
J.SYSTEMS SOFTWARE 41
lYY2;19: 41-57

Verification of Protocol Conformance
Test Cases Using Reachability Analysis

Kshirasagar Naik
Department of Electrical and Computer Engineering Concordia U~iue~~i~, Montreal, Canada H3~1~~

Behcet Sarikaya
Bilkent Uniuersity, Department of Computer Engineering and Information Sciences, Bilkent, Ankara 06533, Turkey

A methodology is presented to verify manually written
test cases against the formal specification of a proto-
col. Initially, a protocol and a test case are modeled as
nondeterministic finite state machines and test case
verification is viewed as a reachability analysis prob-
lem. An existing reachability analysis algorithm, based
on the well-known perturbation technique, is modified
to take nondeterminism in protocols and special test
case features (timeouts and OTHERWISE events) into
account. Correctness aspects of the reachability algo-
rithm are proved. The notion of a synchronization
error manifesting in a test case due to the nondeter-
ministic nature of a protocol specification is studied.
To verify data flow aspects of test cases, we extend
our technique by modeling the test case and protocol
specification as extended finite state machines. A test
case from a proprietary test suite for the transport
protocol Class 2 is taken as an example and is shown
to contain several design errors.

1. INTRODUCTION

The objective of conformance testing of a communi-
cation protocol implementation is to verify whether
the implementation conforms with the protocol
speci~cation in representative instances of commu-
nication [l I. In practice, conformance testing is done
by applying a collection of test cases to the imple-
mentation under test GUT) and observing the re-
sponses of the IUT.

The behavior of a protocol providing a set of
communication functions is marked by sequences of
events appearing at its service access points and

Address co~sp~nden~e to Pruj Behcet Sarikaya, B&x& Uniuer-
si& Dept. of ~‘o~~ufe~ Engjnee~ng and Info~afion Sciences,
~i~kent, Ankara 06533, Turkq.

0 Elsrvicr Science Publishing Co., Inc.
65.5 Avenue of the Americas, New York, NY 10010

composed of input events to the protocol and the
responses of the protocol in the form of output
events. From the conformance point of view, the
objective of a test case is to check whether the
implementation satisfies the specification require-
ments with respect to a protocol function. A test
case does this checking by applying sequences of
input events to the implementation and comparing
the responded events with the expected events al-
lowed by the protocol specification. If the behavior
of the implementation is allowed by the protocol
specification and the test objective is satisfied, then
the test case assigns a Pass verdict. If the behavior
of the implementation is not allowed by the protocol
specification, then the test case assigns a Fail ver-
dict. However, if the behavior of the implementation
is allowed by the protocol but the test objective is
not fulfilled, then the test case assigns an Znconcfu-
sive verdict. Therefore, the correctness of confor-
mance judgement of a test case depends on the
correctness of the sequences of events input to the
implementation and the expected protocol events
stated in the test case. Verification of a test case
involves comparing the test case behavior with the
protocol behavior and discovering any design errors
in the test case.

Large size, nondeterministic events, combinations
of many parameters, and communication among the
modules of a protocol specification make the behav-
ior of a communication protocol very complex and
difficult to understand, Hence, manually designing a
set of test cases to test an implementation of a
protocol is not a trivial task. Those manually written
test cases may contain many design errors. Thus, it is
essential to have a methodolo~ to verify test cases
against a protocol specification.

0164-1222/Y2/$5.00

42 J. SYSTEMS SOFIWARE
1992; 19:41-57

K. Naik and B. Sarikaya

Since the late 1970s when researchers developed
techniques to formally specify communication proto-
cols, the notions of protocol validation and verifica-
tion have been widely studied [2]. The techniques
used in validating a protocol are reachability analy-
sis, duologue-matrix analysis, and symbolic execution
[3-61. Similarly, a number of techniques have been
used to verify protocols depending on whether the
protocols are specified using finite state machines
(FSMS), programming languages, or temporal logic.
A list of references to various protocol verification
techniques appears in [71 which discusses an algo-
rithmic technique for verifying protocols described
using FSMs and propositional temporal logic. In this
article, we study the test case verification problem
using a reachability analysis technique.

An outline of the verification methodology pre-
sented here is as follows. In the test verification
system, a test case and a protocol specification are
modeled as nondeterministic FSMs, called T-FSM
and P-FSM, respectively. Each point of control and
observation (PC01 is modeled as two unidirectional
channels. The verification process consists of two
phases. In the first phase, a perturbation technique
is used to generate all the reachable global states in
the verification system, where each global state con-
sists of the states of the individual FSMs and the
channel states. In the second phase, the global state
space is analyzed for various errors, such as unspeci-
fied reception, tempoblocking, deadlock, livelock,
channel overflow, and synchronization errors.

Real protocols have complicated functionalities
with higher expressive power in the form of a set of
parameter values associated with each protocol event
and a capability to check the appropriateness of the
received parameters using predicates. To demon-
strate the application of the reachability analysis
technique in verifying test cases against real proto-
cols, we model a test case and a protocol specifica-
tion by extended finite state machines (EFSM).

The rest of the article is organized as follows. In
section 2, we model a local single-layer (LS) [ll
architecture-based test case and the formal descrip-
tion of a protocol as nondeterministic FSMs and use
a perturbation algorithm to generate the global state
space, which is then analyzed to detect various test
design errors. Synchronization errors occurring in a
test case due to nondeterministic behavior of a
protocol are studied in section 3. We enhance the
verification methodology to extended FSM represen-
tations of test cases and protocols in section 4. In
section 5, we present an example of verifying a test
case using its FSM and EFSM models. Two other
test verification approaches are summarized in sec-
tion 6. Finally, conclusions are stated in section 7.

2. TEST VERIFICATION USING FSM MODELS

In this section, we introduce simple models of proto-
cols and test cases and present a test architecture.
Then we define some terms, present a reachability
analysis algorithm, and analyze some theoretical
properties of the algorithm. Finally, we apply the
algorithm to a test case to generate a reachability
graph and analyze the graph for various design
errors in the test case.

We model a protocol as a nondeterministic FSM
asynchronously interacting with the test system. Be-
cause of the asynchronous nature of communication,
an interaction point between the protocol FSM and
the test system is modeled as two unidirectional
channels.

A test case must have alternative behavior and
timeout mechanisms to test nondeterministic proto-
cols, have loops to repeatedly apply test events if the
implementation does not respond in expected time,
have an OTHERWISE as an alternative receive
event to capture all unintended events, and have a
test verdict depending on each alternative outcome
of the test purpose. Thus, test cases can be modeled
as nondeterministic FSMs.

