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We investigate the interaction energy, the short-range force components, and the electron potential
between two Ai(001) slabs, which mimic a blunt tip close to an atomically corrugated sample in
scanning force microscopy. The adhesive energy and perpendicular force calculated using the self-
consistent-field pseudopotential method in the local-density approximation are site dependent, but
can be accurately represented by a universal function in terms of scaled variables in the attractive
range. The lateral force which determines friction variations on an atomic scale is not simply
proportional to the perpendicular force and is typically one order of magnitude smaller. At larger
separations the effect of the total long-range Van der Waals force and of its gradient are estimated
to be small for a sharp conical support tip, but quite appreciable for a rounded support tip with a
radius as small as 200 A. By calculating the interaction energy of an Al atom between two slabs,
we also study the possibility of single-atom transfer between tip and sample, and show that the
double well in the interaction energy collapses into a single minimum at a slab separation larger
than two bulk interlayer spacings. The atom is preferentially located on the side of the deeper
minimum, but can hop between the two wells at finite temperatures, Moreover, the position of
the deeper minimum relative to the electrodes can vary as the tip is scanned against the sample.
Finally we explore possible relations between the short-range perpendicular force and the tunneling
conductance through the potential barrier between two semi-infinite jellium slabs as a function of
their separation.

I. INTRODUCTION

The interaction energy and the force derived thereof
are important efFects of the mutual infiuence of tip and
sample in scanning force microscopy (SFM) (Refs. 1 and
2) and even scanning tunneling microscopy (STM) (Refs.
3—5) when these properties show significant variations
with tip position. The sign and the character of the force
vary according to the value of the tip-sample separation
z. At large z (excluding charging efFects) it is Van der
Waals attraction (VdW) in origin, and can generally be
attributed to correlations between electronic fluctuations
in the electrodes. When referred to individual atoms, it
is weak and practically uncorrugated, but owing to its
long-range (inverse-power-law) character it may be large
for the whole tip. At small separations of a few inter-
atomic distances short-range forces of quantum-chemical
origin eventually dominate the VdW force. The former
force can be calculated with reasonable accuracy in the
local-density approximation (LDA) and can be explicitly
divided into electron-mediated attraction and ion-ion re-
pulsion. Since wave functions decay exponentially in the
intervening potential barrier, this force is short ranged.

In the case of metals, to which we restrict the discus-
sion, the perpendicular component F,~(z) becomes in-
creasingly attractive with decreasing separation, passes
through a minimum, then decreases and becomes increas-
ingly repulsive. At the crossover from attraction to repul-
sion z = z„ the interaction energy E;(z = z, ) (excluding
VdW interaction) of an atomically sharp tip has a min-
imum corresponding to a binding energy in the range of
1 eV/atom typical of a chemical bond. The maximum
attractive force is 1 nN/atom for typical metal-sample
and metal-tip systems. Weaker but nevertheless signif-
icant lateral forces arise when the tip is positioned oK
high-symmetry positions. These lateral forces are fun-

damentally conservative, but, in combination with defor-
mations (even purely elastic), can produce instabilities,
hysteresis, and losses via energy transfer to shear modes,
resulting in an average friction force of nonconservative
nature.

