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Abstract-Sweeping is a powerful method to generate 3-D shapes in geometric modeling. In this paper we 
formulate a general matrix to give a mathematical definition of twisted-profiled sweep objects as a discrete 
approximation. While conceptually simple, our result is, to our best knowledge, the first precise formulation 
of sweeping with all graphical ingredients, viz. twisting, scaling, rotation, and translation. Twisted-profiled 
sweeping surfaces defined by contour, profile, trajectory, and guide curves are thus represented in concatenated 
matrix formulation. In addition, we give interactive methods to generate sweep objects and present sample 
figures produced within the framework of our implementation Tb, a topological picturebook. 

I. INTRODUCfiON 

A classification of sweep objects is given by Choi and 
Lee [ 15]. Their classification treats sweep surfaces that 
are obtained via coordinate transformations and 
blending. Another classification is given by Bronsvoort, 
van Nieuwenhuizen, and Post [ 13]. According to them, 
sweep objects can be defined in four types: 

• Translational sweep-The contour is arbitrary and 
the trajectory is a straight line. 

• Rotational sweep-The contour is arbitrary and the 
trajectory is a circle. 

• Circle sweep-The contour is circular and the tra­
jectory is arbitrary. 

• General sweep (or Generalized cylinder)-Both the 
contour and the trajectory are arbitrary. 

Here, we are interested mainly in generalized cyl­
inders. Definitions of generalized cylinders are given 
by Bronsvoort and Klok [ 12], Post and Klok [ 24], and 
Bronsvoort, van Nieuwenhuizen, and Post [ 13]. 
Building generalized cylinders is conceptually easy; just 
use a closed 2-D contour curve and a 3-D trajectory 
curve along which the contour is swept. The spatial 
relationship between the contour and the trajectory is 
given by various methods. The first method is the so­
called Frenetframe[ 12, 13, 19, 24]. Here, the trajectory 
is a 3-D vector valued function and the frame at each 
point of the trajectory is determined by three orthog­
onal vectors (commonly known as tangent, normal, 
and binormal vectors). Thus, a local coordinate system 
is defined at each point of the trajectory curve. The 
contour curve must be perpendicular to the tangent 
vector at each point of the trajectory. The second 
method, called rotational minimizing sweep, is a planar 
approximation of general sweep, where the trajectory 
is considered to be a polyline [ 13, 19, 24]. 

Other previous approaches for obtaining sweep ob­
jects are briefly as follows. Control points of Bezier or 
B-spline surfaces can be handled by sweeping; so, it is 
possible to generate some sweep surfaces that can be 

deformed locally [ 12]. In addition, a 3-D object can 
be subtracted from the original blank while it is swept 
along a 3-D path to obtain a new 3-D object [ 21, 26]. 

It is possible to deform a sweep object by scaling 
and twisting the contour curve as it is swept along the 
trajectory curve [ 24]. Deformed sweep objects obtained 
by scaling are called profiled sweep objects[ 13]. Co­
quillart presents an offset technique for control points 
of rational B-spline curves to produce sweep or profiled 
sweep objects [ 16]. Choi and Lee use simple transfor­
mations and blending to represent more complex sweep 
objects [ 18). Woodward presents a skinning technique 
to produce 3-D shapes that resemble blended sweep 
objects [ 27). 

In this paper, we are essentially interested in discrete 
sweeping and hence, every curve used in the sequel is 
considered a sequence of discrete points. Accordingly, 
it is not really important what curves are used. We 
present a general matrix for representing twisted-pro­
filed sweep objects. The matrix provides quick response 
time and is especially useful for interactive systems*. 

In Section 2, we formulate a general matrix as a 
mathematical definition of a sweep object deformed 
by scaling and twisting. In Section 3, we present in­
teractive methods to generate sweep shapes and give 
some sample figures produced by our implementation, 
Topologybook (Tb in short) t. Tb is a general workbench 
that facilitates the production of publication-quality 
topological pictures and is fashioned along the lines of 
[ 18] *. The implementation of Tb is nearing its com-

* It is well known that matrix representations in computer 
graphics have the advantage that they suit well to the internal 
representation of the computer in which they are implemented. 

t The choice of the symbols T and b has been inspired by 
their use in logic and music-areas whose chief concerns are 
truth and beauty. 

