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Estelle-based test 
generation tool 

Beh«;et Sarikaya, Behdad Forghani* and Srinivas Eswara* pres~nt a test 
design tool, using an extended FSM model, for functional analys1s and test 

derivation of protocols 

A test design tool for functional analysis and test derivation 
of protocols formally specified using an extended ~in~te­
state machine model is presented. The formal descrtpt1on 
language supported is Estelle. The tool's main components 
include a compiler, a normalizer, a multiple module 
transition tour generator and several interactive programs. 
The tool is based on a static analysis of Estelle called 
normalization, which is explained in detail with various 
examples. The normalized specification facilitates graphical 
displays of the control and data flow in the specification by 
the interactive tools. Next discussed is test generation, 
which is based on verifying the control and data flow. First 
the data flow graph must be decomposed into blocks 
where each block represents the data flow in a protocol 
function. From the control graph the tool generates 
transition tours, and then test sequences are derived from 
the transition tour to test each function. The performance 
of the tool on various applications ·is also included. 

Keywords: specification languages, conformance testing, 
functional testing, data flow graphs 

Distribution system specification and analysis have 
recently been an area of active research and development. 
An area of distributed system research that is of interest to 
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us in this paper is communication protocols (providing 
reliable communication in distributed systems). 

To provide reliable communication among computers 
from different manufacturers the Open Systems Inter­
connection (OSI) reference model has been defined to 
structure protocols in various layers. What makes OSI 
work is the standardization of its protocols and services. 
Standard definitions are presently given in natural language, 
and because of this the definitions contain ambiguities 
and are imprecise. Standardization institutions such as 
ISO and the CCITI have defined formal languages with 
which protocols and services can be specified. The 
language which is of interest to us in this paper is Estelle 1• 

Estelle is based on an extended finite-state machine 
model. 

Protocols and services of OSI are complex. They have 
to be thoroughly tested before being incorporated in the 
system. Another related activity is testing for confor~anc.e 
to the protocol specification. Conformance test1ng 1s 
usually undertaken by national or international institu­
tions. There are two major aspects of conformance 
testing: defining the environment in which an i~~le­
mentation under test (IUT) will be tested; and defmmg 
the tests to be applied to the IUT2

. 

Automated test design for protocols can be done using 
an FSM model and deriving test sequences from this 
model. However, FSMs lead to state-explosion when one 
tries to model important features of protocols such as 
interaction parameters and certain features of data 
transfer such as sequence numbers. 

The computer-aided test design tool, nick-named 
Contest-Est!, is an implementation of a functional formal 
specification (Estelle)-based test design methodology3• 
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While the tests obtained from FSM-based tools can only 
have a limited control flow coverage, our tool provides 
facilities to derive tests to fully cover the control and data 
flow. We introduce Estelle below, along with the structure 
of the tool. The compiler and the normalizer are 
discussed, and the interactive tools examined. Per­
formance of the tool on various applications is also 
given. 

EXTENDED FINITE-STATE MACHINE MODEL 

EFSM model describes the system (protocol) as a 
collection of modules. Each module is a finite-state 
machine capable of having memory, i.e. extended finite­
state machine. Modules of an entity can communicate 
with each other as well as with the environment over 
channels (FIFO queues). Service primitives (exchanged 
with bottom and upper layer entities) and internal 
interactions (with other modules) are communicated in 
the channels. Protocol data units (PDUs), i.e. messages 
exchanged between two protocol entities, need not be 
explicitly defined, but are encoded and introd.uced as 
parameters to the service primitives. Decomposition of an 
entity into modules is usually functional: a module for 
timer management; a mapping module to map the PDUs 
into interactions with the environment, i.e. abstract 
service primitives (ASP); an abstract protocol module for 
handling service primitives and forming PDUs, etc. . 

The language of Estelle is based on Pascal w1th 
extensions to facilitate protocol specification. To save 
space we only describe the constructs related to transi­
tions. FROM/TO clauses define initial/final state(s) of the 
finite-state machine, respectively. The arrival of an input 
interaction is expressed using WHEN. Transitions with no 
WHEN clause are called spontaneous. The conditions for 
firing the transition are described in~ PROV.IDED ~la.u~e, 
which is a Boolean expression on mteract1on pnm1t1ve 
parameters and variables of the module. Variables of the 
module are called context variables. Finally, the action of 
the transition is contained in a BEGIN block which can 
have assignments to context variables, calls to internal 
procedures, Pascal conditional statements and produce 
output with the OUTPUT statement. 

Estelle supports nondeterminism (internal decisions of 
the entity, for example) by way of spont~~eous transiti?ns, 
and by allowing more than one trans1t1on from a g1ven 
major state to have their predicates enabled. Once a 
transition is enabled, its execution is atomic. Abstractness 
of the specification, i.e. being away from implementation 
considerations could be achieved through the use of 
incomplete type definitions using the three-dot notation, 
such as in: 

buffer_type = ... ; 

and the use of abstract data types (buffer_type above is 
an abstract data type) with their operations defined as 
primitive procedures and functions. 