The effects of tip-sample interaction in SFM and in
STM have been attracting a growing interest. s A quan-
titative treatment of tip-sample interaction for a given tip
structure requires detailed calculations. Even though the
detailed atomic structure of a tip is usually unknown, is
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affected by its sharpening process, and can change dur-
ing measurements, we can theoretically analyze specific
arrangements to reveal fundamental aspects, and to clar-
ify some of the outstanding issues in SFM and STM.
The particular issues we are addressing are (i) the dis-
tance dependence and relative importance of short- and
long-range forces, (ii) the same aspects in reference to
lateral forces, (iii) the relative importance of different
contributions and of individual atoms or layers, (iv) the
stability of the outermost tip atom and the energy bar-
rier for its transfer between tip and sample, and (v) the
relation between the short-range perpendicular force and
the conductance. Our results for the interaction energy,
short-range force, and electron potential are obtained
from self-consistent-field (SCF) calculations with nonlo-
cal ionic pseudopotentials performed within the LDA.
The sample is represented as a rigid slab of five Al(001)
layers; the tip is assumed to be blunt (fiat) and is also rep-
resented by a rigid Al(001) slab with a variable number
of layers. By assuming that both tip and sample consist
of the same kind of atomic layers, we are able to use peri-
odic boundary conditions and to express the wave func-
tions of the combined system in terms of a plane-wave
basis. For comparison we computed the Van der Waals
force for macroscopic support tips of different shapes in a
continuum approximation. Finally we carried out force,
transmission, and conductance calculations between two
parallel semi-infinite electrodes by using a variational jel-
lium approximation. Preliminary results have recently
been reported. io
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FIG. 1. Interaction energy E, versus separation z between
two rigid Ai(001) slabs for the outermost atom of the tip slab
facing the hollow (H) or the top (T) sites. The z axis is per-
pendicular to the (001) plane. E& is the binding energy per
unit cell. Top and side views of the geometric arrangement

appear below. Inset. Scaled energy F,' versus scaled separa-
tion a' (symbols) compared to the universal binding relation
(full curve) proposed by Rose et al. (Ref. 14).

II. SHORT-RANGE INTERACTION ENERGY
AND PERPENDICULAR FORCE

The interaction energy E,(z) (we define z as the dis-

tance between the outermost layers) between the slabs
representing sample and tip is extracted from total-
energy calculationsii with a kinetic-energy cutoff ~k+
G~ & 8 Ry which was checked to provide reasonable re-
sults for bulk Al. Figure 1 illustrates the dependence of
E,(z) calculated for a four-layer tip slab with the top-
layer atom facing a hollow (H) or top (T) site of the
sample. The variation of E,(z) and its minimum value 2

minus the adhesion energy of the slabs Eb = —E, (z = z, )
[1.37 eV/cell (Refs. 11 and 12) for the H site and 0.92
eV/cell for the T sitej, exhibit a significant site depen-
dence at small separation even for the simple metal sur-
faces considered here. Compared to our earlier results for
Al(111),s the difference between the H and T geometries,
as expected, becomes larger in the case of a more corru-
gated Al(001) surface. At the H site, Eb is larger since
the resulting stacking corresponds to the natural one of
Al(001) layers in bulk Al. Moreover, maximum adhesion
occurs close to z = do ——3.8 a.u. , the interlayer spacing.
The apparent minimum of E,(z) at the T site occurs at a
separation somewhat smaller than the nearest-neighbor
distance of bulk Al. It is actually a saddle point of the full
three-dimensional energy surface, and hence corresponds
to an unstable situation. In other words, E,(z) becomes
lower for small lateral displacements. The binding ener-
gies calculated here correspond to rigid slabs, and would

be further lowered if the atomic positions or interlayer
distances were allowed to relax. Et, shows only small
variations with the number of layers in the tip slab. For
example, for the T site Eq increases by 0.15 eV/cell in

going from a monolayer to a two-layer slab, but decreases
by 0.05 eV/cell in going from a two-layer slab to a four-

layer slab. For the H site these variations are 0.11 and
0.10 eV/cell, respectively. In the case of Morse-like pair-
wise interatomic potentials, Eq is expected to decrease
slightly with increasing number of layers and then to sat-
urate. The nonmonotic dependence of E, is reminiscent
of the oscillations of the work function and surface en-

ergy calculated earlier for thin Al(111) slabs. is These os-

cillations, characteristic of metallic slabs, are interpreted
as the manifestation of quantum size effects due to sub-
bands successively dipping below the Fermi level as the
slab thickness is increased. Such discrete subbands arise
from confinement in the z direction within each slab. In
the present case such oscillations affect the potential bar-
rier, and hence the decay constant of the wave function
of the highest occupied subband, and in turn the inter-
action energy E,(z).