*Unfortunately, all the computer-generated images in this 
paper are wire-frame pictures in black and white. Although 
Tb generates color pictures on the screen, we presently lack a 
color hardcopy device. 
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pletion and will constitute the doctoral dissertation of 
the second author. Although we will briefly describe it 
in the Appendix, the reader is referred to our other 
publications for more information on Tb and its origins; 
these include [ 2-8]. 

2. TWISTED-PROFILED GENERAL SWEEP 

Sweeping can be defined informally as follows [ 24]. 
A sweep surface Sw( C, T) is produced by moving a 
given contour curve C along a given trajectory curve 
T. The plane of C must be perpendicular to Tat any 
point of T. In the rest of this paper, C will be any 
planar (closed or open) curve and Twill be any 3-D 
(closed or open) curve. If Cis a closed curve and Tis 
a 3-D curve segment, then the produced sweep object 
is called a generalized cylinder [ 24]. 

If C is deformed by scaling with a scale factor as it 
is swept along T, then the produced sweep object is 
called a profiled general sweep object. Here, we accept 
as the scale factor the distance of a given curve P to 
any selected axis. So, a profiled general sweep surface 
can be defined informally as Swp( C, T, P). Prepresents 
a profile curve that is planar and has the same number 
of points with T. 

If C is deformed by twisting and scaling while 
sweeping along T, the produced surface is called a 
twisted-profiled general sweep object. We denote the 
twist factor as Tw; this is a planar curve that has the 
same number of points with T and is mapped between 
the minimum and the maximum values of the twisting 
angles only at one dimension. Then, a twisted-profiled 
general sweep surface can be defined informally by four 
curves, viz., Sw,p( C, T, P, Tw). 

In the following subsections, we present a discrete 
mathematical definition of twisted-profiled general 
sweeping. In this definition, we use the conventional 
matrix notation to represent the transformations and 
obtain a general sweep matrix as a result. Some matrix 
representations for sweeping are given by Rogers and 
Adams[25]. Theirs, however, are restricted and work 
only for given planar curves and situations that depend 
on curve equations. In our representation, the matrix 
twists, scales, and sweeps a contour curve C along a 
trajectory curve T to handle a grid of general sweep 
surface points. We will next formulate the discrete 
mathematical definitions of the curves involved (e.g., 
C, T, P, Tw) as vector functions. 

C is a planar curve or polygon with n points. Each 
point (X;, y;, 0) of C can be represented as: 

C; (i = I , 2, ... , n). ( I) 

Tis any 3-D curve or polygon with m points and 
(without loss of generality) the first point ofT is in the 
origin. Each point (xi> YJ> z1) ofT can be represented 
as: 

T1 (j = I, 2, ... , m). (2) 

P can be given as a 1-D position vector with m com­
ponent vectors that include scaling factors. But here, 

we take P as a planar curve and later calculate the 
scaling factors by the help of the curve. This is useful 
for interactive systems. Each point (xi> y1, 0) of P can 
be represented as: 

P1 (j = I, 2, ... , m). (3) 

Tw can be also given as a 1-D position vector with 
m vectors that include twisting factors. But, we give 
Tw as a planar curve and later calculate the twisting 
factors by the help of the curve. Each point (x1, y1, 0) 
of Tw can be represented as: 

Tw1 (j = I, 2, ... , m). (4) 

Planar curves P and Tw, and the calculation of the 
scaling and the twisting factors are presented in detail 
in Sections 2.1 and 2.2. In the sequel, we give a pro­
cedure to handle a twisted-profiled general sweep ob­
ject. In this procedure, C is a curve centered at the 
origin. (The first point ofT is also at the origin.) In 
other cases, they must be translated to origin and then 
the generated curves must be translated back to their 
actual positions at the end of the procedure. First, C 
is rotated around the z-axis by Tw for twisting. Second, 
Cis scaled by P. Third, Cis rotated around the x-, y­
and z-axes by angles found for each point ofT. Finally, 
each twisted, scaled, and rotated Cis translated to every 
point ofT. 