An abstract testing mechanism must be able to
control the IUT and observe its responses at points
known as the points of control and observations
(PCOs). From a practical point of view, depending
on the availability of the PCOs, the test mechanism
can be either local or external [l]. The definition of
an abstract test architecture requires that the PCOs
be distributed over two abstract testing functions,
the upper tester (UT) and the lower tester (LT). The
LT provides control and observations at the appro-
priate PC0 either below the IUT or remote from
the IUT. The UT provides control and observation
at the upper service boundary during test execution.
In the LS architecture, behavior of a test case can be
either separated into LT and UT behavior or speci-
fied in an in-line monolithic structure as shown in
Figure la. Distributed single-layer CDS), coordinated
single-layer (CS), and remote single-layer (RS) test
systems are examples of external test architectures.
We assume that the test cases are specified in LS
architecture; if not, then they can be converted into
this form.

2.1 Notations and Definitions

An external event in an FSM is characterized by
three parameters: PCOs, direction (“?” denotes an
input and “!” denotes an output), and the message in
the event. However, no channel or direction is asso-
ciated with an internal event. In a test case FSM the
stadtimer), canceZ(timer), and timedtimer) con-

Verification of Protocol Conformance Test Cases J. SYSTEMS SOFIWAKE 43
1992; 19:41-57

(a) (b)
Figure 1. LS architecture-based test system (a); verifica-
tion system for LS architecture (b).

stitute the internal events. In a protocol specifica-
tion, nondeterminism is a way of modeling real-time
properties of and the effect of the environment,
particularly the service provider, on the communica-
tion system. Notationally, an unobservable transition
or internal event (i event) is used to represent
nondeterminism in a protocol model.

A transition in an FSM is characterized by four
parameters: porn and to states, went, and prior@.
To take care of the semantics of an OTHERWISE,
a priority number is associated with each transition
in a set of alternative transitions such that priority
decreases from top to bottom. In a protocol FSM, all
the transitions in a state are assigned the same
priority.

We use function notations to access the parame-
ters of events and transitions. For example, dir(E)
returns the direction field in the event E, pco(E)
returns the PC0 of the event E, and porn(r) re-
turns the from state of transition r. The functions
int(E) and at(E) return a true value if E is an
internal event and an external event, respectively.
To extract the first message in a channel channelLid,
we use the notation head(channel_id).

A communicating FSM consists of a set of states,
a set of transitions, an initial state, a set of final
states, a set of input channels, and a set of output

.___~. _.._.-.

function nv(ov, pv) {
if (ov = = “none” then return
else (

of LI - State of T-FS

State
K

of Lo-) State of P-FSM

--) Indicates the possible direction of message flow in the system.

Figure 2. Structure of a global state in the LS architec-
ture-based test verification system shown in Figure 1.

channels. Verdicts in a test case FSM are stored as
tags of the states. The function Ezrdict(s> returns the
verdict tag of the state s. The present and next
states of an FSM M are denoted by ps(M) and
ns(M), respectively. The OTHERWISE is abbrevi-
ated as OTH.

Definition I: Test r!er@cation Jystem. A test verifi-
cation system (TVS) is defined to be a 3-tuple,
TVS = (T, P, C), where T is the test case FSM, P
is the protocol FSM, and C is the set of channels
connecting T and P.

Ex~m~ie. The LS architecture and the corre-
sponding test verification system are shown in Figure
1. A test case is modeled as a T-FSM. the protoco1
specification is modeled as a P-FSM, and each of the
PCOs (L and U) is modeled by two unidirectional
channels.

Definition 2: Global state. The global state g of a
test verification system TVS = XT, P. C) is defined
as

g E G c {stufes(T) X sfutes(P) x sfutes(Lf) x .stute.s(LO)

X states(UI) X stutes(UO) X Verdicts}.

Example. The structure of the global states for
the LS architecture-based test verification system in
Figure 1 is shown in Figure 2.

The function hew-~?erdict~oLd t$erdict, present rler-
diet), abbreviated as nr(otx, pr!) is used to compute
the new verdict as follows:

if (ov = = Fail) or (pv = = Fail) then return(Fail)
else if (ov = = Pass) and (pv = = Inconclusive) then retum(Inconclusive1
else if (ov = = Inconc.) and (pv = = Inconc.) then return(Inconclusive)
else if (ov = = Pass) and (pv = = Pass) then return(Pass)
I

end

De~~i~io~ 3: Exe~~fab~e transitions. The set of
executable transitions ET occurring in the present

~__~ .- .-----~ _ ._-. .-. .--. i^
global state g = (ps(T), ps(P), ps(LI),
ps(LU), ps(UII. ps~U~j, tl) in a test veri~cation sys-

44 J. SYSTEMS SOFTWARE
1992; 19:41-57

K. Naik and B. Sarikaya

tern 7’KS = (T, P, C) is expressed as ET(g,) = ETP(g,) u ETT(g,), where

ETP(g,) = {r = (From,To, E, Priority)((fiom(r) = =ps(P)) A

((int(E) v

(at(E) A (dir(E) = = !)) V

(e.xt(E) A (dir(E) = = ?) A (pco(E) = = L) A (message(E) = = head(L0))) V

(e&(E) A (dir(E) = = ?) A (x0(E) = = U) A (message(E) = = head(U0)))

ETT(g,) is computed as follows. Initially, E77XgJ = 4, R = Mjkm(r> = =ps(T))f, and j~~f-p~o~~ = 0,
L_fzag = False, U$ag = False.

While R + 4 begin {
init_priority = init_priority + 1
for r E RKpriority(r) = = init_priority) begin {

if (int(E) v (ext(E) A (dir(E) = = !))) then {ETT(g,) = ETT(g,,) U
{r), R = R - rJ

if (at(E) A (pco(E) = = L) A (dir(E) = = ?> A (message(E) = =
heud(LZ)) A (I&g = = Fake)) then {ETT(g,) = ETT(g,) u id, R =
R - r, L-flag = True)

if ((~e~suge(~) = = OTH) A (pco(E) = = 15) A (co~~e~~t .U) +
~$1 A (L_ftag = False)) then {ETT(g,) = ETT(g,) U id, R = R - r, L&g =
True}

if (e&(E) A (pco(E) = = U) A (dir(E) = = ?) A (message(E) = =
head(A (Kftag = = False)) then b!3’T(g,) = ETT(g,) U {r), R =
R - r, U-flag = True)

if
((message(E) = = OTH) A (pco(E) = = u) A (content # 4) A u&g =
Fdse)) then {ETT(gJ = ETT(g,) U {r), R = R - r, U-flag = True)

1

De~~~tio~ 4: Pe~~bat~o~. Let gr, = (ps(T),ps(PI, pd Lf), ps(LO), p&M), ps(~U), v) be the present global
state of a test verification system 776 = (T, P, C>. Then, the perturbation of gP by an executable transition
r = (From, To, E, Priority> E ET(gJ is written as pe~urbatio~(g~, r) = g, such that if r is a transition in T
and verdict(To) = pv, then

g, = (7i,,ps(~),ps(LI),ps(LO),ps(UI),ps(UO), n~‘(~:,pu))ifint(E) OR

(To,ps(P),ns(LZ),ps(LO),ps(UZ),ps(UO),n~l(c,pu)) #(dir(E) = = ?) A

(pco(E) = = L) A ((message(E) = head(LZ)) V (message(E) = = 5TH) A (LZ f 4)) OR

(7o,ps(P),ps(LZ),ns(LO),ps(UZ),ps(UO),nu(u,pu)) if(dir(E) = = !) A (pco(E) = = L) OR

(To,ps(P),ps(LZ),ps(LO),m(UZ),ps(U5),nr:(c,p~)) if(dir(E) = = ?) A

(pm{ E) = = U) A (messuge(E) = heud(UZ) v (mesmge(E) = = OTH) A (UZ f 4)) OR

(To,ps(P),ps(LZ),ps(LO),ps(UZ),ns(UO),n~(v,pc)~ ~(~~r(~) = = !) A (pco(E) == f-9.