As seen in Fig. 1, the dependence of E,(z) calculated
within the LDA is strong but short ranged, essentially
because the total energy of the tip-sample system for a
given separation is determined by charge-density over-

lap with only small deviations due to adhesive bond for-
mation. It is therefore reasonable to expect that for
z ) z„E,(z) can be approximated by an exponential
function. As a matter of fact, Rose et al. i4 offered evi-
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dence and an approximate justification for a simple uni-
versal scaling relation in terms of the Rydberg function,
E; = —(1+a') exp( —a'), for the interaction energy ver-
sus distance dependence of metallic and even covalently
bound systems, including bulk crystals, parallel surfaces,
adatoms, and diatomic molecules. The energy and dis-
tance are expressed in terms of the dimensionless vari
ables E; = E;/Ei, and a' = (z —z, )/A, respectively,
where A is either taken proportional to the Thomas-Fermi
screening length ATF or treated as a fitting parameter re-
lated to the curvature of E;(z) near its minimum. It is
remarkable that such a simple relation provides good fits
for a large variety of systems and constituents even well
away from z = z, . For Al(001) slabs we find that our
scaled energies also. fit well to the Rydberg function with
A 1 a.u. for both H and T sites, as seen in the inset to
Fig. 1, especially in the range z ) z, where the gradient
of the attractive perpendicular force is positive. The sys-
tematic deviation apparent for the H site indicates that a
slightly longer A would be more appropriate in that case.

The preceding value of A should be compared to ATF =
0.91 a.u. , calculated from the average electron density of
bulk Al, and to the values Ai, = 0.64 a.u. and A, = 1.25
a.u. proposed by Rose et al. to describe bulk cohesion
and adhesion between the most densely packed (111)sur-
faces of Al, respectively. i4 Although these authors claim
that Ab/A, 0.48 + 0.05 for 28 difFerent metals, their
estimates of A, are subject to a large uncertainty be-
cause they are based on surface energies obtained from
experiments on polycrystals representing unknown aver-
ages over different low-index crystal faces. We therefore
prefer to avoid the pitfall of misinterpreting the discrep-
ancy between A, and our fitted value for Al(001).

Later, the same researchers extended their treatment
to the energetics of crystals perturbed by defects and
applied this "equivalent-crystal theory" (ECT) to com-
pute surface energies of different metals starting from
bulk properties alone. is For Al(001), in particular, they
fourid a value corresponding to an adhesion energy of 0.65
eV/surface atom (for two surfacesiz 1.3 eV/cell), which
is close to ours for the H site and also to the experimental
one (subject to the above-mentioned uncertainties) of 0.6
eV/surface atom. Quite recently the same researchers ap-
plied their ECT to compute the interaction energy E, (z)
versus separation between identical close-packed surfaces
of different metals, as well as a metal adatom on one of
the surfaces facing the other one. In these two situations
representing the extremes of a blunt and sharp tip in
SFM, Banerjea, Smith, and Ferrante s found that E;(z)
could be accurately fitted by the Rydberg function, even
with the adatom facing sites of different symmetry. Un-
fortunately, they neither compared different sites on the
same surface, nor considered Al(001), so that our finding
of a nearly common value of A for different sites on this
surface and its value remain to be checked against ECT.
While it may be premature to draw general conclusions
on the basis of the few available comparisons of the SCF
calculations of E;(z) with the Rydberg function, io'i7 our
results reinforce the conclusion~6 that this universal de-
pendence provides a useful 6t to the interaction energy
versus position of the outermost tip atom(s) in SFM.

and the ion-ion repulsion

- BR, f [R, —R.
[ ) ' (2)

which compensate each other almost completely at large
separation. In the above equations, R, (R~) is the po-
sition vector and Z, (Zz) is the core charge of a sample
(tip) ion, p, (r) is the valence charge density of the bare
sample alone, and Ap(r) denotes the change in charge
density due to the tip-sample interaction. ~

In Fig, 2 we illustrate the variation of the perpendicu-
lar and parallel components of the total short-range force
on one atom of a single-layer tip slab for difFerent lateral
positions relative to the sample slab. The strongest at-
traction occurs at the smallest z = z~ at the H site.
As the tip atom is shifted from the H towards the T
site, the minimum and the zero crossing (z = z, ) of
the perpendicular force gradually shifts to larger z and
concomitantly the strength of the attraction decreases.
The calculated curves indicate a corrugation b,z = 1.2
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FIG. 2. Perpendicular F,~ and lateral F,
~~

forces (in
nN/atom) on the single-layer "tip slab" versus separation z,
calculated for the tip atom facing H, C, M, and T sites shove
in the inset.

