command. The FSM for ap_body module of transport
protocol is displayed in Figure 4.

Dfgtool

Actions of the normalized transitions can be seen as a
collection of operations which process parameters of the

Figure 4. Control graph for the ap__body

539

protocol testing ____________ _

input interactions (ASPs, internal interactions and/or
PDUs) in order to determine the values of parameters of
the output interactions. This processing is done using
context variables as storage and applying certain functions
such as arithmetic operations or abstract data type
operations on context variables. Thus we define value
changes on the context variables as data flow. Data flows
from the input interaction parameters to the context
variables, and from context variables to the output
interaction parameters. This leads to a natural graphical
representation of the actions of normalized transitions,
called a data flow graph (DFG). In the case of protocols,
generation of DFGs is only possible when PDU (being
input/output interactions) parameters are explicitly
identified. This point was discussed in the PDU field
identification section above.

Description of DFGs
In the upper part of the data flow graph, data sources
(input interaction parameters) are placed, and similarly,
data sinks (output interaction parameters) are placed in
the bottom. All other nodes are placed in the middle. The
arcs describe the information flow of the statements in
the actions. For example, for a simple assignment
statement, an arc is created from the source node (the
variable on the right hand side of the : = operator), to the
destination node (the variable on the left hand side of the
: = operator).

Procedure/function parameters are represented
depending on whether they are passed by value or by
reference: Value parameters are connected by an arc to
the node representing the procedure; reference para­
meters are connected to the node by a two directional
arc, since the parameter can be at times an input or
an output.

The arcs are labelled with the number of the normalized
transition in which the statement it models can be found.
A given transition number can be found on more than one
arc since, in general, a transition contains more than one
statement. The same assignment statement occuring in
more than one transition is represented with a single arc
containing a list of transition numbers. A given operation
(procedure/function call) used in different places is
separately represented one for each of its applications.
Thus a given procedure identifier can appear more than
once in the data flow graph. The enabling predicates of
the transitions, i.e. the PROVIDED clauses are not
explicitly represented in the DFG to avoid cluttering of the
graph; these predicates are taken into account during test
generation.

We define six types of nodes in a data flow graph: El
(EO) nodes representing input (output) ASP parameters; II
(10) nodes representing input (output) PDU and internal
interaction (if any) parameters; D-nodes for the variables;
and F-nodes for the functions. Input/output nodes are
represented with the same icon, and the differentiation is
made by position (top screen for I and bottom screen for
0-nodes) and by reverse-videoing the node names of the
internal nodes (II or 10).

A DFG from the example protocol is shown in Figure 5.
The normalized transition 011 reads as:

540

any reason:reasontp do
provided reason <> ts_user_init
from open to waitdc
begin

end;

output ts.tdisind(reason);
pdu_dr_pdu_dr.disc_reason: = reason;
pdu_dr_pdu_dr.is_last_pdu: = false;
pdu_dr_pdu_dr.order: = destructive;
output map.transfer_dr(pdu_dr_pdu_dr)

The first output statement and the following two assign­
ment statements are shown by three different arcs in this
figure.

DFG generation
The dfgtool is also implemented in C. The normalization
phase generates an internal representation of the graph
consisting of the nodes and the arcs in separate files for
each module. Dfgtool uses Sun workstation graphics
facilities to display the graph.

The dfgtool, like cgtool has a menu-driven interactive
user interface. The graph can be scrolled to left (right)
using the left (right) menu command; blocks can be
displaced and the screen can be refreshed using the
move-block and redisplay commands, respectively.
Straight-line arcs can be replaced by curves using the
curve menu button.

Partitioning the DFG and block merging
A data flow graph can be partitioned into blocks, a block
representing the flow over a single context variable. The
partitioning algorithm used in the tool creates a separate
block from each D-node, and includes into this block all
nodes that are linked (by incoming and outgoing arcs).
Dfgtool, when called, displays the partitioned DFG of the
module with vertical lines between each block.