Else

g, =

if r is a transition in P, then

(ps(T),To,ps(LZ),ps(LO),ps(UZ),ps(UO),n~(u,p~)~ ifWE) 5R

(ps(T),To,n~(LZ),ps(LO),ps(UZ),ps(UO),nu(t~,p~)) if(dir(E) == !) A

(pco(E) = = L); OR

(ps(T),To,ps(LZ),ns(LO),ps(UZ),ps(UO),nu(u,pu)) if(dir(E) = = ?) A

(pco(E) = = L) A (message(E) = head(l0)); OR

(ps(T),To,p~(LZ),ps(LO),ns(UZ),ps(UO),nu(u,pu)) $(&r(E) = = !) A

(pco(E) = = U) OR

(ps(T),To,ps(LI),ps(LO),ps(UZ),ns(UO),nv(c,p~)) if(dir(E) = = ?) A

(pco(E) = = U) A (message = = beam).

Verification of Protocol Conformance Test Cases

In the following definitions, C = (LZ, LO, UZ, UO},
S,, is the set of final states in the T-FSM, S,, is the
set of final states in the P-FSM, Gf is the set of final
states of the global state space G.

2.2 Reachability Analysis Algorithm

We modify the reachability analysis algorithm for
protocol validation [3], so that the modified algo-
rithm can handle the following features of the test
verification model: (I) internal events, priorities in a
set of alternative events, OTHERWISE events, and
verdicts in T-FSM; and (2) internal events in P-FSM.
It is assumed that each channel is bounded. Pertur-
bation of a global state is stopped if a channel
overflow error, defined below, is detected.

Definition 5: Channel ove$ow error. An over-
flow error in a global state g = (ps(T),
ps(P), ps(LZ), ps(LO), ps(UZ), ps(UO), v> is defined
as channeZoverJEow(g) = ((content >
capaci&(LZ)) V (content(L0) > capacity(L0)) V
(content (UZ) > capacity(UZ)) V (content(U0) >
capacity(UO))), where capacity(Q) is a parameter
representing the maximum number of messages in
the FIFO queue Q.

Algorithm 1.

Input: a T-FSM, a P-FSM, and the communication
channels and their capacities.

Output: a global state space.
Procedure: the algorithm consists of the following

Sl.

s2.

s3.

s4.

S5.

S6.

steps:

Define a set of global states G and a set of
global transitions R. Initially, G contains only
the initial global state g, and R = 4.
Find a member g, E G of the set of global
states whose perturbations have not been deter-
mined. If no such member exists, then termi-
nate.
Calculate the set of executable transitions
ET(g,J in state g, using Definition 3.
Compute Gp, a set of global states, by perturb-
ing gp. Initially Gp = 4.

Vr E ET(g,){G, = G, Uperturbation(g,, r) A

R = R U {(g,, perturbation(g,, r),

eoent(r), priority(r)>}

1.
If G, is an empty set, report g, as a terminal
state in the global state space.
Vg E Gp begin{

channelover$ow(g) + mark g “perturbed” and

G + G u {g)

J. SYSTEMS SOFTWARE 45
1992; 19:41-57

elseif g P G + mark g “unperturbed” and G

+- G u {g}
1.

S7. Go to step S2.

In the following, we establish the termination and
soundness properties and analyze the computational
complexity of the algorithm.

Theorem 2. Algorithm 1 terminates.
Proof: The proof is done by showing that no infi-

nite branch can be generated by the algorithm.
Proof by contradiction is used here. Assume that the
algorithm generates an infinite branch in the global
state space. Referring to step S2, the algorithm does
not perturb an already perturbed global state.
Therefore, all the states in the infinite branch must
be distinct. However, referring to the definition of a
global state (Definition 21, since the FSMs are finite
and the channels are bounded, no infinite number of
distinct global states can be generated. Hence, the
generation of an infinite branch is not possible. q

Theorem 2. All the global states generated by the
algorithm are reachable from the initial global state.

ProojI The proof is done by induction on the
generated global states as follows.

Basis: the initial system state g, consists of all the
initial states of the constituent FSMs and empty
channels. Hence, the initial global state is reach-
able.

Hypothesis: assume that a global state g, is reach-
able from the initial state g,.

Induction: let Gp be the set of global states gener-
ated by perturbing Gp. Step S4 of Algorithm 1
generates a state s E Gp by perturbing g,, where
perturbation of g, is defined as the firing of a
single executable transition in one FSM in the
verification system. Hence all members of Gp
are reachable from g,. 17

The size of the state space is proportional to the
product of the state spaces of the T-FSM and the
P-FSM, the number of nondeterministic loops in the
FSMs, and the channel capacities. Explosion of the
global state space is limited by the fact that a T-FSM
is much smaller in size than a P-FSM, as one test
case does not test all the protocol functions.

2.3 Analysis of Global State Space and Test Case
Verification

We define the types of errors expected to be present
in the global state space, in addition to channel

46 J. SYSTEMS SOFTWARE
1992; 1941-57

overflow errors defined in subsection 2.2, and discuss
the issues involved in test verdict analysis.

2,3.1 Types of errors in the global state space.

Definition 6. Unspecified reception error. An un-
specified reception error (URE) in a globaf state g
is defined as Up = (g is not a terminating
state) A (3~ E Cf(- empty A (c 4 C,)), where
C, = {cha~nel(r)Kdir(r) = = ?) A ((r is a transition
in state g) V (r is reachable from g after a se-
quence of internal transitions))}.

Definition 7: Deadlock error. A deadlock in a
global state g = (ps(T), ps(P), ps(LI),
ps(LO), ps(VZ), ps(lJO), u > is defined as
deadlock(g) = (g E Gf) A (ps(T) @ STf) A (ps(P)
% S,,> A (Vc E C(emp~(c))).

