
PHYSICAL REVIEW 8 VOLUME 46, NUMBER 12 15 SEPTEMBER 1992-II

Electric-field efects on finite-length snperlattices

O. Giilseren and S. Ciraci
Department ofPhysics, Bilkent Uniuersity, Bilkent 06533, Ankara, Turkey

(Received 23 April 1992)

In this paper, we study the Wannier-Stark ladder by carrying out numerical calculations on a
multiple-quantum-well structure under an applied electric field. The variation in the Wannier-Stark-
ladder energies and the degree of localization of the corresponding wave function are examined over a
wide range of values of the applied electric field. Our results show that the Wannier-Stark ladder does
exist for a finite, but periodic system that consists of a large number of quantum wells having a multiple-
miniband structure.

E„(k)+ieF 8
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a„(k)+ g eFX„(k)a (k)=0

in the presence of a finite and constant electric field F
along the z direction. Here n denotes the band index,
E„(k) is the band energy of an electron in the periodic
lattice with eigenfunctions g„l,(r), and e is the energy in
the presence of the electric field F. The band coupling

Periodic structures under an electric Geld display in-
teresting properties. The application of a constant elec-
tric field, F, leads to a linear contribution, eF r, to the
periodic potential of the time-independent Schrodinger
equation. The resulting energy spectrum was predicted
to be evenly spaced and is called a Wannier-Stark ladder
(WSL).' The corresponding wave functions show
Wannier-Stark localization. Another well-known feature
of an external electric field applied to a semiconductor is
the Franz-Keldysh effect, which is the formation of a
low-energy tail below the band gap in the optical absorp-
tion coefficient. Later it was shown by Callaway that the
electric field gives rise also to an oscillatory behavior in
the optical absorption coefficient above the band gap.
Bloch oscillation (which is the periodic motion of an
electron in ordinary space due to reflections at the
Brillouin-zone boundary) is conjectured to be an impor-
tant consequence of the electric field in the periodic
structure. Because of the presence of an applied constant
electric field, the bands are inclined in ordinary space,
making possible interband, or Zener, tunneling. The
tunneling matrix element itself shows an oscillatory be-
havior with the presence of the electric field as a result of
Wannier-Stark quantization.

The dynamics of electrons in an electric field has been
discussed by Wannier, ' who solved the time-dependent
Schrodinger equation in terms of Houston's function.
The usual treatment of this problem starts with putting
the Schrodinger equation in crystal-momentum represen-
tation. Inserting the wave function, which has been ex-
panded in terms of Bloch functions,
g(r)= g„l,a„(k)g„z(r), into the Schrodinger equation
and then projecting out the space coordinates, one ob-
tains

X„ is proportional to the integral

f n dr u„*l,(r)Bu l,(r)/Bk, between the periodic part of
0

the Bloch function over the volume of the unit cell, Qo.
If the interband coupling terms X„with nArn are
neglected, one can readily obtain the solution for a given
band n by integration,

a„(k)=&a /2n exp — J [e—E„(k')k

eF 0

eFX„„(k'—) ]dk,
' . (2)

The periodicity requirement on a„(k) results in the WSL,

ej „=jaeF+ I [E„(k) eFX«(k—)]dk,2' 0

where a is the periodicity of the crystal along the field
direction, and j is an integer which labels the energy in
Eq. (l). In a one-band system, the index n of ej „may be
dropped. Having derived the tight-binding eigenvalues
and eigenfunctions of the WSL within the one-band mod-
el, Saitoh discussed the validity of neglecting the inter-
band terms.