Sarikaya3 has shown that by merging some of the
blocks, it is possible to obtain representations of most of
the protocol functions (usually identified as data transfer
for sending, data transfer for receiving and flow control for
sending and receiving, etc.). Some of the rules for merging
to be applied until no further merging can be accomplished
are summarized.

Blocks Bi and Bj can be merged if their output nodes
are of the same data type. If the types of the input nodes
of Bi are also contained in the output nodes of Bj, the two
blocks could be merged. Blocks Bi and Bj containing the
data nodes that are related could be merged.

Merging can only be automated to some extent since
what variables were used to specify a protocol function is
a piece of information that cannot be extracted auto­
matically. The dfgtool does not attempt automatic
merging, but its menu contains a number of menu
commands to facilitate interactive merging.

The merge-help command, when invoked, displays a
menu with three choices: possible merges to give a list of
blocks that can be merged; general information to display
information to guide the user in doing further merges; and
quit to return to the main menu. The possible merges list
is obtained from the types ofthe input/output interaction

computer communications

disconnection

Figure 5. DFG of the ap_body module

parameters, i.e. blocks containing input or output inter­
action parameters which are of the same type can be
merged. The merge command does the physical merging.
The name-block command lets the user give names to the
blocks to be later used as test purposes by the testgen
tool. The names are displayed at the top of each block.
Initially, dfgtool displays the blocks with default names
(block1, ... blockn). The write command saves the block
names given and the list of merged blocks in that session.
The save command also creates a file (.dat file) containing
function names and all the distinct transition numbers of
the arcs that exist in the function. Using just the quit
command exits the tool without saving the changes.

Block merging process yields 11 functions for the
example protocol: sender credit value, options, acknow­
ledgements, disconnection (see Figure 5), etc., for the
ap_body and disconnection, fragmentation, etc., for the
map_body module. In most cases, the functions will be
specific to the modules, while rarely a given function
(disconnection, for example) will have some flow in more
than one module.

Testgen

The last interactive component of Contest-Est! is the test
sequence generation (testgen) tool. It is invoked after

vol 14 no 9 november 1991

protocol testing

...
tconresp-acc

displaying the control graph and the data flow graph, and
after block merging of all the modules is completed.
Testgen generates sequences of interactions from the
control graph(s), lets the user incorporate the effect of the
enabling conditions (PROVIDED clause) of the normalized
transitions into these sequences, and then generates test
sequences to effectively cover the data flow in each
function.

Testgen is implemented in C with an interface to the
workstation graphics software to create menus and text
subwindows. Its different components are explained in
the sequel.

Subtours generation
To be able to handle modular specifications, we extend
traditional definitions of transition tour and subtour18

· 19 .

A depth-first coverage of the transitions of all the modules
is called a transition tour. Each subsequence of a transition
tour that starts and ends in the initial state(s) is called a
subtour. The subtours have the interpretation that they
result in the interaction sequences of the tests with
distinct interpretation. They include a number of phases,
and these phases give rise to a useful interpretation by the
test designer such as subtours for data transfer tests, call
refusal tests, etc.

Subtours generation component of testgen is called
mstourgen. It takes the FSM representation(s) (.ctrl files) as

541

protocol testing ____________ _

input, generates a transition tour and then divides it into
subtours.

The main difficulty in generating a multiple module
tour generation is in avoiding deadlocks. Transitions
which take their input from internal channels cannot be
directly executed. Before an output is sent to the internal
channel, the other module must be checked to see if it is
in a state that can accept the output. We also make sure
that the resulting tests are synchronizable18

.

For the example protocol, the initial states of the
modules are: idle for map_body and closed for ap_body.
The first transition included in the tour is the transition 01
of ap_body:

closed ts.tconreq [map.transfer_cr] waitcc 01

which means that ts (transport user) sends tconreq, since
ap_body is ready to accept it. Since ts sent the last ASP to
ap_body, and map_body may consume tconreq
immediately, both may next fire a transition. Then some
spontaneous transitions are selected:

idle ap.transfer_cr nil idle 6 {idle is the only state
waitcc ts.u_ready nil waitcc 021 of map_bodyl
waitcc nil [ts.ready] waitcc 036
idle nil nil idle 9

At this point, transition 43 in map_body sends
transfer_cc to ap_body and transition selection con­
tinues. Complete transition tour is not listed to save
space.