It is possible to semi-automatically generate execut~ble 
code from Estelle specifications. To this end, vanous 
translators (so called compilers) of Estelle have been 
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developed4
• 

5
. Semantics of Estelle is discussed in 

Courtiat 896
, validation tools based on Estelle have been 

developed7
, and test design for different phases of 

protocols is discussed in Boyce and Probert8. 

The specification in Estelle of a simplified transport 
protocol, hereafter called TP2, will be used as an example 
in the paper. This specification describes the transport 
entity composed of two modules: the Abstract Protocol 
Module (called ap_body) which handles protocol 
functions and interacts with the users; and the Mapping 
Module (called map_body), which handles the mapping 
of the transport PDUs into network service data units, and 
vice versa. The ap_body module body contains 20 
transitions and the map_body has four transitions. 

Contest-Est! accepts all of the constructs of Estelle. It 
extends the subset of Estelle that is covered by the test 
design methodology3 to handle modular specifications, 
nondeterminism and all Pascal constructs except pointers. 
No specific action is taken for Estelle features such as 
dynamic module creation/destruction, (system) process/ 
activity, and transition priorities in the present version. 

TOOL STRUCTURE 

Contest-Est! takes an Estelle specification and semi­
automatically produces tests for the input specification. 
Figure 1 shows the global structure of the tool. Each of ~he 
three components are explained in detail in the followmg 
sections, while this section gives an overview of each. 

After compilation the normalizer is activated. The 
process of normalization transforms t~~ i~put sp~ci­
fication into another (Estelle) speof1cat1on whiCh 
(possibly) contains more transitions, each having si~gle 
paths. Such a specification is called a normaltzed 
specification. In a normalized specification we identify 
two types offlows: control flow, which models major state 
changes from one transition to another; and data flow, 
which models flow from input primitive parameters 
(service primitives and/or PDUs) to context variables, and 
from context variables to the output primitive parameters. 
The normalizer generates intermediary forms for these 
graphs which are passed to the interactive tools. 

The interactive tools display the control and data flow 
graphs, and finally generate test. sequences. A: repres:nta­
tion of various protocol funct1ons can be mteract1vely 
obtained from the data flow graph. The transition 
subtours obtained from the control graph yield the 
sequences of interactions to effectively test each function. 
Most of these functions can be tested independent of 
each other with the application of the transition subtours. 

COMPILER 

To ensure a correct specification for the normalizer, the 
input specification is syntactically and semantically 

Estelle 
spec. 

Figure 1. Global structure of Contest-Est/ 

Tests 
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analysed. There are virtually four phases of processing the 
input Estelle specification: lexical analysis, syntactic 
analysis, semantic analysis and global parse tree and 
symbol table construction. In the actual implementation 
we combine all these phases together into a single pass 
through the Estelle source code. Our compiler module is 
implemented using the standard tools Lex and Yacc 
available in the Unix operating system, and its structure is 
inspired from the NIST Estelle compiler5• 

Since normalization is implemented in Prolog, we 
convert the parse tree to a Prolog clause using a 
conversion program written in C. This program converts 
the symbol table into a sorted tree structure called a 
dictionary9. A dictionary is defined recursively: 

die( <name>,<value>,<dic-1 >,<dic-2>) 

pairs <name> with <value>, where <dic-1 >and <dic-2> 
are subdictionaries. The dictionary is ordered with respect 
to <name>. 

Normalizer 

The normalizer works in two steps: first, a kind of symbolic 
execution is applied to the input specification to trans­
form it to a normalized specification. The normalized 
specification can be inspected and modified by the user. 
Next, we use the compiler module again to do syntactic 
and semantic checks on this normalized specification, 
and extract the control and data flow information from it 
to be used by the interactive tools. 

Symbolic execution is a technique for static program 
analysis 10. It has been used for program verification and 
testing. An Estelle specification can be symbolically 
executed for the purpose of identifying all the control 
paths. It is also possible to express these paths as distinct 
transitions using the Estelle syntax. 

In Contest-Est! we use Prolog for normalizing Estelle 
specifications. Prolog has been used for implementing 
language processors including compilers in a compact 
way (possibly less efficient in terms of execution time) 11

• 

Other uses of Prolog in protocol analysis and testing are 
discussed in Sidhu 11 and Ural and Probert13. 