2.1. Twisting 
We have taken the twisting factor Tw as a planar 

curve and defined it as in Eq. ( 4). But, it represents 
only the twisting angles for each point of the trajectory 
curve T. That is, it can be represented as a 1-D vector 
function linearly interpolated at only one dimension 
of Tw. Tw can be drawn interactively as a planar curve 
in an interactive system and is then interpolated at one 
dimension to handle twisting angles (see Section 3 for 
details). The interpolated 1-D vector function (} in­
cludes rotating angles for each point of T and can be 
defined as follows: 

01 (j = I , 2, ... , m). (5) 

The following matrix rotates a contour curve C that 
is centered at the origin (for twisting as a function of 
(}): 

(6) 

2.2. Scaling 
We take a profile curve P (a planar curve) as the 

scaling factor and define it as in Eq. ( 3 ). It also rep­
resents only one magnitude for each point of the tra­
jectory curve T. Then, it can also be written as a 1-D 
vector function, which takes the distances of the vertices 
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of P to the vertical (or horizontal) axis at only one 
dimension. For an interactive system, first, an axis is 
given for reference and Pis drawn interactively. Then, 
distances of vertices of Pat one dimension to the axis 
give the scaling factor for C (see Section 3 for details). 
Scaling factors is a 1-D vector function and includes 
scaling radii for points ofT. It can be defined as: 

s1 (j = I , 2, ... , m). (7) 

The following matrix14 scales a contour curve C that 
is centered at the origin, as a function of s: 

0 0 0] 

ci ~ ~ . 
0 0 I 

(8) 

2.3. Rotation 
The twisted-profiled contour curve C must be rotated 

in 3-D with respect to the tangent vector at each point 
of trajectory curve T. That is, the plane of C must be 
made perpendicular to the tangent vector of Tat each 
point. We calculate the discrete derivative for each 
point of T to handle the tangent vector. To this end, 
we add two dummy vertices, T 0 and Tm+h toT. Here, 
T0 = T 1 and Tm+l = T m· In the following subsections, 
we use conventional 3-D matrices Rx, Ry, and R, to 
handle the position of C, and Tx, Ty, and Tz to rep­
resent the x, y, and z distances of the vertices ofT. 

2.3.1. Rotation about the x-axis 

[

I 0 0 0] 
[Rx] = 0 COIJ SOIJ 0 

0 - SOij COij 0 
0 0 0 I 

. TzJ+I - Tz1-1 
SOl·"" Sin 01· = 1 1 hx 

(9) 

( 10) 

1 The reader will notice that we give detailed derivations of 
matrix representations. We do this for the sake of complete­
ness; otherwise, we are aware of the fact that homogeneous 
matrices for translation, rotation, etc .. are well known. 

2.3.2. Rotation about they-axis 

fJ fJ 
Tx1-1 - TxJ+I 

C ·ECOS ·= 
J J h 

y 

2.3.3. Rotation about the z-axis 

[ 

C"fJ S"fJ 0 0] 
[R ] = -S'YJ C"fJ 0 0 

' 0 0 I 0 
0 0 0 I 

Tx1- 1 - TxJ+I 
C"fJ "" COS 'YJ = h 

z 

. TYJ+I - TYJ-1 
S"fJ"" sm 'YJ = h, ( 13) 

h, = Y( Tx1-1 - TxJ+I )2 + ( Ty1- 1 - TYJ+I ) 2 
( 14) 

2.4. Translation 
Finally, C must be translated to each point of Tto 

finish the sweeping operation. We use a 3-D translation 
matrix as follows: 

[ 

I 0 0 0] a = Tx1 - Tx, 
0 I 0 0 

[ T,.J = 0 0 I 0 b = Tyl - Tyl 

a b c I c = Tz
1

- Tz1 

(15) 

A general twisted-profiled sweeping matrix Sw,, is 
obtained when the transformation matrices specified 
above are multiplied in the following order: 

After some manipulations, the following is obtained: 

s1cos 81c{J1c"(1 s1cos 81c{J1s'YJ - SJCOS fJ1s{J1 

+s1sin 81sa1s{J1C"(1 + s1sin 81sa1sfJjS'YJ + s1sin 81sa1c{J1 0 

- s1sin 81COIJS'YJ + s1sin 81COIJC"fJ 

- s1sin 81cfJJC"fJ - s1sin 81cfJJC"fJ s1sin 81sfJ1 

[Sw,,] = + SJCOS 8JSOIJSfJJC"fJ + SJCOS 8jSOijS{JJS'YJ + SjCOS 8JSOijCfJJ 0 ( 17) 
- SjCOS 8JCOIJS'YJ + SjCOS 8jCOIJC"fJ 

SjCOijSfJJC"fJ SjCOIJS{JjS'Yi 

+ SJSOijS'YJ - SjSOIJC"fJ SJCOIJCfJJ 0 

a b c 
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Consequently, a twisted-profiled sweep surface can 
be calculated in the following form. First, each point 
of C must be evaluated for matrix Sw,P, and then, a 
new matrix Sw,P must be modified for each incre­
mentedj. 