A possible extension of mstourgen is in incorporating
the effects of process/activity attribute of Estelle module
bodies. The result would be to reveal possible parallelism
in transition execution, e.g. process transitions are
allowed to execute in parallel. Mstourgen could be
modified to generate subtours in tree form instead of in
linear list form by considering parent-child relationships of
modules and processes and activities. It can be shown
that only events (inputs and outputs) need be considered
for such a modification.

Edit-tour
Subtours are a way of sequencing the normalized
transitions based on the state sequence, without con­
sidering semantic information such as enabling conditions
of the normalized transitions. Some of the subtours may
be infeasible, i.e. this sequence of transitions cannot be
executed due to conflicting enabling predicates. Auto­
matic elimination of the infeasible paths is in general
unsolvable 10• Edit-tour is designed to help the user to
interactively go through the subtours and then modify
should an infeasible path be detected.

Edit-tour displays the transition numbers in one of the
windows, the current subtour in another, and finally the
text of the normalized transitions that occur in the subtour
in a text subwindow that could be scrolled. The user can
identify any conflicts in the PROVIDED clauses of any
transition that follows each other. Edit-tour lets the user
interactively update the tour. An example display from
edit-tour is shown in Figure 6. As we see from the figure,

542

NEXTSUBTOUR IIPREVIOUSSUBTOURI ~I =O=IS=PL=AY==I ~I ==UP=DA=TE==

ADD SUBTOUR II WRITE II tp body I L...l ___;m.='Po,:-b:=odO'--y _

ap_body II QUIT I

DISPLAY MODE: Z ESTELLE
select with left mouse button
Subtour- 1

~0162144648 .. ,.
trans

{ 011
when ts-tconreq
from closed
to waitcc
begin

opts : = propopts;
pdu_cr _pdu_cr _peeraddr : = destaddr;
pdu-cr _pdu_cr _opts_lnd : = opb;
pdu-cr_pdu-Cr-crvl := rcr;
pdu-tr-pdu_cr-order :=first;
cr _pdu.lLcr :"" pdu-cr _pdu-cr;
output map.transfer ..crier _pdu...B_cr)

end

trans
(B)

any t-suf: t-suftp; epid: tceptdtp do
when ap lt-suf, epid) .transfer _cr

.& from idle ,.

Figure 6. Test sequence display

edit-tour lets the user select the next/previous subtour
generated by mstourgen, add a completely new subtour,
and see the transitions of the main module (tp_body)
and its submodules (map_body and ap_body). When
the editing is completed, the user chooses the write
button to save the results, or otherwise quits without
saving.

Edit-tour can also be used in incorporating transition
priorities into the subtours. The user can easily change the
order of tr~msitions in a subtour to give the effect of the
priority clause.

Test sequence generation
Data flow functions obtained from dfgtool must be tested
using the subtours obtained from the control graph. For
this purpose, testgen uses the files (with .dat suffix)
created by dfgtool, then generates a full coverage of each
of the data flow functions by subtours. If a single subtour
covers all the labels in a given function, it is this subtour
which is used. If there is more than one subtour which
covers all the labels then the longest subtour is (arbitrarily)
selected, otherwise testgen selects more than one
subtour for full coverage. This way a definition-use
coverage of all context variables is assured20

, i.e. the
resulting test sequences contain all the transitions that
first define a variable (aD-node) and then use it, and this is
true for all the variables. Definition in the DFG is
characterized by an incoming arc and use by an outgoing
arc. Since we generate the subtours that cover all the arcs,
the definition-use coverage is thus achieved.