De~nition 8: flocking reception error. A blocking
reception in a global state g = (ps(T), ps(P),
ps(LI), ps(LO), ps(Uf), ps(UO), v> is defined as foi-
lows: blocking(g) = (g E G,) A (!ic E

Cl1 empty(c)).

Definition 9: Tempo-blocking error (livelock). A
livelock in a globai state space G is defined as
livelock = 3 a cycle in G.

2.3.2 Test verdict ana~s~s. The final global states
can be classified into two categories: one category of
final states, called erroneous states, represents dead-
lock, blocking reception, and channel overflow er-
rors; the other category of final states are error free.

Theorem 3. Assuming that the P-FSM does not
contain any transition for exception handling, an
error-free terminating global state must have a Puss
or an Inconclusive verdict,

Proof The proof is done by contradiction. As-
sume that an error-free terminating global state has
a Fail verdict. An error-free terminating global state
means both the T-FSM and the P-FSM are in their

Test event

at PC0 L (U)

A

A test OUTPUT
event at L (U) may
face a sync. error

4

K. Naik and B. Sarikaya

final states and the channels are empty. That is, the
test behavior leading to the error-free terminating
global state is allowed by the P-FSM behavior.
Hence, the error-free terminating global state can-
not end in a Fail verdict. Thus, it must end in a Pass
or an Inconclusive verdict. q

Corollas 1. A Pass/Inco~cl~s~e verdict in a T-
FSM is incorrect iff the verdict is attached to an
erroneous state.

Corollary 2. A Fail verdict in a T-FSM is correct
iff the verdict does not appear in any of the error-free
states.

According to Theorem 3, it is possible to verify a
Fail verdict. However, to verify a Pass or an Incon-
clusiue verdict in a test case, the test purpose must
be taken into account.

The purpose of a test case can be expressed as a
regular expression on the interactions of the P- and
T-FSMs. The global state space should accept the
regular expression and terminate in an error-free
state which has a Pass verdict. All other error-free
states must have an Inconclusive verdict.

3. SYNCHRONIZATION ERRORS IN A TEST CASE

The issue of synchronization in a test case, an event
timing problem, was first studied using a determinis-
tic FSM model of a protocol specification IS]. With
such a model of a protocol, a test case faces a
synchronization problem if, in a sequence of two test
events, the second event sends a message to the
protocol through the PC0 L (U), whereas the first
event does not involve PC0 L (U).

In this section, we present a general notion of
synchronization error and enumerate the protocol
specification behavior resulting in a synchronization
error in a test case. Referring to Figure 3, let a test
event (input or output) occur at PC0 U (L) at time
t,,, let t, be the time instant for a test event to be
output at the same PC0 U CL), and let S be a
sequence of test events occurring in the interval

) Time

Test events at PC0 U (L) ___+
and internal events or Null

to actions. tl

Figure 3. The context of an event facing a synchronization error.

Verification of Protocol Conformance Test Cases

(t,,-t,) such that S includes only internal test events
and events occurring at the other PC0 L (U).
Therefore, conceptually, the output test event at
PC0 U (L) at time t, faces a synchronization prob-
lem if the length of the interval (t,-t,) is indetermi-
nate. In the following, we enumerate three cases of
protocol behavior making the interval (t,-t,) inde-
terminate.

The test case behavior in the interval (lo-t,)
corresponds to the protocol specification behavior
{i, L!PDU} (Ii, U!PDU}).
The test case behavior in the interval (t,-t,)
corresponds to the protocol specification behavior
(L?PDUl, L! PDU2} ((U?PDlJl, U! PDU2)) or
{L?PDUl, Null action) ({U?PDUl, Null action}).
The test case behavior in the interval (t,,-t,)
corresponds to the protocol specification behavior
(i, Null action).

A null action means the protocol specification
does not produce any event at the PCOs in response
to the preceding input or internal event. Referring
to Figure 5, the effect of receiving an acknowledg-
ment PDU in state 10 is a null action taken by the
protocol. The first two cases above are applicable to
both the nondeterministic FSM and EFSM models
of a protocol and the third case is applicable only to
an EFSM model of a protocol where a null action
means an action updating internal protocol variables
and not generating any event at a PCO.

Note that the second case above is the source of a
synchronization error in a test case involving a de-
terministic FSM model of a protocol studied in [8].
Therefore, the notion of a synchronization error
studied here is a general one encompassing both
deterministic and nondeterministic FSM and EFSM
models of protocols.

In the following, a synchronization error is for-
mally defined.

Definition 10: First output successor (fos). In the
global state space G, there are two types of transi-
tions: protocol specification transitions (p-transi-
tions) and test case transitions (t-transitions). A t-
transition tr2 = (From2, To2, E2, Pr2) is the first
output successor of another t-transition trl =
(Froml, Tel, El, Prl), written (tr2 =fos(trl)) iff
((tr2 is the first output t-transition following trl) A
(pco(El) = =pco(E2)) A (dir(E2) = = !)).

Definition II: Synchronization error. In a global
state space G, a synchronization error is defined as
syncerr = 3 trl = (Froml, Tol, El, Prl) and
tr2 = (From2, To2, E2, Pr2)l((tr2 = = fos(trl) A

J. SYSTEMS SOFTWARE 47
1992; 19:41-57

(all the global states between the states fiom(trl)
and to(tr2) are error-free)) A (the sequence of tran-
sitions between trl and tr2 contains p-transitions
with events (i, E3) or (E4, E3/null~, or (i, null),
where ((dir(E3) = = !> A ((pco(E3) # pco(E2))),
((dir(E4) = = ?) A ((pco(E4) f pco(E2))).

A null transition appears only in the extended
FSM model of a protocol and represents actions
updating the variables of an extended FSM with no
external protocol event taking place.

Though a synchronization error appears in a test
case, it is not always possible to detect such an error
by analyzing only the test case FSM, because the
errors are caused by some inherent behavior of the
protocol specification. Moreover, in some instances,
while analyzing a test FSM, a sequence of events
seems to represent a synchronization error, but a
comparison of the behavior of the test case with the
protocol FSM indicates that the event sequence
causes an unspecified reception error and not a
synchronization error. Therefore, for detecting syn-
chronization errors and separating them from other
types of errors, it is necessary to analyze the global
state space of the test verification system.

4. TEST VERIFICATION USING EFSM MODELS
OF TEST CASES AND PROTOCOLS

An EFSM model of a protocol is distinct from an
FSM model in two respects: (1) an event exchanged
between two EFSM entities is composed of a set of
protocol parameters such as addressing, sequencing,
flow control, and error detection information, in
addition to the actual user data to be sent or re-
ceived, and (2) in the EFSM model, individual com-
ponent parameters in a receive event can be checked
for the desired operation of the protocol.