Moreover, ECT ofFers a promising avenue towards the
estimation of the parameters Ei„z„and A and their site
dependence.

The short-range force on an individual atom j of the
tip can be calculated either from the derivative of the
calculated interaction energy, i.e., F,i(r) = V~—E;(r),
or more conveniently &om (V'—~Hi,DA). Indeed, once
self-consistency has been achieved, changes in the wave
function due to displacement of nuclei do not contribute
to the force, since the eigenfunctions are obtained varia-
tionally. As a consequence the force F,~ can be expressed
as the sum of the electron-mediated attraction (in which
the electron density is calculated from the self-consistent
wave functions),

Lp, (r) + ap(r)j R R
' dr,

8 Zg
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a.u. at a constant loading force F,~ in the range of +1
nN/atom. The different F,~ curves merge above z 10
a.u. , slightly beyond the separation at which a real po-
tential barrier exceeding the Fermi energy E~ appears
between the slabs. These features are analogous to those
found and discussed in our earlier work on tip-sample
interaction, ~ 0 whereas the crossing(s) beyond z~ are
system specific.

III. SHORT-RANGE LATERAL FORCE

Measurements of the lateral forces acting on the tip in
SFM as a function of perpendicular loading force and
scan velocity have revealed atomic-scale variations on
graphite. s Zhong and Tomanek o have provided a theo-
retical estimate of the average friction coefficient p, from
E;(z) calculated for a commensurate Pt monolayer slid-
ing against graphite in the repulsive range. They as-
sumed that in the limit of slow tracking velocity the en-
ergy increase in going from the H to the T site is stored
conservatively in bending the cantilever and is then fully
dissipated in the opposite sequence. This is a rather
unrealistic assumption, however. Indeed, experimental
data show an average nonconservative hysteretic com-
ponent superposed on a conservative component, modu-
lated with the lateral periodicity of the sample surface.
An important factor pointed out by Mate et at. is is that
the strain stored in the vicinity of the tip may only be
partially released in the observed stick-slip motion. A
full account of the friction arising in the course of the
observed stick-slip motion should include the dissipation
of energy by phonons and other excitations in both tip
and sample, and requires further work. En the present
study we only calculate the conservative lateral forces
F,

~~
(z), as illustrated in Fig. 2 (dashed curves) for the tip

atom facing the M and C sites indicated by the inset.
By symmetry they are directed along the diagonal HT
and vanish if the tip atom is facing the H and T sites
of the sample. They are one order of magnitude smaller
than the perpendicular forces in a wide range of z. This
is likely to be a generic feature which can qualitatively
be understood as follows. In an effective pair-interaction
picture, which may be approximately justified by neglect-
ing Ap and representing p, in Eq. (1) by a superposition
of spherical atomiclike densities, the vector contributions
from all neighboring sample atoms tend to add up in

F,~, but tend to cancel out in F,~~. Furthermore, F,
~~
(z)

is not proportional to F,~(z), although it exhibits a simi-
lar overall dependence and changes sign at a value z =

z~~

between z, and z~. For z & z~~, F,
~~

is directed towards
T, but for z & z~~ it is reversed, consistent with the bulk
stacking of Al layers in the (001) direction for z = z, .
F,

~~

is finite at z = z (where I",~ has the strongest at-
traction) even though F8~ = 0. These features can be
understood in terms of the three-dimensional interaction
energy Z, (r), the minimum of which at fixed z switches
from T to H as z is increased (see Fig. 1).