Normalization is done in various steps. Basic nor­
malization, as described elsewhere3

, is implemented as 
follows: body replacements are done for local procedure 
and function calls; conditional statements (IF, CASE) are 
eliminated; FROM and TO clauses are processed so that 
each transition contains at most a single major state 
change. Provided clauses are put into disjunctive normal 
form with the elimination of ORs. Extensions to the basic 
normalization include the following: declarations are 
processed to simplify the complex data structures such as 
variant records; WITH statements are removed by record 
structure replacements. Each module of the specification 
is treated independently, resulting in a normalized 
specification for each module. Steps of normalization are 
detailed in what follows. 

Processing the declarations 
Variant records are converted into records enumerating all 
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case constants. For example, the following variant record 
defining the PDUs of the alternating bit protocol: 

ld_type = (DT,AK); 
Ndata_type = 

record 
Conn: Cep_type; 
case ld: ld_type of 
DT: (Data: U_Data_type); 
ACK: (Seq: Seq_type); 

end; 
gets expanded to: 

ndata_type_dt = 

record 
conn: cep_type; 
data: u_data_type 

end; 
ndata_type_ack = 

record 
conn: cep_type; 
seq: seq_type 

end; 

Procedure/function call elimination 
Each procedure/function body definition is converted to 
an internal representation to facilitate replacement 
procedure. Local variables are converted to global 
variables with unique identifiers, and a global variable is 
sometimes created for each parameter which is called by 
value, i.e. when the parameter is assigned a value. For the 
result returned by each function, a global variable is 
created. 

All procedure/function calls are replaced by the 
corresponding begin-end block. In replacing a procedure 
call, here is what happens: 

• The begin-end block is obtained from the dictionary. 
• For each value parameter which is assigned in the body 

of the procedure, an assignment statement is placed 
before call replacement occurs. 

• All other parameters are symbolically replaced by the 
actual parameters. 

As an example, the procedure definition: 

procedure P (v,x:integer; var y:integer); 
var z:integer; 
begin 

z: = x; 
x: = v + z + y; 

end; 

with the following call: 

P(1, 2, k) 

produces the code: 

p _x: = 2; 
p ___z: = p _x; 

p _x: = 1 + p ___z + k; 

Function call replacement is similar, and is explained in 
Barbeau and Sarikaya14

. Recursion is not handled in the 
present version of the tool. 
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Conditional statement elimination 
Conditional statements in the transitions can be eliminated 
by creating two or more equivalent transitions and 
modifying the PROVIDED clause to reflect the condition 
for taking this path. As an example, the transition of the 
example protocol: 

WHEN Map.transfer 
PROVIDED PDU.kind = DT 
FROM open TO same 

begin 
if (RCr <> 0) and (PDU.sendseq = TRseq) then 
begin 

end 

TRseq: = TRseq + 1; 
RCr: = RCr- 1; 
OUTPUT TS.TDAT Aind(PDU.user_data, 
PDU.end_of_ TSDU) 

else error; 
end; 

produces the following normalized transitions: 

trans 
j015f 
when Map.transfer 
provided (PDU.kind = DT) and (RCr < > 0) and 
(PDU.sendseq = TRseq) 
from open 
to open 
begin 

TRseq: = TRseq + 1; 
RCr: = RCr - 1 ; 
OUTPUT TS.TDATAind(PDU.user_data, 
PDU.end_of_ TSDU) 
end; 

trans 
j016f 
when Map.transfer 
provided (PDU.kind = DT) and not ((RCr < > 0) 
and (PDU.sendseq = TRseq)) 
from open 
to open 
begin 

error ja primitive procedure} 
end; 

Note that the normalized transitions are sequentially 
numbered for each module, and all the transitions in the 
second module (the AP module in the example protocol) 
contain a 0 (zero) in the front, the third module a 00, and 
so on. 

Modification of the PROVIDED clause is complicated 
in cases where the Boolean expression of the conditional 
statement contains variables assigned in the same 
transition before the conditional statement. Normalizer's 
symbolic replacement feature is invoked in these cases. 
The symbolic value of the variable is computed by 
symbolic ~xecution, and this value replaces the variable 
in the Boolean expression of the conditional statement 15

. 

Elimination of the CASE statement is a generalization of 
the IF statement, i.e. several transitions are created 
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corresponding to each arm of the case statement. Loop 
statements (for and while) are eliminated by repeating the 
body of the loop for every index variable value. In cases 
where exhaustive enumeration is not possible, a limited 
number (usually three) executions of the loop body is 
considered. 