A communicating EFSM is a eight-tuple, EX =
(S, V, R, sO, Sf, h,, I,, Oc), where S is a finite set
of states, I’ is a finite set of identifiers-analogous
to the variables and constants in a programming
language-to hold values, so is the initial state of
EX, S, c S is a set of final states of EX, h, is a set
of initialization functions, I, is the set of input
channels from which EX receives messages, and 0,
is the set of output channels into which EX puts
messages for communicating with other EFSMs.

An external event in an EFSM is a four-tuple,
E = (channel, direction, message identifier, list of pa-
rameters). For example, L?CR(Psrc-ref, Pdst-ref,
Poptionl, PRcredit) is an event, where L is the
channel name, ? is the input direction, CR is the
PDU name, and (Psrc-ref, Pdst_ref, Poptionl, PR-

48 J. SYSTEMS SOFTWARE
1992; I9:41-57

K. Naik and B. Sarikaya

credit) is the list of parameter values received in the
CR PDU.

A transition in an EFSM is represented by a
six-tuple, r = (From, To, Euent, Predicate, Assign-
ments, Priority), where the transition takes the EFSM
from the From state to the To state if Predicate
(Predicate : V --) (True, False)) evaluates to true; then
a set of value assignments is done in the Assignment
clause, which is a set of functions <f, : 1/ --+ V). We
denote a protocol EFSM and a test case EFSM us
P-~FS~ and T-EFSM, respe~tiue~y.

In the context of an EFSM, the definition of the
set of executable transitions (Definition 3) in a global
state is extended to account for the predicates in the
EFSM’s transitions.

Definition 12: Executable transitions. The set of
executable transitions XET(g,J occurring in the
present global state g, is given by the following
expression: XET(g,) = {rir E ET(gpI A
predicate(r) = Tkuef, where ET(g,,) is computed us-
ing Definition 3.

4.1 Modeling a Protocol as an EFSM

A P-EFSM can be obtained from the P-FSM model
used in section 2. The FSM model is extended with
the addition of a list of parameters for each ASP
(Abstract Service Primitive) and PDU. A number of
identifiers and constraint values are also defined.
FSM transitions are modified in the following man-
ner to obtain EFSM transitions. If the Event in a
transition is a receive event then, first, a predicate
denoting the enabling condition is added as a com-
ponent of the EFSM transition. Next, the values of
the EFSM’s variables are updated by assigning val-
ues of the received parameters to the variables of
the EFSM. These assignments are added to the
Assignment component of the P-EFSM transition. If
the Event is a send event, then the event parameters
are assigned variable or constant values. An en-
abling condition can also be associated with an
EFSM transition containing a send event.

4.2 Modeling a Test Case as an EFSM

In section 2, a test case designed to test a nondeter-
ministic protocol was modeled as a nondeterministic
FSM. As protocol events are parameterized and
mechanisms to check values of those parameters are
introduced in the form of transition predicates re-
sulting in an EFSM description of a protocol, an
event in a test case must also be parameterized with
mechanisms to assign values to those parameters,
and provisions must be there to put constraints on

events. The structure of a complete event line in a
test case is shown below.
L!CR Assignments Boolean-condition

Label Constraint Verdict
A constraint on a send event is interpreted as a

set of assignments of values to the parameters of the
event being sent; a constraint on a receive event is
interpreted as a set of boolean conditions on the
values of the parameters received in the event. The
above send event line can be modeled as an EFSM
transition: (From, To, L!CR, boo~eu~-condition,
(Assignment and Constraint), Priori& >, where From,
To, and Priority are dependent on the context of the
event line in the test case. Applying this process to
all event lines, we obtain the T-EFSM [9].

4.3 Reachability Analysis of EFSMs

Algorithm 1 was designed to generate the global
state space of the combined behavior of a test case
and a protocol modeled as FSMs. Using Definition
3, step 53 of the algorithm, computes the set of
executable transitions ET(g,) in the present global
state g, and step 54 perturbs g,, by using ET(g,,).
The same algorithm can be used to generate the
global state space of a test case and a protocol
modeled as EFSMs by using Definition 12 of the set
of executable transitions in the global state g,.

The global state space generated from the EFSM
models of a protocol and a test case differs from
that generated from the FSM models in that it
contains two additional fields of information-as-
signment of values to parameters and transition
predicate. These additional fields are kept as parts
of the transitions as explained in Figure 4.

5. VERIFICATION EXAMPLE

In this section, we demonstrate the application of
the test case verification methodology. In section 5.1,
we take the FSM models of a simplified transport
protocol and a test case and verify the test case by

---l-
Event

Transition Predicate
Assignments

Next giobal state(sr

Figure 4. Global state and transition structures in the
global state space of EFSM models.

Verification of Protocol Conformance Test Cases J. SYSTEMS SOFTWARE 49
1992: 19:41-57

using the methodology discussed in section 2. In
section 5.2, we consider the EFSM models of the
same protocol specification and test case and show
how reachability analysis can be used to verify a test
case described as an EFSM.

5.1 Reachability Analysis Using FSM Models

To show an application of the verification process,
an FSM description of a simplified class 2 transport
protocol, a test case, the global state space, and
analysis of the global state space are presented
below.

5.1.1 A si~pli~ed transpo~ protocol. A nondeter-
ministic FSM model of a class 2 transport protocol
[lo], called P-FSM, is shown in Figure 5; it can
handle one transport connection. State 1 is both the
initial and the final state of the FSM and represents
a closed connection. State 10 corresponds to an
open connection state. If the connection establish-
ment procedure is initiated by the user of the trans-
port entity, then the FSM moves from state 1 to 10
through the states (1, 2, 3, 4, 101 and if the connec-
tion is established by the peer entity, then the FSM
moves from state 1 to 10 through {l, 5, 6, 7, 10).
There are two internal transitions in the FSM. One
internal transition from state 10 to 11 models the
effect of the environment on the protocol specifica-
tion leading to a disconnection of the transport
connection along the state sequence {lo, 11, 12, 9,
1). The other internal transition from state 10 to 18
models the acknowledgement (AK) transmission
policies, including timeouts.

5.1.2 A test case for basic interconnection test. For
verification purposes, we choose a test case for basic
interconnection test from a real test suite developed
at the National Computing Center (NCC) [II]. Since
the NCC test suite is in the CS architecture, we
rewrite the test case from CS to LS architecture
using informations in the test management protocol
used by the test suite. The architectural transforma-
tion of the test case is done manually and is shown
in a TI’CN-like notation in Figure 6. In the test case,
a sequence of test events is represented one line
after the other, each new event indented once from
left to right, as time is assumed to progress. Test
events at the same level of indentation and belong-
ing to the same predecessor event represent the
possible alternative events occurring at that time.
Based on these notions of sequence and alternative
events, the FSM description of the test case, called
the T-FSM, is shown in Figure 7.