IV. LONG-RANGE FORCE

Tunneling and short-range interactions are usually
dominated by poorly controlled and characterized pro-

tuberances consisting of a few atoms on much larger
"support" tip. The importance of the VdW interaction
in SFM was recognized earlier, and it was argued that
depending on the overall shape of the support tip, the
atom at the apex of the tip can experience strong re-
pulsion even leading to irreversible deformations while
atoms further away from the apex experience an over-
all attraction. 7 Building up on previous work concerned
with VdW interaction between macroscopic bodies, var-
ious authorsi"'z~ 24 have recently investigated the im-
portance of that interaction in SFM. Existing treatments
rely on summing the asymptotic interaction law C„r—"
over the volume of the tip (and of the sample in the first
case mentioned below). This interaction law describes
the VdW interaction energy at a distance r between two
atoms (n = 6), 2 between an atom and a polarizable flat
surface (n = 3),z4 or between two such surfaces (n = 2).zs

In the last two cases the quoted laws are presumed to hold
at distances sufiiciently large that details of atomic struc-
ture cease to matter and a continuum description based
on integration becomes justified for bodies with cross sec-
tion varying slowly on that scale. 2s zs Although the z de-
pendence of the net interaction resulting from these vari-
ous approaches is the same for electrodes of a given shape,
the calculated strengths C„depend on the tip and sample
materials and can difFer significantly. This is so because,
for instance, the polarizability of a metallic tip or sample
is larger than the sum of the atomic polarizabilities of its
free constituents. Thus it is by no means clear whether
the prescription proposed in Ref. 23 is adequate for metal
tips. Indeed, for metal electrodes, a generalized Lifshitz
approach, r s appears to be most appropriate. It is ex-
pected to be valid at separations such that wave-function
overlap and, hence, exchange effects become negligible,
whereas remaining electron correlation effects require a
nonlocal description. At separations z & c/u„10s a.u.
the inverse power of the interaction law is increased by
unity, owing to electromagnetic retardation, ~4 but such
effects are of academic interest in the context of SFM
with atomic or nanometer lateral resolution, which re-
quires much smaller z. In that range, this theory can
be somewhat improved by taking spatial dispersion into
account, for instance, by including the next term in an
inverse-power-law expansion or absorbing it into a shift

z~ —+ z~ —z0.2s 2s [Note that the separation z defined at
the outset is between the outermost atomic layers, but
in theoretical treatments based on the jellium model it
is more appropriate to consider the distance z~ between
jellium edges; in the case of Al(001), z~ = z —do in a.u. ]
Adapting the results of these treatments to our situation,
we conclude that zo must be smaller than twice the sep-
aration of the static image plane from the jellium edge
of one surface, i.e. , at most 3 a.u. in the case of Al

(jellium density parameter r, 2).2s More ambitious at-
'empts to bridge the gap between the resulting Lifshitz-
like asymptotic expression and short distances at which
the LDA is believed to become adequate, which were
mostly pursued in the context of He-atom interactions
with metal surfaces, o are to our knowledge still frought
with uncertainties. They all replace the apparent diver-
gence as z~ ~ zo by a smooth crossover. The more ad hoc
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tion for a given zz and the difference zz —z is somewhat
uncertain.

The total VdW force I"~ and its gradient are calcu-
lated by difFerentiating Eq. (3) with respect to z~. Cal-
culated results are shown in Fig. 3. For the hemispheri-
cal geometry, the VdW force and its gradient are signif-
icant compared to the corresponding short-range coun-
terparts per tip atom (Fig. 2). The VdW force increases
roughly proportional to the assumed radius r )& z~ in

the range 200-1000 A, typical for the end of a carefully
etched support tip used in STM or combined STM/SFM
investigations. Even larger VdW forces are expected for
fiat-ended cylindrical tips. 24 These results explain in part
why Goodman and Garciazs found VdW forces and gra-
dients of much larger magnitude for different materials
assuming a spherical tip of diameter 2000 A. at z~ = 10 A..
On the other hand, for a sharp conical tip with o. & 45',
the VdW force is less than 0.1 nN, while the force gra-
dient is in the range of 0.1 N/rn. By contrast, the gra-
dient of the short-range force in the attractive range is

1 N/m. These estimates are similar to those of Diirig
and co-workers. i7 The long-range VdW force is strongly
shape dependent. For a realistic support tip, which is
unavoidably rounded near its apex and becomes approx-
imately conical further away, the front part will deter-
mine the net VdW interaction as long as z~ && r. As a
result the corresponding force and to a lesser extent its
gradient can remain significant even at small separations
where they are overestimated by the present calculations.