FROM/TO clauses 
This step simplifies FROM/TO clauses in a given specifica­
tion. State sets are eliminated by creating more than one 
transition, one for each state in the set, such as in (taken 
from alternating bit protocol): 

from EITHER 
to same 

when U.RECEIVE_request 
provided not buffer_empty(Recv_buffer) 
begin 

Q.Msgdata: = Retrieve(Recv_buffer); 
output U.RECEIVE_response(Q.Msgdata); 
Remove(Recv _buffer) 

end; 

where EITHER is a state set containing the states 
ACK_WAIT and ESTAB. This transition transforms into: 

trans 
j2f 
when u.receive_request 
provided not buffer_empty(recv_buffer) 
from estab 
to estab 
begin 

l same as above f 
end; 

trans 
j3f 
when u.receive_request 
provided not buffer_empty(recv_buffer) 
from ack_wait 
to ack_wait 
begin 

l same as above f 
end; 

WITH statements removal 
The record variable access in a WITH structure is 
appended to the beginning of each variable access inside 
WITH's scope, provided that this variable is a field of the 
type of the record variable access. For example, this WITH 
statement block: 

with B do 
begin 

ld : = ACK; 
empty (Data); l no data for an ACKf 
Seq : = Q.Msgseq; 

end; 

is changed to: 

em pty(b_ack.data); 
b_ack.seq: = q.msgseq; 
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PDU field identification 
The first phase of the normalizer produces a normalized 
specification which should be submitted to the second 
phase. The second phase has the aim of identifying the 
PDU fields and making the PDU processing explicit in 
both the channel definitions and transitions. Identification 
of individual fields of all the input/output interactions is 
necessary for the data flow graphs. For ASPs, Estelle 
specifications contain an explicit list of fields, but such is 
not the case of the PDUs. It is common practice to define 
a single variant record for PDUs and identify them using an 
identification field. In the example protocol specification 
TPDUandCtrffnf is used to define the fields of all the PDUs 
(DT, CR, CC, etc.), each identified by the field id_type. 
The name of the variant record that defines the PDU fields 
is provided by the user. 

The normalizer modifies the channel definitions to 
explicitly list the PDUs exchanged in interactions 
happening on the channels. The channel definition 
modifications for the example protocol follows. The 
external interaction point ncepprims gets redefined as: 

channel ncepprims(user, provider); 
by user: 

ndatareq_cc(nsdufragm:tpduandctrlinf_cc; 
lastnsdufragm:boolean); 

n datareq_cr(nsd ufragm :tpd uandctrl i nf _cc; 
lastnsdufragm:boolean); 

... jother PDUs, such as DR, DT, etc.f 
by provider: 

ndatareq_cc(nsdufragm:tpduandctrlinf_cc; 
lastnsdufragm:boolean); 

ndatareq_cr(nsdufragm:tpduandctrlinf_cc; 
lastnsdufragm:boolean); 

... jother PDUs, such as DR, DT, etc.f 

The internal interaction pointpduandctrlprims becomes: 

channel pduandctrlprims (protocol mapping); 
by mapping: 

transfer_cc(pdu:tpductrlinf_cc); 

by protocol: 
transfer_cc(pdu:tpductrlinf_cc); 

After having processed the declaration part, the transitions 
have to be modified so that input and output interactions 
and assignment statements will explicitly indicate the 
PDUs being exchanged or modified. First the PROVIDED 
clause of the transition is scanned to find out if the 
interaction name in the WHEN clause refers to one of the 
PDUs. On the affirmative, the interaction name is changed 
to the corresponding name in the channel definition. The 
transition block is scanned next. Any references to the 
PDU variant record are replaced in accordance with the 
variant record's enumeration. OUTPUT statements are 
modified to reflect the specific PDU which is the 
output. 

Second phase of normalization 

The second phase of the normalizer generates as outputs 
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Figure 2. Interactive tools global structure 

Data flow 
representation 

a normalized Estelle specification in printable format, and 
three types of intermediary files explained below. These 
files become input to the interactive tools component. 

The normalizer extracts the name of the main module, 
as well as any submodules, and creates an intermediary 
file (with the .struct suffix) to become the static structure 
representation in the form of a tree. 

For each module, the normalizer extracts the names of 
the inputs (WHEN clause), present states (FROM clause), 
next states (TO clause) and outputs (OUTPUT clause), 
and creates an intermediary file (.ctrl suffix) to become the 
FSM representation (see Figure 2) . 

The input to the data flow generation tool is a 
description of the action part of the transitions in the form 
of a node list and an arc list (.dtf suffix), also on a per 
module basis. 

Arrays and sets 
Some processing is required to represent each array (set) 
used in the specification with a single node in the data 
flow graph. Array/set references in the transitions must be 
eliminated and replaced by procedure and function calls 
for assigning to an array and for accessing an array 
element, respectively. An assignment statement of the 
type: 

a[i]: = b; is converted to a procedure call: 
assign_array(a,i,b); 

and an assignment of the type: 

b: = a[i]; 

is converted to a function call: 

b: = index_array(b,i); 

Similar processing is done for set operations in the 
transitions. This processing changes only the input to the 
data flow graph generation tool (.dat files), and the source 
text of the normalized specification remains unchanged15. 
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Simplification 

In this step PROVIDED clauses of the normalized 
transitions are processed. Simplification looks for pre­
dicates such as: 

PROVIDED a orb 
!the rest of the transition f 

and generates three transitions (from the truth table of 
logical or) to replace the one above: 

PROVIDED a and b jthe rest of the transition! 
PROVIDED not a and b jthe rest of the transition! 
PROVIDED a and not b the rest of the transition 

This step facilitates automatic test data generation, since 
each PROVIDED clause can be satisfied by assigning a 
single value to each parameter of the input primitive (PDU 
or ASP)16

. 