As an example, the disconnection function of the
example protocol contains the arcs labelled by:

03 04 07 08 09 010 011 012 013 20 21 23 24

and this flow could be completely covered by seven
subtours out of which we list a single one:

idle ns.ndataind [ap.transfer_cr] 31
closed map.transfer_cr [ts.tconind] 05

computer communications

waittconresp ts.tdisreq [map.transfer_dr] 07
idle ap.transfer_dr nil 4
idle nil [ns.ndatareq] 23
closing map.term [ts.tdisconf] 013

lTCN test cases

Linear test sequences generated by testgen expose the
interactions that occur at internal interaction points.
However, nondeterminism in protocol specifications
require special processing, therefore these sequences are
not suitable to be represented as test cases in TTCN, the
standard test suite notation. Recently, we have developed
a tool that derives TTCN test steps from normalized
transitions and test cases from the subtours. In converting
a normalized transition into a test step, spontaneous
transitions are considered to provide alternative test
events. To these alternatives a timeout event alternative is
added should the spontaneous transition contain a delay
clause. Constraints for the receive and send events are
generated from the PROVIDED clauses and the assign­
ments in the actions21

.

APPLICATIONS AND PERFORMANCE

Contest-Est! has been used to generate (linear) test
sequences for TP2, FTAM22, ISDN LAPD16 and ISDN
Network layer23

• TICN test cases are generated for TP2
and ISDN LAPD16

. We discuss some performance
measures of non-interactive components of the tool on
these applications. Thereafter we give similar measures
for the TICN test cases.

Table 1 summarizes the performance of the compiler
component on TP2, FTAM and LAPD applications. The
runtime is an average of 10 compilations. Table 2
summarizes the performance of the normalizer for the
same three applications. The runtime is a summation of
the runtimes of the first and second phases of
normalization.

For the two applications where TTCN test cases were
generated, Table 3 gives the number of transitions after
normalization, after simplification, number of data flow
functions and number of (TICN) test cases. In Table 4 the
runtime measures for simplification, multiple module tour
generation (mstourgen), TICN test step, and finally TTCN
test case generation are given.

The tables show that the tool takes time proportional
to the number of transitions and PDUs and ASPs in the

protocol testing

input specification. Table 4 indicates that mstourgen is
slow in cases of considerably large specifications.

CONCLUSIONS

A formal specification-based test sequence generation
tool is presented. This prototype tool handles modular
specifications by graphically displaying the control and
data flow graphs of each module of the specification as
well as generating the test sequences. The tool has
recently been used to generate test sequences for several
real protocols, such as TP2, FTAM and ISDN Q.921 and
Q.931. Several performance measures on these applica­
tions indicate that the non-interactive parts of the tool are
fast enough to effectively help the test designer in
interactively designing test cases.

Extensions of the tool to cover aspects of Estelle such
as system process/activity and priority clause could be
achieved by improvements on two components: edit­
tour for transition priorities, and mstourgen for parallel
transition execution. Further research is needed in
determing the importance of these extensions for con­
formance testing, which is the main application domain of
the tool. It is also interesting to investigate how the tool
could be extended to handle application layer protocols.
Further development on the tool could be done by
rewriting the normalization in a language such as C to
increase its execution time performance, and porting the

Table 1. Compiler module performance

Input
specification

TP2
FTAM
LAPD

Size of
input (lines)

786
1,750
2,769

Size of
output (syntax
tree, bytes)

19,051
41,904
73,356

Table 2. Normalizer performance

Input No. of No. of
specification transitions transitions

before after

TP2 24 86
FTAM 36 103
LAPD 135 410

Runtime
(seconds)

5.43
11.93
16.35

Runtime
(seconds)

226.353
212.932
721.539

Table 3. Results of the application of the tool on LAPD and TP2

Specification

TP2
LAPD

No. of transitions
after normalization

86
410

vol 14 no 9 november 1991

No. of transitions
after simplification

88
490

No. of data
flow functions

11
19

No. of test cases

53
1094

543

protocol testing ____________ _

Table 4. Runtimes of several steps in TTCN test case
generation (s)

Specification Simplification mstourgen Test Test
step case

TP2 2.5 14 19.8 1.6
LAPD 17.5 9334 48.3 36.0

tool to other platforms such as personal computers would
increase acceptability among the user community.