V. ATOM TRANSFER

An atom at the apex of a sharp tip, just like an ad-
sorbed host atom on a fiat surface, has a smaller coor-
dination and thus weaker binding as compared to that
in the bulk. As the tip approaches the sample, the apex
atom is attracted to the sample. To picture what can
happen, two interaction energy curves E, (z) like those
in Fig. 1 can be thought of as attached to each elec-
trode in opposite directions and superposed. The result-
ing curve approximately represents the interaction energy
of an atom between two electrodes as a function of its co-
ordinate z measured with respect to the left electrode. It
rises to large values in the repulsive range at small z and
exhibits a single minimum at z s/2 (s is the distance
between the two surfaces) for s & 2z~. Otherwise one
obtains two minima separated by an energy barrier. The
evolution of the interaction energy versus position z of
an Al atom between H sites of two Al(001) surfaces is
presented in Fig. 4 for several separations. These results
were obtained from computations analogous to those de-
scribed in Sec. II, but with lateral (3x3) periodicity of
the Al atom facing the H sites of two Al(001) surfaces.
Since the lateral positions of the Al atom relative to both
slabs are identical, the resulting curves are symmetric.
Because interactions with, as well as between, both elec-
trodes are included, the actual interaction energy devi-

ates from E,(z) +E,(s —z), with E;(z) calculated for an

atom interacting with a single electrode only. The energy
barrier decreases as the separation between electrodes is

30—
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FIG. 4. Energy of a single Al atom between two Al(001)
slabs versus its distance from the left electrode (slab) as de-
scribed in the inset. The single Al atom faces the H site of
both surfaces. The zero of energy is taken at the minimum of
E(z) corresponding to s = 8 a.u.

decreased and hence the rate at which the apex atom can
hop between the stable minima on each side by thermal
activation or by tunneling increases exponentially. This
can in principle become observable before the minima
merge into a single one. In the course of approaching
the sample the distance of the apex atom from the rest of
the tip gradually increases owing to increasing attraction
to the sample. Moreover, the minima become shallower
and the barrier becomes lower and narrower as one would
infer from E,(z) + E, (s —z). As a consequence, hopping
sets in at a larger separation. As the barrier collapses
upon further approach, the distance of the apex atom
from either electrode is larger than that corresponding to
the equilibrium binding to only one electrode. These ef-

fects are amplified if both the tip and sample are allowed

to deform, in partial analogy to the avalanche effects 3

in which atomic layers of two interacting semi-infinite
slabs collapse when the spacing between them falls be-
low a critical distance leading to a discontinuous drop in

the interaction energy. In the present computations the
tip (except the outermost atom) and sample are rigid, so
that the interlayer separations are fixed.