After normalization we obtain 49 transitions for the 
Map and 37 for the AP modules of the example protocol. 
After simplification, the total number of transitions 
increased to 88, i.e. only two more transitions were 
added. 

INTERACTIVE TOOLS 

This section explains three tools: cgtool, dfgtool and 
testgen; cgtool to display the structure and control graphs, 
dfgtool to display the data flow graph, and then testgen to 
generate test sequences. The structure of the interactive 
tools is shown in Figure 2, which describes cgtool, testgen 
and dfgtool from left to right. 

Cgtool 

Static modular decomposition of an Estelle specification 
can be visualized in the form of a tree, called a structure 
tree. 

Major state changes from one normalized transition 
to another is called control flow. Control flow is best 
shown by a state diagram. 

Cgtool first displays the structure tree based on the 
.struct file. Figure 3 shows the structure tree of the 
example specification called simple_tp. It has a tp_body 
module which is decomposed into two modules, 
ap_body and map_body. By clicking the mouse on the 
nodes corresponding to modules the user can visualize 
the control flow graphs which are displayed using .ctrl 
files. 

Cgtool is implemented in C. The graphs (structure tree 
and FSM) are displayed by cgtool using Sun workstation 
graphics 17

• The cgtool displays the machine by first laying 
out the first node (specification name of the .struct file or 
the initial state of the .ctrl file) and then the transitions 
from the first node along with their next states in the 
graphics workspace. Self-loop transitions are shown as 
small circles around the state. The initial state is distin­
guished from the others by a special representation. On 
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simple_tp 

0 

Figure 3. Structure tree of simple_tp 

each arc shown are the label(s) of the normal form 
transition(s) (except for .struct, where there are no 
transition numbers). 

After displaying the control graph of the specification, 
cgtool becomes a menu-driven interactive tool to let the 
user move the states left, right, up and down as well as 
compress/expand it horizontally/vertically by means of 
the mouse. The graph can be saved anytime by a save 
command in the menu. In this case, cgtool saves the 
coordinates of the states, the control points of the curves 
(outgoing and self-loop transitions). The info command in 
the menu is for obtaining more information about the 
transitions. The input and output interactions of any 
normalized transition can be obtained by typing the 
transition number at the subwindow created by the info 
command. The FSM for ap_body module of transport 
protocol is displayed in Figure 4. 

Dfgtool 

Actions of the normalized transitions can be seen as a 
collection of operations which process parameters of the 

Figure 4. Control graph for the ap__body 
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input interactions (ASPs, internal interactions and/or 
PDUs) in order to determine the values of parameters of 
the output interactions. This processing is done using 
context variables as storage and applying certain functions 
such as arithmetic operations or abstract data type 
operations on context variables. Thus we define value 
changes on the context variables as data flow. Data flows 
from the input interaction parameters to the context 
variables, and from context variables to the output 
interaction parameters. This leads to a natural graphical 
representation of the actions of normalized transitions, 
called a data flow graph (DFG). In the case of protocols, 
generation of DFGs is only possible when PDU (being 
input/output interactions) parameters are explicitly 
identified. This point was discussed in the PDU field 
identification section above. 

Description of DFGs 
In the upper part of the data flow graph, data sources 
(input interaction parameters) are placed, and similarly, 
data sinks (output interaction parameters) are placed in 
the bottom. All other nodes are placed in the middle. The 
arcs describe the information flow of the statements in 
the actions. For example, for a simple assignment 
statement, an arc is created from the source node (the 
variable on the right hand side of the : = operator), to the 
destination node (the variable on the left hand side of the 
: = operator). 

Procedure/function parameters are represented 
depending on whether they are passed by value or by 
reference: Value parameters are connected by an arc to 
the node representing the procedure; reference para­
meters are connected to the node by a two directional 
arc, since the parameter can be at times an input or 
an output. 

The arcs are labelled with the number of the normalized 
transition in which the statement it models can be found. 
A given transition number can be found on more than one 
arc since, in general, a transition contains more than one 
statement. The same assignment statement occuring in 
more than one transition is represented with a single arc 
containing a list of transition numbers. A given operation 
(procedure/function call) used in different places is 
separately represented one for each of its applications. 
Thus a given procedure identifier can appear more than 
once in the data flow graph. The enabling predicates of 
the transitions, i.e. the PROVIDED clauses are not 
explicitly represented in the DFG to avoid cluttering of the 
graph; these predicates are taken into account during test 
generation. 