[Sweep suiface];,J,e,s = [C];[Sw,PL.e.s 

lsisn, lsjsm (18) 

In the above formula, j varies slowly, i.e., we com­
pute the formula for a particular j and every i. 

For the planar case, if Cis a 2-D curve or a polygon 
centered at the origin in the x-y plane and Tis a curve 
or polygon starting at the origin in the x-z plane, then 
a planar twisted-profiled sweep surface can be com­
puted with the help of the following matrix: 

After some manipulations, the following is obtained: 

.. 

.. 

•• 

Sjsin OJ 
S;COS OJ 

0 
0 

- sJcos OJsfJJ 
sJsin OJs{JJ 

SJC{Jj 
b 

(20) 

((I I I I I I I I I I) 1$ 

Fig. I. Contour. (c), trajectory (I), and depth-modulation 
(zd) curves and produced objects. In (a), the distance of the 
points of zd to the axis is constant and the resultant object is 
a torus; in (b), the distance to the axis is varying and the 
resultant object is nonplanar. Finally, (c) shows the effect of 

a profile curve (pr). 

.. 

Fig. 2. Some depth-modulated objects produced by Tb. Note 
that having a closed [as in (a) and (c)] or open contour curve 

[as in (b)] does not really matter. 

3. IMPLEMENTATION AND EXAMPLES 

We will present two interactive methods to produce 
swept shapes. For each method, curves are specified 
and drawn interactively by the help of say, a mouse. 
They can be produced in two ways: free form and ap­
proximated form. In the former, a curve is produced 
by entering points of the curve by the mouse. There is 
no further operation to smooth the curve. In the latter, 
a curve is produced by entering each control point of 
the curve by the mouse. In this case, the curve is ap­
proximated by the help of Bezier orB-spline [9, 10, 
17] algorithms and hence, the produced curve is 
smooth. 

Our first interactive method is nonplanar general 
sweep. An important aspect of the method is to enter 
the 3-D points by the help of a mouse. This is provided 
by a curve, called a depth modulation curve. Inputs to 
the procedure that accomplishes this task are three 
curves: a contour, a trajectory, and a depth modulation 
curve. The depth modulation curve gives a "nonplan­
arity" to the trajectory and now, the trajectory is exactly 
a 3-D curve. The output of the procedure is a 3-D 
( nonplanar or planar) object obtained by sweeping the 
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(a) 

•• ••• 

(b) 

Fig. 3. Contour (c), trajectory (I), profile (pr), and twist (lw) curves and the produced objects. The object 
in (a) is a profiled object whereas the object in (b) is a twisted-profiled object. 

contour curve along the trajectory (Fig. 1 ) . The pro­
cedure helps one obtain quite interesting shapes with 
little effort. It gives flexibility to the user in generating 
complex shapes, e.g., knots, braids, springs, etc. Some 
samples produced by Tb are shown in Fig. 2. 

Fig. 4. Sample twisted-profile objects [ (a) and (b)] produced 
by Tb. 

The second method is twisted-profiled nonplanar 
general sweep. Five curves are necessary for this 
method: a contour, a trajectory, a depth modulation 
curve, a profile, and a twisting curve. The contour curve 
is twisted and scaled to different angles and sizes ac­
cording to the profile curve, while sweeping is per­
formed (Fig. 3). This procedure helps one obtain more 
interesting shapes with little effort. It gives more flex­
ibility to the user in generating even more complex 
shapes (Fig. 4). 