The test case contains many possible alternative

test scenarios depending on how the implementation
behaves. However, info~ally, the objective of the
test case is to establish a connection, send a DT
PDU, receive an AK for the sent DT, and close the
connection. In terms of test events, the test purpose
is represented by the regular expression {L!CR.
U?TCONind. U!TCONresp. L?CC. L!DT.
~?T~ATAind. L?AK. L!DR. ~?T~I~~ind. L?DC).
This expression will be used while analyzing test
verdicts.

5.1.3 Generation and analysis of global state space,
In this example, all the channel capacities are as-
sumed to be two. The initial global state is (1, 1, E,
E, E, E, Null), where the first 1 is the initial state of
T-FSM, the second 1 is the initial state of P-FSM, E
represents the empty states of the channels, and
Null represents that no verdict is associated with the
initial global state. Applying Algorithm 1, we obtain
the global state space shown in the Appendix. The
initial global state is perturbed by the transition
L!CR in the T-FSM generating global state 2. Then,
global state 2 is perturbed by transition Start(A) in
the T-FSM and L?CR in the P-FSM generating
global states 3 and 4, respectively. This way, possible
perturbations of the global states continue.

Three types of errors-unspecified reception er-
ror, blocking reception error, and channel overflow
error-are found in the global state space shown in
the Appendix. The occurrences of these errors to-
gether with their implications on the test case are
discussed below.

Unspecified reception error. Global state 52 corre-
sponds to T-FSM state 6, P-FSM state 12, LI con-

Figure 5. FSM description of a class 2 transport protocol.

50 J. SYSTEMS SOFTWARE
1992; 19:41-57

K. Naik and B. Sarikaya

L!CR
Start (A)

U?TCONind

1 U! TCONresp

I L?CC

I I Cancel (A)

I l L!DT

I I U?TDATAind

I I I L?AK

I I I I L!DR

I I II U?TDISind

I I II 1 L?DC

I I II I L?OTHERWI SE

I I II UTOTHERWISE

I I I L?OTHERWI SE

I I U?OTHERWISE

f ?Timeout

I L?OTHERWISE

L?DR
U?OTHERWISE

Figure 6. A test case for basic intercon-
nection test.

Pass

Fail
Fail
Fail

Fail

Fail
Fail

Inconclusive
Fail

tainin~ CC, UI ~ntainin~ ~D~~~~~, and other chan-
nels empty. That is, there are two messages-CC
and TDZSind-in the input queues of T-FSM, but
T-FSM has no transition in state 6 to receive the
TDISind from channel UI. Therefore, global state 52
indicates that there is an unspecified reception error
in state 6 of the T-FSM. An analysis of the situation
yields that the T-FSM faces an unspecified reception
error because of the P-FSM’s nondeterministic tran-

sition from state 10 to 11, i.e., nondeterministi~
initiation of disconnection by the protocol entity.

Blocking reception error. Global state 68 corre-
sponds to T-FSM state 12, P-FSM state 9, L1 con-
taining DR, UI containing TDISind, and UO con-
taining a DT. Since there are nonemp~ communi-
cation channels and no transitions are possible from

state 68, it represents a blocking reception error. A

Initialstate 1

P L!CR

O’iX=OTHEZRWISE
P = Pass verdict
F = Fail verdict

I = Inconclusive verdict

Figure 7. FSM description of test case in Figure 6.

Verification of Protocol Conformance Test Cases

blocking reception error in global state 68 is more
complex than the unspecified reception error in state
52 in that to detect the cause of the error we have to
go backward from state 68. The error in state 68 is
due to two unspecified reception errors in states 20
and 61. That is, the errors in states 20 and 61
propagate forward in the state space and eventually
represent a blocking reception error in state 68.
Other global states representing blocking reception
errors are 36, 50, 57, 87, and 100.

Channel ove$ow error. Any channel with more
than two messages represents a channel overflow
error. Global states 76, 77, 81, 302, and 105 repre-
sent channel overflow error. In all these instances,
the error is in channel LZ and is caused by the
nondeterministic generation of AK PDUs in the
P-FSM. Because of a channel overflow error, a test
FSM can not be judged to be erroneous, because a
communication channel neither reflects the behavior
of a test case nor is controlled by a test case.

All the errors appearing due to nondeterministic
generation of events by the protocol entity can be
eliminated by using the notion of a background
default tree [12] facility in the test case to capture
nondeterministically generated PDUs that can nei-
ther be forced nor ignored.
__- -._-

J. SYSTEMS SOFTWARE 51
1992; 19~41-57

Test purpose and verdict analysis. In the global
state space, there are two error-free states, 42 and
108. Both the test behavior {L!CR, Start(A),
U?TCONind, U!TCONresp, L?CC, Cancel(A),
L!DT, U?TDATAind, L?AK, L!DR, U?TDISind,
L?DC} and (L!CR, Stat-d A), L?DR} leading to global
states 42 and 108, respectively, are accepted by the
protocol specification. However, state 42 ends in a
Pass verdict and state 108 ends in an ~~conc~~i~e
verdict. To verify if the verdicts are correct, the test
purpose regular expression is taken into account.
Since the test behavior leading to global state 42
satisfies the test purpose regular expression, the
assignment of a Pass verdict is correct. Since the
test behavior leading to global state 108 does not
satisfy the test purpose regular expression, assign-
ment of an Znconclusiue verdict is also correct.

5.2 Reachability Analysis Using EFSM Models

5.2.1 EFSM model of the protocol. We extend the
P-FSM given in Figure 5 in three steps. In step 1,
ASPS used to interact with a transport layer and the
PDUs used in the transport layer are specified with
parameters, as shown below.

TCONreq(dst-addr, proposed-options), TCONind(src-addr , proposed-options),

T~ONresp~ ds-addr , proposed-options) , TCON~onf (src-addr , Accepted-options) ,

T~ISreq(dst_ref), TDrSind(src-addr, reason), TDATAreq(dst-ref, user-data, EOT),

TDATAind(src_ref, user-data, EOT),

CR(src_ref, dst_ref, credit, options), CC(src-ref, dst-ref, credit, options),

AK(src_ref, dst_ref, credit, expseqno), DC(src-ref, dst-ref 1,

DT(src-ref, dst-ref, tpdu-number, EOT, user-data), DR(src-ref, dst_ref, reason).
.-

In step 2, the following identifiers arc defined to
save variable and constant values.

PTRseq : Expected sequence number in a received DT,

PTSseq : Sequence number in a DT to be sent,
Poptions : The set of options implemented in the protocol,

PRcredit : Credit received from the peer,
Poptionl : options received in a TCoNreq,

Poption:! : options received in a CR,

PScredit : Credit to be sent to the peer.

Poption.? : options received in a CC, Finally, in step 3 the transitions are extended by
adding predicates and assignments. The following

Poption4 : options received in a TCONresp, are some of the transitions in the P-EFSM.

Initialization: Psrc-ref = “spec,” Pdst-ref = “tester”, PRcredit = 1.