We define six types of nodes in a data flow graph: El 
(EO) nodes representing input (output) ASP parameters; II 
(10) nodes representing input (output) PDU and internal 
interaction (if any) parameters; D-nodes for the variables; 
and F-nodes for the functions. Input/output nodes are 
represented with the same icon, and the differentiation is 
made by position (top screen for I and bottom screen for 
0-nodes) and by reverse-videoing the node names of the 
internal nodes (II or 10). 

A DFG from the example protocol is shown in Figure 5. 
The normalized transition 011 reads as: 
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any reason:reasontp do 
provided reason <> ts_user_init 
from open to waitdc 
begin 

end; 

output ts.tdisind(reason); 
pdu_dr_pdu_dr.disc_reason: = reason; 
pdu_dr_pdu_dr.is_last_pdu: = false; 
pdu_dr_pdu_dr.order: = destructive; 
output map.transfer_dr(pdu_dr_pdu_dr) 

The first output statement and the following two assign­
ment statements are shown by three different arcs in this 
figure. 

DFG generation 
The dfgtool is also implemented in C. The normalization 
phase generates an internal representation of the graph 
consisting of the nodes and the arcs in separate files for 
each module. Dfgtool uses Sun workstation graphics 
facilities to display the graph. 

The dfgtool, like cgtool has a menu-driven interactive 
user interface. The graph can be scrolled to left (right) 
using the left (right) menu command; blocks can be 
displaced and the screen can be refreshed using the 
move-block and redisplay commands, respectively. 
Straight-line arcs can be replaced by curves using the 
curve menu button. 

Partitioning the DFG and block merging 
A data flow graph can be partitioned into blocks, a block 
representing the flow over a single context variable. The 
partitioning algorithm used in the tool creates a separate 
block from each D-node, and includes into this block all 
nodes that are linked (by incoming and outgoing arcs). 
Dfgtool, when called, displays the partitioned DFG of the 
module with vertical lines between each block. 

Sarikaya3 has shown that by merging some of the 
blocks, it is possible to obtain representations of most of 
the protocol functions (usually identified as data transfer 
for sending, data transfer for receiving and flow control for 
sending and receiving, etc.). Some of the rules for merging 
to be applied until no further merging can be accomplished 
are summarized. 

Blocks Bi and Bj can be merged if their output nodes 
are of the same data type. If the types of the input nodes 
of Bi are also contained in the output nodes of Bj, the two 
blocks could be merged. Blocks Bi and Bj containing the 
data nodes that are related could be merged. 

Merging can only be automated to some extent since 
what variables were used to specify a protocol function is 
a piece of information that cannot be extracted auto­
matically. The dfgtool does not attempt automatic 
merging, but its menu contains a number of menu 
commands to facilitate interactive merging. 

The merge-help command, when invoked, displays a 
menu with three choices: possible merges to give a list of 
blocks that can be merged; general information to display 
information to guide the user in doing further merges; and 
quit to return to the main menu. The possible merges list 
is obtained from the types ofthe input/output interaction 
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disconnection 

Figure 5. DFG of the ap_body module 

parameters, i.e. blocks containing input or output inter­
action parameters which are of the same type can be 
merged. The merge command does the physical merging. 
The name-block command lets the user give names to the 
blocks to be later used as test purposes by the testgen 
tool. The names are displayed at the top of each block. 
Initially, dfgtool displays the blocks with default names 
(block1, ... blockn). The write command saves the block 
names given and the list of merged blocks in that session. 
The save command also creates a file (.dat file) containing 
function names and all the distinct transition numbers of 
the arcs that exist in the function. Using just the quit 
command exits the tool without saving the changes. 

Block merging process yields 11 functions for the 
example protocol: sender credit value, options, acknow­
ledgements, disconnection (see Figure 5), etc., for the 
ap_body and disconnection, fragmentation, etc., for the 
map_body module. In most cases, the functions will be 
specific to the modules, while rarely a given function 
(disconnection, for example) will have some flow in more 
than one module. 

Testgen 

The last interactive component of Contest-Est! is the test 
sequence generation (testgen) tool. It is invoked after 
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... 
tconresp-acc 

displaying the control graph and the data flow graph, and 
after block merging of all the modules is completed. 
Testgen generates sequences of interactions from the 
control graph(s), lets the user incorporate the effect of the 
enabling conditions (PROVIDED clause) of the normalized 
transitions into these sequences, and then generates test 
sequences to effectively cover the data flow in each 
function. 

Testgen is implemented in C with an interface to the 
workstation graphics software to create menus and text 
subwindows. Its different components are explained in 
the sequel. 

Subtours generation 
To be able to handle modular specifications, we extend 
traditional definitions of transition tour and subtour18

· 19 . 