4. CONCLUSION 

We presented a mathematical definition of twisted­
profiled general sweep objects. Then, we gave two 
methods to handle sweep objects. The first method 
discussed how to produce exact 3-D shapes. The second 
one gave an interactive approach for deformed sweep 
objects. Deformations include twisting and tapering. 
We used two curves for these deformations: Twisting 
curve and profile curve. Many complex sweep objects 
can be generated by the help of the above methods. 
Future work for sweeping must be concentrated on 
fast local deformations. Local deformations for a sweep 
object are presented by Woodward[27]. He uses the 
B-spline surface generating method and sweeps control 
points. The required deformed shape is generated by 
locally deforming control points. His method can be 
easily adapted to our needs, but the deformation of 
control points may be somewhat difficult in interactive 
systems. 
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paper. As usual, we are solely responsible for any remaining 
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APPENDIX-REVIEW OF Tb 
Several methods exist for generating 3-D models of real or 

imaginary objects on a computer. The most popular approach 
is to use polygons as low-level primitives that define more 
complex objects. Obviously, it is difficult and time-consuming 
for a designer to define an object by such simple, low-level 
primitives. Therefore, a higher level primitive such as a B­
spline (or a Bezier) surface is preferable. Such parametric 
patches require many computations when it comes to ren­
dering, although they can be represented in more compact 
form. 

In this Appendix, we discuss the desirable functionalities 
of an interactive graphics system to visualize the complicated 
shapes of geometry, topology, and knot theory. Essentially 
our Tb is a rudimentary graphical workbench to help topol­
ogists illustrate their ideas more effectively. Central to our 
implementation is a paradigm of solid modeling, viz., shape 
= sweep + control. Oddly enough, this powerful paradigm 
has not been fully utilized in a system-wide manner in the 
past. That is, programs have been implemented to make use 
of sweeping in one way or another, but no effort has been 
concentrated to make sweeping the "underlying" primitive 
for everything in a modeler. This is precisely what we are 
trying to do with Tb. 

A preliminary version ofTb was written in the C program­
ming language and runs on a color Sun workstation. An early 
yet elegant work which inspired us is Baumgart's 
GEOMED [II]. Another more recent approach is Pentland's 
SUPERSKETCH™, which we regard as a very important 
system[ 22, 23]. 

Still, the real influence behind our software owes its existence 
to A Topological Picturebook of George K. Francis-a book 
that was written to encourage mathematicians to illustrate 
their work and to help artists to understand the abstract ideas 
expressed by such drawings [ 18]. Here we are running the risk 
of oversimplifying Francis' work considerably, for we cannot 
yet match the quality and the complexity of the figures in that 
book. For example, complicated constructions, such as the 
tetrahedral eight knot-as it appears in Bill Thurston's ac­
claimed work ( cf [ 20) for a popular account-) in 3-manifolds­
are not yet doable within our system. Our ultimate goal is to 
produce such figures without undue emotional trauma.' 

A topological picturebook may sound somewhat futile vis­
a-vis the fact that sketching and visual presentation of topo­
logical constructions/proofs are slowly losing their stronghold 
they once held. It may appear that the science of the "defor­
mation of shapes" is becoming somewhat sterile in terms of 

~We cannot unfortunately reproduce Francis' drawings of 
the tetrahedral eight knot (and many other complicated con­
structions) here for copyright reasons, cf [ 18). This is a pity 
because a glimpse of his drawings would give the reader a very 
precise idea of what we have set ourselves to do. 
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Fig. 5. Sample figures [(a), (b), (c), (d), and (e)] depicting various topological shapes obtained by Tb. The 
reader will notice that the program can achieve some nontrivial effects in order to simulate self-interesting 

objects. 

figures. However, we believe that there is a definite place for 
a topological picturebook of the sort to be described here. The 
following excerpt succinctly supports our view [ 18). 

"The pedagogy that underlies the entire book, and which 
bring out specially here, comes from Bernard Morin of 

Strasbourg. Pictures without formulas mislead, formulas 
without pictures confuse. I don't know if Bernard would say 
it this way, but it is how I have understood his work. [ · · ·I 
Morin's vivid, pictorial description of his bold constructions 
has inspired their realization in many a drawing, model, com­
puter graphic and film. But he insists that ultimately, pictorial 
descriptions should also be clothed in the analytical garb of 
traditional mathematics." 

A. I. Realistic views 
There are assorted techniques that can be used to give a 

realistic view of an object as a 2-D image. The following are 
some important ones taken from Francis [ 18): 

I. "For complicated objects it is often impossible to find a 
view which does not hide some important structure behind 

a surface sheet. One remedy is to remove a regular patch 
from the object, creating a transparent window through 
which this structure can be seen in the picture." 