ACKNOWLEDGEMENTS

This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

1 ISO/IEC)TC1/SC21, 'Estelle: A Formal Description
Technique Based on an Extended State Transition
Model', IS 9074, ISO, Geneva, Switzerland (November
1988)

2 ISO/IEC)TC1/SC21/WG1, 'Conformance Testing
Methodology and Framework', DIS 9646, ISO, Geneva,
Switzerland (1989)

3 Sarikaya, B, von Bochmann, G and Cerny, E 'A test
design methodology for protocol testing', IEEE Trans.
Softw. Eng. (May 1987) pp 531-540

4 Vuong, S T, Chau, A C and Chan, R !'Semi-automatic
implementation of protocols using an Estelle-C
compiler' IEEE Trans. Softw. Eng. (March 1988),
pp 384-393'

5 National Bureau of Standards, User Guide for the NBS
Prototype Compiler for Estelle, I CST /SNA-87 /3
(October 1987)

6 Courtiat, .J-P 'Estelle and Petri nets: a PETRI NET
based semantics for Estelle', in Diaz, M, Ansart, J-P,
Courtiat, J-P, Azema, P and Chari, V (eds.), The
Formal Description Technique Estelle - Results of the
SEDOS Project, North Holland Oanuary 1989)

7 Jard, C, Groz, R and Monin, J-F 'Development of
VEDA: a prototyping tool for distributed algorithms',
IEEE Trans. Softw. Eng. (March 1988)

8 Boyce, TT and Probert, R L 'Phase-directed testing of
Estelle specifications', in deMeer, J, Mackert, L and

544

9

10

Effelsberg, W (eds.), Protocol Test Systems, North
Holland (1990) pp 319-326
Warren, D H D 'Logic programming and compiler
writing', Softw.-Pract. & Exper., Vol1 0 (1980)
pp 97-125
Clarke, L A and Richardson, D J 'Applications of
symbolic evaluation',). Syst. & Software, Vol 5 No 1
(1985)

11 Sterling, L and Shapiro, E The Art of Prolog, MIT
Press, MA, USA (1986)

12 Sidhu, D P 'Protocol verification via executable logic
specifications', IFIP PSTV Ill Oune 1983) pp 237-
248

13 Ural, H and Probert, R L 'Step-wise validation of
communication protocols and services', Comput.
Networks & ISDN Syst Vol11 No 3 (1986)
pp 183-202

14 Barbeau, M and Sarikaya, B 'A computer-aided
design tool for protocol testing', INFOCOM'BB (April
1988) pp 86-95

15 Koukoulidis, V Full Implementation of a Protocol
Test Design Methodology, MSc Thesis, Concordia
University (March 1989)

16 Forghani, B Automatic Test Suite Derivation from
Estelle Specifications, MSc Thesis, Concordia
University (February 1990)

17 SUN-MICROSYSTEMS, Programmer's Reference
Manual for Sunwindows (1985)

18 Sarikaya, B and von Bochmann, G 'Synchronisation
and specification issues in protocol testing' IEEE
Trans. Commun., Vol COM-32 No 4 (1984)
pp 389-395

19 Dahbura, A, Sabnani, K, and Uyar, U 'Formal
methods for generating protocol test sequences',
IEEE Proc. (1990)

20 Ural, H 'Test sequence selection based on static data
flow analysis', Comput. Commun., Vol1 0 No 5 (1987)
pp 234-242

21 Forghani, B and Sarikaya, B 'Automatic dynamic
behavior derivation from Estelle specifications', in
deMeer, J, Mackert, L and Effelsberg, W (eds.),
Protocol Test Systems, North Holland (1990)

22 Barbeau, M, Eswara, S, Koukoulidis, V and Sarikaya,
B 'FTAM test design using an automated test tool',
Proc. INFOCOM 89, Ottawa, Canada (April 1989)

23 Amalou, M, and von Bochmann, G Conformance
Test Design for ISDN D-Channel Q.931 Signalling
Protocol from an Estelle Specification, Technical
Report, University of Montreal (1990)

computer communications