A depth-first coverage of the transitions of all the modules 
is called a transition tour. Each subsequence of a transition 
tour that starts and ends in the initial state(s) is called a 
subtour. The subtours have the interpretation that they 
result in the interaction sequences of the tests with 
distinct interpretation. They include a number of phases, 
and these phases give rise to a useful interpretation by the 
test designer such as subtours for data transfer tests, call 
refusal tests, etc. 

Subtours generation component of testgen is called 
mstourgen. It takes the FSM representation(s) (.ctrl files) as 
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input, generates a transition tour and then divides it into 
subtours. 

The main difficulty in generating a multiple module 
tour generation is in avoiding deadlocks. Transitions 
which take their input from internal channels cannot be 
directly executed. Before an output is sent to the internal 
channel, the other module must be checked to see if it is 
in a state that can accept the output. We also make sure 
that the resulting tests are synchronizable18

. 

For the example protocol, the initial states of the 
modules are: idle for map_body and closed for ap_body. 
The first transition included in the tour is the transition 01 
of ap_body: 

closed ts.tconreq [map.transfer_cr] waitcc 01 

which means that ts (transport user) sends tconreq, since 
ap_body is ready to accept it. Since ts sent the last ASP to 
ap_body, and map_body may consume tconreq 
immediately, both may next fire a transition. Then some 
spontaneous transitions are selected: 

idle ap.transfer_cr nil idle 6 {idle is the only state 
waitcc ts.u_ready nil waitcc 021 of map_bodyl 
waitcc nil [ts.ready] waitcc 036 
idle nil nil idle 9 

At this point, transition 43 in map_body sends 
transfer_cc to ap_body and transition selection con­
tinues. Complete transition tour is not listed to save 
space. 

A possible extension of mstourgen is in incorporating 
the effects of process/activity attribute of Estelle module 
bodies. The result would be to reveal possible parallelism 
in transition execution, e.g. process transitions are 
allowed to execute in parallel. Mstourgen could be 
modified to generate subtours in tree form instead of in 
linear list form by considering parent-child relationships of 
modules and processes and activities. It can be shown 
that only events (inputs and outputs) need be considered 
for such a modification. 

Edit-tour 
Subtours are a way of sequencing the normalized 
transitions based on the state sequence, without con­
sidering semantic information such as enabling conditions 
of the normalized transitions. Some of the subtours may 
be infeasible, i.e. this sequence of transitions cannot be 
executed due to conflicting enabling predicates. Auto­
matic elimination of the infeasible paths is in general 
unsolvable 10• Edit-tour is designed to help the user to 
interactively go through the subtours and then modify 
should an infeasible path be detected. 

Edit-tour displays the transition numbers in one of the 
windows, the current subtour in another, and finally the 
text of the normalized transitions that occur in the subtour 
in a text subwindow that could be scrolled. The user can 
identify any conflicts in the PROVIDED clauses of any 
transition that follows each other. Edit-tour lets the user 
interactively update the tour. An example display from 
edit-tour is shown in Figure 6. As we see from the figure, 
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ap_body II QUIT I 

DISPLAY MODE: Z ESTELLE 
select with left mouse button 
Subtour- 1 

~0162144648 .. ,. 
trans 

{ 011 
when ts-tconreq 
from closed 
to waitcc 
begin 

opts : = propopts; 
pdu_cr _pdu_cr _peeraddr : = destaddr; 
pdu-cr _pdu_cr _opts_lnd : = opb; 
pdu-cr_pdu-Cr-crvl := rcr; 
pdu-tr-pdu_cr-order :=first; 
cr _pdu.lLcr :"" pdu-cr _pdu-cr; 
output map.transfer ..crier _pdu...B_cr) 

end 

trans 
(B) 

any t-suf: t-suftp; epid: tceptdtp do 
when ap lt-suf, epid) .transfer _cr 

.& from idle ,. 

Figure 6. Test sequence display 

edit-tour lets the user select the next/previous subtour 
generated by mstourgen, add a completely new subtour, 
and see the transitions of the main module (tp_body) 
and its submodules (map_body and ap_body). When 
the editing is completed, the user chooses the write 
button to save the results, or otherwise quits without 
saving. 

Edit-tour can also be used in incorporating transition 
priorities into the subtours. The user can easily change the 
order of tr~msitions in a subtour to give the effect of the 
priority clause. 

Test sequence generation 
Data flow functions obtained from dfgtool must be tested 
using the subtours obtained from the control graph. For 
this purpose, testgen uses the files (with .dat suffix) 
created by dfgtool, then generates a full coverage of each 
of the data flow functions by subtours. If a single subtour 
covers all the labels in a given function, it is this subtour 
which is used. If there is more than one subtour which 
covers all the labels then the longest subtour is (arbitrarily) 
selected, otherwise testgen selects more than one 
subtour for full coverage. This way a definition-use 
coverage of all context variables is assured20

, i.e. the 
resulting test sequences contain all the transitions that 
first define a variable (aD-node) and then use it, and this is 
true for all the variables. Definition in the DFG is 
characterized by an incoming arc and use by an outgoing 
arc. Since we generate the subtours that cover all the arcs, 
the definition-use coverage is thus achieved. 