2. 'To distinguish an edge whose other face is hidden from 
an edge which merely separates two visible faces, drafting 
teachers recommend heavier lines for the former relative 
to the latter." 

3. "The shading technique I use makes no pretense of accuracy 
and realism. It merely encodes positional information and 
helps distinguish rounded contours from sharp borders. It 
is based on a few optical principles." 

4. "Line patterns based on boxes in affine projection suffer 
from the Necker cube illusion: 'Which is front and which 
is back?' Thickening the facing borders helps decide which 
view is intended." 

5. "I prefer to shade a picture by means of a grid of parallel 
curves on the surface." 

6. "Expert drawing teachers such as Kimon Nicolaides rely 
on practical rules which show only qualitative respect for 
the laws of geometrical photometry." 

We are taking all these issues into account in our system. 
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(b) 

Fig. 6. Further samples [(a) , (b), and (c)] treating self-interesting objects. 

Fig. 7. Screen dump showing Tb in action. The black boxes under the menus are artifacts caused by color to black-and-white 
conversion. 
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A.2. User inte~lace 
Computer systems based on workstations mostly have their 

own user interface management systems. Such a system pre­
sents a set of user interface components to programmers. In 
general, these components are called interactors (windows, 
menus, scroll bars, buttons, text areas, mouse, and so on). A 
programmer must only perform a suitable organization of the 
interactors. In other words, a programmer must build a user 
interface system by using events, states, or attributes of the 
supplied interactors. 

Tb has a useful interface system based on SUN VIEW (Fig. 
7 ). Of course, the main goal of a user interface system must 
be to provide the above requirements. But Tb will be a profes­
sional's program and sometimes, speed is preferred over com­
prehensibility and orthogonality. Tb is based on the following 
guidelines: 

I. Interactors with a main purpose are shown on the screen 
all the time. 

2. Excluding text input. only the mouse is used for interac-
tions. 

3. lnteractors do not occupy too much space on the screen. 
4. Interactors are well placed. 
5. It is made sure that interactors have not too many items. 
6. Interactors do not overlap with each other. 
7. Interactors are not shown on the screen when they are not 

necessary. 
8. Mouse buttons are preferred over menus. 
9. Help menus are available. 

Our software can be regarded as a first order approximation 
to a good mathematical picture modeler. The interaction of 
Tb with the user is straightforward. For example, a torus can 
be rendered by selecting only five control points to produce 
the contour and a radius. Our fundamental aim is to hide 
details of processing from the user. In other words, the user 
will design objects as if he is doing free-form sculpturing, by 
carrying out high level operations. This is in the precise spirit 
of Pentland's sketching system[ 22, 23) mentioned earlier. 

The main goal of our work has been to provide a graphical 
workbench to assist topologists and artists to illustrate their 
ideas more effectively. An auxiliary goal is to improve the 
publication-quality production of mathematical figures. Future 

Fig. 8. Blending in Tb. 

enhancements that will be added to Tb are as follows (some 
of these exist-as a first-order approximation-in the present 
version of Tb): 

I. Global or local twist inK of sweep objects: c( Fig. 4 and 
Fig. 6. 

2. PuncturinJ?-While topology is intimately related to de­
formations, there are points where one would need tools 
to puncture or to cut-and-paste surfaces. For example, in 
order to build a 2-tori, one might choose to start with two 
separate tori. Then. a small disc is punctured on each torus. 
If one matches these discs (i.e .. glues the tori at these holes). 
then one obtains a 2-tori. 

3. Blendinf?-This is the well-known problem of say. how to 
smoothly glue the two tori of the previous example so that 
the resulting 2-tori has a fine appearance: c/.. Fig. 8. 

4. Incorporating text and formulas in various fonts. (Interface 
with TEX is being considered.) 

5. Local deformations of sweep objects and surJ?ery. For ex­
ample, we would like to create a small "bump" or a tiny 
"well" on a given surface. 

6. Shading capabilities. Transparency to inspect the sublayers 
of an object. 

7. Anti-aliasing. This is clearly necessary for publication­
quality pictures. 

8. Shadows-Francis is not really interested in the problem 
of depicting shadows cast by one object on another ( al­
though he notes that the shape of a shadow still obeys the 
objective laws of linear perspective) [ 18]. 