The WSL problem has been a subject of dispute for
several decades. The mathematical difficulties in han-
dling the electric potential have been the primary cause
of this lack of consensus. First of all, since the electric
potential is linear in the space coordinate, it destroys the
periodicity of the crystal potential. Second, the potential
energy becomes unbounded for an infinite crystal, and so
the states become metastable resonance states. By solv-
ing the Schrodinger equation in the kq representation,
Zak found a set of levels, E+jaeF. ' However, he ar-
gued that no WSL emerges from the continuous spec-
trum of E corresponding to an infinite system. Within
the same context, he also questioned Wannier's original
equation. "' Another subject of controversy has been
the assumption of neglecting the interband terms X„
Zak questioned the validity of this assumption by show-
ing the inconsistency in the periodicity requirement of
the periodic part of Bloch functions. " Fukuyama, Bari,
and Fogedby' have studied the two-band tight-binding
model, and found two interpenetrating WSL's. Their re-

46 7621



7622 O. GULSEREN AND S. CIRACI

suit was also confirmed by Leo and MacKinnon, who
presented a numerical solution of the two-band tight-
binding Hamiltonian. ' Similar, a recent solution by
Zhao of the two-band tight-binding model based on per-
turbation theory in the presence of weak interband cou-
pling also resulted in two interpenetrating WSL's. ' Ra-
binovitch, ' on the other hand, showed that a Born—von
Karman type of periodic boundary conditions is incom-
patible with the Schrodinger equation because of the non-
periodicity of the potential. He concluded that the WSL
does not exist. The same problem has been treated nu-
merically by Rabinovitch and Zak for a Mathieu-type
model potential. ' This work also indicated the absence
of the WSL.

In recent years, various other ideas have developed
along with the renewal of interest in a solution of the
WSL problem. Krieger and Iafrate used a vector poten-
tial to describe the electric field instead of a scalar poten-
tial. ' ' The diSculty with the nonperiodicity of Hamil-
tonian was thus removed, and the solution of the time-
dependent Schrodinger equation became equivalent to
the Houston result obtained with the use of a scalar po-
tential. This equivalence was also shown' by employing
a gauge transformation. A selection rule for optical tran-
sitions was derived without assuming the WSL, showing
that the energy spacing is equal to the energy spacing of
the WSL. However, Zak pointed out that the use of the
vector potential to describe the electric field only shifts
the problem from the space domain to the time domain.
Consequently the basis set is periodic in time at lattice
sites. In a different approach by Emin and Hart, the
potential energy due to the electric field was written as a
sum of a periodic sawtoothed potential and a steplike po-
tential ' whereby interband matrix elements of the
steplike potential vanish. This approach —specifically
whether the interband matrix elements of steplike poten-
tial vanish —was also questioned.

In the experiments on the WSL of Koss and Lam-
bert, the required electric field is usually too high, thus
creating certain dii5culties. However, localization can be
observed at relatively reduced field values in superlat-
tices, since the width of the miniband is reduced as a re-
sult of the large periodicity. In fact, recently Mendez,
Agullo-Rueda, and Hong observed a WSL in
GaAs/Ga, „Al„As superlattices by photocurrent and
photoluminescence measurements. At about the same
time, a tight-binding calculation of optical absorption
coefficient by Bleuse, Bastard, and Voisin showed the
field-induced localization. ' Quantum coherence was also
studied in optical measurements by examining the wave-
function extensions of electrons as a function of the elec-
tric field. The electronic structure of finite-length su-
perlattices under an external electric field was solved nu-
merically, showing localization and band-mixing effects.
Wannier-Stark localization has been found to exist not
only in the electronic properties but also in the transport
of electrons.

Brie6y, although the dispute on WSL continues, recent
studies in finite systems provided evidence that the locali-
zation does exist. ' ' ' In this paper, we study fur-
ther the WSL problem by solving the Schrodinger equa-

d + V(z) eFz P(z) =—eg(z) .
2m" dz'

(4)

Here the electric field is along the growth direction z, and
V(z) is the quantum-well potential. z is set to zero at the
center of the multiple-quantum-well structure. The wave
function vanishes at the end points due to the infinite well
potential [i.e., f( L/2) =0 an—d P(L/2)=0]. By using
the three-point derivative formula, the 1D Schrodinger
equation is transformed into a set of coupled linear equa-
tions. The convergence tests are performed by varying
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FIG. 1. Potential energy diagram for a finite periodic system
consisting of N =12 quantum wells. The geometrical parame-