(1, 5, L?CR(src_ref, dst_ref, Poptim& PScredit), [Pdst_ref = = src_ref & Psrc-ref = = dst-ref],O , I>

(5,h, ~!TCONind(Pdst_ref, Poption2), T, q , 1)

52 3. SYSTEMS SOFTWARE
1992; 19:41-57

K. Naik and B. Sarikaya

{6,7, U?TC~Nresp~dst-ref, Poption4), [dsf-ref = = Pdst_ref 1, [PTRseq = PTSseq = 01, 1)

(7, 10, L!CC(Psrc_ref, Pdst_ref, Poption4, PRcredit), T, CI, 1)

(10, 11, i, T, [Reason = y], 1)

(11, 12, U!TDISind(Reason), T, •I , 1)

(12,9, L!DR(Psrc_ref, Pdst_ref, Reason), T, 0, 1)

(13,9, L!DR(Psrc-ref, Pdst_ref, Reasonl), T, U, 1)

(9, 1, L?DC(src_ref, dst-ref), [src_ref = = Pdst_ref&dst_ref = = Psrc-ref], T, U, l>

(10,14, L?DR(src_ref, dst_ref, Reason2), T, [7,1)

(14,15, ~!TD~S~~d(Reaso~2), T, [3, 1)

(15,1, L!DC(Psrc-ref, Pdst_ref),T, CI, 1)

(10,18, i, T, E3,1>

(18,10, L!AK(Psrc_ref, Pdst-ref, PTRseq, PRcredit), T, U, 1)

(10, 17, L?DT(src_ref, dst-ref, Seq, EOT, Data), [src_ref = = Pdsf_ref &dst_ref = = Psrc_ref

AND PRcredit(>O & Seq = = PTRseq], 1)

(17,10, U!TDATAind(Dutu, EOT), T, [PTRseq = (PTRseq + 1) mod 128, PRcredit = PRcredit - 11, 1)

5.2.2 EF,SM model of the test case. All the transitions of the T-EFSM corresponding to the test case in Figure
7 are given below. To check if an analysis of the global state space generated from EFSM models of a protocol
and a test case is useful in detecting parameter errors in test cases, we have intentionally introduced an error
in the test case EFSM: according to the P-EFSM description, the first DT received by it must have a sequence
number equal to 0, but in the T-EFSM, the first DT sent has a sequence number 1.

Initialization: Tsrc-ref = “tester”, Tdsf-ref = “spec”, TRcredit = 0

(1,2, L!CR(Tsrc-ref, Tdst-ref, Toptionl, TRcredit), T, 0, 1)

(2,3, Start(A), T, 0, I>

(3,4, U?OTHERWISE, T, q ,2>

(3,5, U?TCONi~d(src-ref, Toption2), [src-ref = = Tsrc_ref], q , l>

(5,6, U!TCONresp(dst-if, Topt~on2), T, a, 1)

(6,9, ?Timeout, T, 0,2>

(6,8, L?OTHERWISE, T, q ,3)

(6, 7, L?CC(src_ref, dst_ref, Topfion3, TScredit), [src_ref = = Tdst_ref &dst_ref = = Tsrc_ref 1, [7Tfieq = 11, 1)

(7,10, Cancel(A), T, 0, 1)

(10, 11, L!DT(Tsrc-ref, Tdst_ref, TTRseq, T, “abed”), T, q y 1)

(11,12, U?OTHERWISE, T, q , 2)

(11,13, ~?TDATAind(src_ref, Dufa, EOT), [Data = =“ubcd”&EOT= = T], 0, 1)

(13,14, ~?OTHERW~SE, T, q ,2)

(13,15, L?AK(src_ref, dst_ref, Seqno, Credit), [Seqno = = TTRseq -t I], U, I>

(15,16, L!DR(Tsrc_ref, Tdst_ref, some-reason), T, q , 1)

(16,17, U?OTHERWISE, T, 0, 1)

(16, 18, U?TDISind(src_ref, some-reason), T, 0, 1)

(l&19, L?OTHERWISE, T, q ,2)

(18,20, L?DC(src-ref, dst-ref), [src_ref = = Tdsf-refAND dst-ref = = Tsrc-ref], 0, 1)

Verification of Protocol Conformance Test Cases

5.2.3 Generation and analysis of global state space.
Using Definition 12 of executable transitions in a
global state, Algorithm 1 was run on the P-EFSM
and the T-EFSM, described above, to generate a
global state space. Because of space limitations, we
have shown only a part of the global state space in
Figure 8. Values of the variables updated by a
t~nsition are shown near the transition. Also, the
predicate associated with a transition is shown near
the transition as a label.

After successfully opening a connection, the T-
EFSM sends a DT PDU with the sequence number
1 to the P-FSM by putting the message in the

IDitiSliZStiOn:
Tsrc_m?f = “testa”

a
2 2 E c CR1 E

WA)

kL_
L?cR(sIv_~ dst_r&Popti~sucdit)
@ust_mf = slc_ref & Pslc_ref = dst_refl

rl
48 3

c
E 5

U!TcoNii&_ref, Popdons2)
ITI

[src_ref = Tsrc_refl

jdst_.mr = pdst_refl
meq = PTSseq = 0. PRcredit = 1

-:T-lFSMtmos~ k?-iJ + : P-EFSM transitions

J. SYSTEMS SOF-FWAKE 53
1992; t9:41-57

channel LO. The predicate associated with the L?DT
transition in state 10 of the P-EFSM is [(src-ref = =
Pdst-ref) AND (dst-ref = = Psrc-ref > AND
(PRcredit()O) AND (Seq = = PTRseq)], where PR-
credit is the credit value sent to the T-EFSM, Seq is
the sequence number in the received DT, and
PTRseq is the expected sequence number. Since
PRcredit = 1, the condition (PRcredit()O) evaluates
to true. However, Seq = 1 and PTRseq = 0. There-
fore, (Seq = = PTRseq) evaluates to false and, con-
sequently, the entire predicate evaluates to false.
Thus, the transition L?DT is rendered unexecutable
in state 10 of the P-EFSM and the global state 12

LBX&m_ref, dst_zef, Toption3, TScmiit)
[m-r=&== T&_ref& dst_ref = Txc_refJ

[natul=ll

(Ihspecitiedreu?ption

Figure 8. Partial global state space generated from the EFSM descriptions of
the test case and protocol s~cification.

54 J. SYSTEMS SOFTWARE
1992; 19:41-57

cannot be perturbed using the same transition. Then,
the P-EFSM nondeterministically outputs a se-
quence of AK PDUs in state 10 to the channel LO,

which eventually overflows as seen in the global
state 18.

Analysis of the global state space reveals that
there is an unspecified reception error in global
state 12. As expected, this reception error occurs
because transition L?DT in state 10 of the P-EFSM
cannot be fired because the predicate evaluates to
false. This unspecified reception error is due to the
parameter error introduced in the test case.