As an example, the disconnection function of the 
example protocol contains the arcs labelled by: 

03 04 07 08 09 010 011 012 013 20 21 23 24 

and this flow could be completely covered by seven 
subtours out of which we list a single one: 

idle ns.ndataind [ap.transfer_cr] 31 
closed map.transfer_cr [ts.tconind] 05 
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waittconresp ts.tdisreq [map.transfer_dr] 07 
idle ap.transfer_dr nil 4 
idle nil [ns.ndatareq] 23 
closing map.term [ts.tdisconf] 013 

lTCN test cases 

Linear test sequences generated by testgen expose the 
interactions that occur at internal interaction points. 
However, nondeterminism in protocol specifications 
require special processing, therefore these sequences are 
not suitable to be represented as test cases in TTCN, the 
standard test suite notation. Recently, we have developed 
a tool that derives TTCN test steps from normalized 
transitions and test cases from the subtours. In converting 
a normalized transition into a test step, spontaneous 
transitions are considered to provide alternative test 
events. To these alternatives a timeout event alternative is 
added should the spontaneous transition contain a delay 
clause. Constraints for the receive and send events are 
generated from the PROVIDED clauses and the assign­
ments in the actions21

. 

APPLICATIONS AND PERFORMANCE 

Contest-Est! has been used to generate (linear) test 
sequences for TP2, FTAM22, ISDN LAPD16 and ISDN 
Network layer23

• TICN test cases are generated for TP2 
and ISDN LAPD16

. We discuss some performance 
measures of non-interactive components of the tool on 
these applications. Thereafter we give similar measures 
for the TICN test cases. 

Table 1 summarizes the performance of the compiler 
component on TP2, FTAM and LAPD applications. The 
runtime is an average of 10 compilations. Table 2 
summarizes the performance of the normalizer for the 
same three applications. The runtime is a summation of 
the runtimes of the first and second phases of 
normalization. 

For the two applications where TTCN test cases were 
generated, Table 3 gives the number of transitions after 
normalization, after simplification, number of data flow 
functions and number of (TICN) test cases. In Table 4 the 
runtime measures for simplification, multiple module tour 
generation (mstourgen), TICN test step, and finally TTCN 
test case generation are given. 

The tables show that the tool takes time proportional 
to the number of transitions and PDUs and ASPs in the 
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input specification. Table 4 indicates that mstourgen is 
slow in cases of considerably large specifications. 

CONCLUSIONS 

A formal specification-based test sequence generation 
tool is presented. This prototype tool handles modular 
specifications by graphically displaying the control and 
data flow graphs of each module of the specification as 
well as generating the test sequences. The tool has 
recently been used to generate test sequences for several 
real protocols, such as TP2, FTAM and ISDN Q.921 and 
Q.931. Several performance measures on these applica­
tions indicate that the non-interactive parts of the tool are 
fast enough to effectively help the test designer in 
interactively designing test cases. 

Extensions of the tool to cover aspects of Estelle such 
as system process/activity and priority clause could be 
achieved by improvements on two components: edit­
tour for transition priorities, and mstourgen for parallel 
transition execution. Further research is needed in 
determing the importance of these extensions for con­
formance testing, which is the main application domain of 
the tool. It is also interesting to investigate how the tool 
could be extended to handle application layer protocols. 
Further development on the tool could be done by 
rewriting the normalization in a language such as C to 
increase its execution time performance, and porting the 

Table 1. Compiler module performance 

Input 
specification 

TP2 
FTAM 
LAPD 

Size of 
input (lines) 

786 
1,750 
2,769 

Size of 
output (syntax 
tree, bytes) 

19,051 
41,904 
73,356 

Table 2. Normalizer performance 

Input No. of No. of 
specification transitions transitions 

before after 

TP2 24 86 
FTAM 36 103 
LAPD 135 410 

Runtime 
(seconds) 

5.43 
11.93 
16.35 

Runtime 
(seconds) 

226.353 
212.932 
721.539 

Table 3. Results of the application of the tool on LAPD and TP2 

Specification 

TP2 
LAPD 

No. of transitions 
after normalization 

86 
410 
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No. of transitions 
after simplification 

88 
490 

No. of data 
flow functions 

11 
19 

No. of test cases 

53 
1094 
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Table 4. Runtimes of several steps in TTCN test case 
generation (s) 

Specification Simplification mstourgen Test Test 
step case 

TP2 2.5 14 19.8 1.6 
LAPD 17.5 9334 48.3 36.0 

tool to other platforms such as personal computers would 
increase acceptability among the user community. 
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