0 0
ters of the system are m =b =35 A, and t =400 A. z is set to
zero at the center of the structure. The potential is taken to be
infinite outside the system.

tion of finite-length superlattices under a constant electric
field. Based on our results obtained by numerical calcula-
tions, we present some aspects of WSL from a different
perspective. The system we dealt with is an artificial
structure which can be realized experimentally and the
physical parameters of which can be varied to test these
controversial issues. For example, the relatively larger
periodicity along the growth direction of the multiple-
quantum-well structure, a, means that the difference be-
tween consecutive ladder energies, aeF, increases. Hence
the localization can be realized and analyzed by changing
the periodicity. By varying the height of the well V,
one- and multiple-band effects on the WSL can be ex-
plored.

The system that we studied consists of N wells and
N —1 barriers, and buffer layers on both sides. In addi-
tion to the number of wells N, the width w, the depth V
of quantum well, the width of the barrier b, the thickness
of the buffer layers t, and the effective mass m* of elec-
trons are the parameters relevant to the system under
consideration. Its total length is L =d +2t, with
d =Nui+(N —1)b, and its local periodicity is a =w +b
(see Fig. 1). The one-dimensional (1D) equation of the
envelope function in the presence of a finite, nonzero
electric field F can be written in the effective-mass ap-
proximation:

r
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the increment Lz in the derivative formula from 7 to
0.031 25 A, and the length of the buffer layers from 25 to
5000 A. It is found that LL =0.5 A and t =400 A are
appropriate for purposes of the present study. The physi-
cal quantities are given in terms of normalized units (nor-
malized energy unit is 5.72 meV, distance unit is 100 A,
and electric field unit is 5.72 kVlcm for GaAs). For
F=0, twelve states with E & V form a miniband. The
"continuum states" (the spectrum of which is actually
discrete for finite L, but becomes continuous as L ~ Dc )

appear above V(z) & V .
The variation of the energy spectrum and the wave-

function amplitudes of the corresponding states as a func-
tion of electric field are shown in Fig. 2. In this fan dia-
gram, two kinds of energy state are identified according
to the dispersion of the curves. While the lower half of
the well states shift down in energy, the upper half of the
well states shift up in energy, with increasing electric
field. The energies of the continuum states below the
right-hand-side buffer-layer potential have negative
dispersions. These two kinds of energy state, i.e., well
states and continuum states, show a number of anticross-
ings for nonzero electric-field values, as seen in Fig. 2(a).
This is consistent with the fact that the solutions of the
1D Schrodinger equation cannot be degenerate. The
character of the we11 and continuum states are analyzed
in terms of the absolute squares of their wave functions,

in Figs. 2(b) and 2(c). The well states are extended
over the periodic potential, but they become localized
when FAO. The extent of their localization narrows with
increasing E, and eventually becomes confined to a well-
defined quantum well. The continuum states falling
below the potential energy of the right-hand-side buffer
layer preserve their extended character in the left-hand-
side buffer, but decay in the periodic region.

The field dependence of the localization is further ana-
lyzed by integrating the absolute square of the wave func-
tion of a certain state. The value of the integral

WJ
=J ~PJ(z) ~

dz in the mth well is taken as the degree
of localization of state j as shown in Fig. 3. The potential
energy of each well shifts by kaeE under the applied elec-
tric field E. For small E, the energy of a particular state
j, localized in the well m, can overlap with the band of
other well states. Hence, this state j can evolve from the
well m to the adjacent wells within a finite time interval.
Nevertheless the resonance character of f ceases beyond
a threshold field Fx & Eb lac, and the localization in the
well m becomes complete. For certain values of E
(F & Fx ), the localization in the well m, WJ, decreases
momentarily while the weight in the buffer region in-
creases. These points correspond to the anticrossing of
continuum states with the well states as illustrated in Fig.
2(a). The anticrossing states are close in energy and
hence they hybridize; both have a mixed character, being
neither localized nor extended (see Fig. 4).