6. RELATED RESEARCH

Two other approaches to test case verification have
been reported in which the protocol and the test
case are assumed to be specified in the formal
description technique LOTOS I131 and TICN [l],
respectively.

In the first approach 1141, first both the LOTOS
specification of a protocol and the ‘ITCN specifica-
tion of a test case are translated into a common
semantic model, a chart [15l with FIFO queues
modeling the communication mechanism between
the test case and the protocol specification. Next, an
interleaved symbolic execution mechanism is used to
compare the behavior of the test chart with the
protocol chart. A limitation of this approach is that
only static aspects of a test case can be compared
with the behavior of a protocol specification and
.dynamic aspects due to timeouts cannot be verified.

In the second approach [16], the verification pro-
cess consists of two steps. First, the TTCN test case
is translated into a LOTOS specification. Second, a
test and trace analysis tool called TETRA, based on
a LOTOS interpreter [17], takes the LOTOS de-
scriptions of the test case and the protocol specifi-
cation as inputs and computes their parallel compo-
sition by tracing the executable paths in the two
specifications. The concerns expressed about the
tool are its high space requirement and long verifi-

cation time.

7. CONCLUDING REMARKS

We have developed a simple yet powerful methodol-
ogy to verify a test case against a protocol specifica-
tion by using nondeterministic FSM models. It was
observed that even a simple test case for a basic
interconnection test in the LS architecture contains
a few design errors. These were classified as recep-
tion, blocking reception, and channel overflow er-
rors. A general notion of a synchronization error in
the context of deterministic and nondeterministic

K. Naik and B. Sarikaya

FSM and EFSM models of protocols was studied. To
detect such an error and distinguish it from other
types of errors, it is necessary to analyze the global
state space. Finally, we modeled a test case and a
protocol speci~~ation as EFSMs and used the same
algorithm to generate the global state space. The
only change required was to define an executable
transition to take the transition predicates into ac-
count.

In protocol validation systems, state explosion can
be controlled by using the notion of a canonical
sequence when two processes communicate through
two channels [18]. However, when two processes
communicate through more than two channels, it
has been stated that either a canonical sequence
does not exist or is very difficult to find. Hence, the
notion of canonical sequence does not seem to be
useful in our verification model to control the state
explosion. It will be interesting to explore other ways
to control the state explosion problem.

We have modeled test purposes as regular expres-
sions. It would be interesting to develop models for
error types, possibly using temporal logic formulas.
Such an approach could lead to a semantic model
for test correctness requirements.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada and the Canadian
Commonwealth Fellowship Agency.

REFERENCES

1.

2.

International Organization for Standardization (ISO),
Information processing systems-Open systems inter-
connection. 9646 (19911, Conformance testing
methodology and framework. Part 1: General con-
cepts, IS0 9646, (1991).
G. J. Holzmann, Design and VaLj~tjon of Computer
Protocols, Prentice Hall Software Series, New York,
1991.

3.

4.

5.

6.

C. H. West, General Techniques for Communications
Protocol Validation, IBM J. Res. Dec. 22, 393-404
(1978).
P. Zafiropulo, C. H. West, H. Rudin, D. D. Cowan, D.
Brand, Towards Analyzing and Synthesizing Protocols,
IEEE Trans. Commun. COM-28,651~661 (1980).
S. T. Vuong, D. D. Hui, and D. D. Cowan, VALIRA
-A tool for protocol validation via reachability analy-
sis, in Proceedings of the IFIP WG6.1 6th International
Workshop on Protocl Speci$cation, Testing, and Veriji-
cation, VI B. Sarikaya and G. von Bochmann, eds.),
North Holland, Amsterdam, 1987, pp. 35-41.
P. Zafiropulo, Protocol Validation by Duologue-
Matrix Analysis, IEEE Trans. Commun. COM-26,
1187-l 194 (1978).

7. K. Sabnani, An Algorithmic Technique for Protocol

Verification of Protocol Conformance Test Cases J. SYSTEMS SOFTWARE 55
1992; 19:41-57

Verification, IEEE Trans. Commun. COM-36,924-931
(1988).

8. B. Sarikaya and G. von Bochmann, Synchronization
and Specification Issues in Protocol Specification,
IEEE Trans. Commun. COMM-32, 389-395 (1984).

9. K. Naik and B. Sarikaya, EFSM semantics for TTCN,
in Proceedings of the 15th Biennial Conference on Com-
munication, Queen’s University, Kingston, Ontario,
Canada, 1990.

10. G. von Bochmann, Specification of a Simplified Trans-
port Protocol Using Different Formal Description
Techniques, Comp. Net. ISDN Syst. 18, 335-377
(1989/90).

11. Abstract Test Suite for Transport Protocol Class 2, The
National Computing Center Limited, Manchester, UK,
1988.

12. Proposed Draft Amendment 1 to IS0 9646-Part 3:
TTCN Extensions, ISO/IEC 9646-3/PDAM 1, Jan-
uary 1992, 21~.

13. International Organization for Standardization (ISO),
Information processing systems-Open systems inter-
connection-LOTOS-A formal description tech-
nique based on the temporal ordering of observational
behavior, IS0 8807 (1988).

14. K. Naik and B. Sarikaya, Static validation of ‘ITCN

test cases, in Proceedings of the 3rd International Work-
shop on Protocol Test Systems, North-Holland, Amster-
dam, 1499170, 1990.

15. G. Karjoth, Implementing process algebra specifica-
tions by state machines, in Proceedings of the IFIP
WG6. I International Workshop on Protocol Specifica-
tion, Testing and Verification, VIII, North-Holland.
Amsterdam, 47-60, 1988.

16. M. Dubuc, G. von Bochmann, 0. Bellal, F. Saba,
Translation from TTCN to LOTOS and the validation
of test cases, in Proceedings of the Formal Description
Technique ‘90 Conference (FORTE ‘901, North-
Holland, Amsterdam, 1990.

17. L. Logrippo, A. Obaid, J. P. Briand, M. C. Fehri, An
Interpreter for LOTOS, A Specification Language for
Distributed Systems, Software Pratt. Exp. 18, 365-385
(19881.

18. J. Rubin and C. H. West, An Improved Protocol
Validation Technique, Comp. Net. ISDN Syst. 6, 65-73
(1982).

APPENDIX

System State Space of the Validation for the T-FSM
and P-FSM shown in Figures 7 and 5, respectively.

49
/-

k.
D

C

18

E
\

F
ig

u
re

 a
.3

.

d

e

\

ch
m

nc
l

ov
af

lo
w

(F

in
al

 -4

9E
j

(F
d

-1

F
ig

u
re

a

.4

Q

10

E

m
-

18

E

I

D
R

10

E

F
ig

u
re

a

.5

9
E

J

(F
m

d rt
ue

)

ch
m

w
l

o
v

a
ib

w

@
ii

-)