The degree of localization, WJ, which initially in-

creases with increasing field, passes through a maximum
and eventually decreases as the value of Econtinues to in-
crease. This behavior occurs since the top of the rec-
tangular barrier changes into a triangular barrier under
the applied electric field. The larger the field, the sharper
is its apex. Beyond a critical field, the localization of the
state decreases with decreasing width of the left-hand-
side barrier.

Another aspect of the WSL examined was the detailed
variation of the energy level e (F) with the field. As seen
in Fig. 2(a), the energy of the WSL varies first nonlinearly
for small F. This variation becomes linear only for large
F. This behavior can be understood by evaluating the in-
tegral

g)= J z Ho+Hi J z z.
Here Ho is the periodic part of the Hamiltonian and Hi
is equal to eFz in the range ——d/2 &z &dl2, but con-
stant elsewhere. The field dependence of a particular lev-
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FIG. 2. (a) The fan diagram for the system described in Fig. 1

(field increment is 0.1). The squared amplitude of the wave
function (multiplied by 1000) for the state confined to the fifth
well (b), and for the continuum state (c) at the normalized field
F=15.

FIG. 3. Localization of the fourth well state as a function of
normalized electric field. WJ. denotes the weight of ~g, ~

in
the mth well, and 8J-,SJ& are the weight in the mth barrier
and left-hand-side bufFer regions, respectively.
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~ g~ (multiplied by 1000) vs z for the well state (j=2)

of the second band (a), and the well state (j=3) of the first band
at the point of anticrossing at F=9.1.

ter for the WSL and has been at the center of dispute. As
N ~ 00, the states forming the miniband become continu-
ous and the WSL is destroyed, according to some earlier
works. ' Here we address this issue and examine the
changes in the WSL spectrum as a result of increasing N.
The width of the miniband Eb is practically unaffected,
but new discrete states appear within the miniband as a
result of increasing N According .to Eq. (8) the slope of

the WSL states changes with increasing N. At the same
time, the slopes of the continuum states in the fan dia-
gram also change since the extent of the whole system, L,
increases with increasing N. These two changes compen-
sate each other, and the anticrossings occur at the same
electric field value, and hence localization curves such as
those in Fig. 3 become independent of N, apart from the
boundary effects. Even if these results imply that WSL
exists in the limit of N~ao, the consecutive anticross-
ings appear to join. This certainly reduces the localiza-
tion.

The number of minibands is increased by increasing w

and V~. For example, for w =100 A and V =344 meV,
three minibands (n =1,2, 3) occur in the multiple-
quantum-well structure. Most of the previous arguments
in this study apply to the multiple-miniband case. In ad-
dition to the anticrossing with continuum states, states of
different minibands anticross because of different slopes
resulting in the interband mixing and slight delocaliza-
tion consistent with some recent experimental studies.
The absolute squares of the two wave functions which en-

gage in such an anticrossing are illustrated in Fig. 6. The
nodal structure of ~1( ~

identifies the band to which state

j belongs. The interband mixing is evident, with the
secondary peak located near the major peak. The nodal
structure of this secondary peak also identifies the char-
acter of the other band involved in the mixing.

The important findings of this study are summarized as
follows: (i) In a finite system consisting of a periodic
multiple-quantum-well structure with a buffer layer at
each end, WSL forms and, beyond a threshold field,
states are confined to individual wells. Discrete energies
of the states forming a miniband vary first nonlinearly,
then linearly with increasing field. As the external elec-
tric field increases, the degree of localization of the WSL
state increases, passes through a maximum, and eventual-
ly starts to decrease. (ii) The character of states are
mixed at the point of anticrossing. (iii) The present re-
sults, which are obtained from numerical calculations,
show that WSL does exist in the multiple-quantum-well
structure including a large number of wells and multiple-
miniband structure.
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