A concomitant effect dramatically evidenced by com-

paring Figs. 1 and 4 is also initiated by attraction of the
atom to both electrodes. After the barrier disappears,
the atom is stable in the middle with a considerably
larger binding energy at a significantly larger separation
than twice the corresponding quantities with only one
electrode present. This means that the atom can gain an
additional stabilization energy between two electrodes.
All these phenomena have several important implications
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in SFM. (i) Upon approach the outermost atoms of the
tip (or adatoms on the sample) will hop to the other side
at a rate proportional to exp[ —Q~(s)/k~T]. Here Qy
is the activation energy for transfer over the barrier in
the two opposite directions. Atom transfer via tunneling
through the barrier can in principle also contribute at
sufficiently low temperature, but such a process can be
meaningful only for very low barriers, i.e. , in a narrow
range of separations just prior to barrier collapse, and
will therefore be very difficult to identify. The difference
between Q+ and Q comes from the asymmetry of the
interaction energy and will generally occur owing to sev-
eral reasons. First of all, the tip and sample are usually
made of difFerent materials. The tip is usually chosen to
be a hard material like W or Si (for SFM). Even if the
tip and sample consist of, or are coated with, the same
material, their shapes are different. An atom is then
likely to prefer a site of maximum coordination, i.e., at a
step or kink on the sample side. That the stronger bind-
ing in Fig. 1 occurs for an atom facing the H site is in
accordance with this picture. For such an asymmetric in-
teraction energy, the time spent by an atom bound in the
deeper minimum will be much longer, and the probabil-
ity of the transfer of atoms towards the deeper minimum
will be much higher. (ii) Although the avalanche process
might reduce to single-atom transfer if the tip apex is
sharp, and if both sample and tip are sufficiently hard,
the combined effects of thermal activation and soften-
ing can induce more extensive wetting of one electrode
by the other. s4 (iii) Even if the barrier energy (Q+ or
Q ) is large for a given condition, it can be momentarily
lowered by an external agent. For instance, as in field
desorption, si'ss the quasisymmetric position of energy
minima can be modified in such a way that atom trans-
fer to one side will be enhanced. An external field of ~ 1
V/ A. can achieve this, since not only can it more easily
penetrate the apex of the tip with its lower coordination,
it can also penetrate into the top layer of a metal. ss As a
result of the controlled lateral and perpendicular motion
of the tip under an appropriate voltage, adsorbed atoms
can, for instance, be relocated to desired positions. ss s~

In the presence of a sharp tip, the increased binding of
an atom at a single central minimum below a certain
tip-sample separation, as in Fig. 4, will be limited to the
vicinity of the tip, thus enabling controlled lateral reloca-
tion independent of voltage. ss The observation that atom
transfer changes direction with the current independent
of voltage has been attributed to the adatom excitation
(heating) by tunneling electrons. (iv) The configuration
with an atom between two electrodes also facilitates the
collapse of the potential barrier between two electrodes
below E~. This effect, not to be confused with the col-
lapse of the barrier for atom transfer, occurs at much
larger separations. As mentioned in our discussion of
Fig. 2, the collapse in question occurs for z & 9 a.u.
in the case of two Al(001) surface. With an atom in
between this should occur below an interelectrode sepa-
ration slightly beyond the range of s covered in Fig. 4.
At smaller separations we expect coupled electronic and
mechanical changes similar to those obtained in earlier
studies. s' s~4s Since the apparent maximum of the po-

tential along the z axis through the atom is actually a
saddle point in three dimensions, the classically allowed
channel which forms does not allow electron wave prop-
agation until s is reduced such that the electron density
rises in the channel. This occurs quite rapidly, resulting
in bond formation at a slightly smaller separation. Judg-
ing from the sudden increase in binding below s, 9.5
a.u. in Fig. 4, we estimate this to be also the critical
value for electrical contact. Because the atom is then
stable in the middle, waveguidelike channels actually ex-
ist on both sides. When the tip and sample are brought
closer together, new conduction channels can open and
the character of electron transport should change from
tunneling to ballistic. 40

Eventually mechanical contact is initiated; attraction
quickly changes to repulsion leading to plastic defor-
mations and to jumplike increase in contact areas~s4
and corresponding changes in conductance. 4s DifFerent
regimes (i.e., conventional tunneling, electronic contact,
and mechanical contact) in the operation of STM were
treated earlier. s 4i Between s 13 and 9 a.u. the lat-
eral size of the channels 4O 42 44 is not sufficient per se
to open the lowest ballistic propagation mode with a
quantum conductance 2ez/h. Even so, the atom between
both electrodes can have a resonance state near the Fermi
energy, s which can raise the conductance to that level.
This situation is reminiscent of a double-barrier quantum
well, and gives rise to an increased conductivity even if
coupling to electrodes is via evanescent waves. The same
situation was found earlier for states bound to a quan-
tum dot or an impurity in a one-dimensional (1D) meso-
scopic channel. s Of course, the resonance condition will
be modulated depending on separation and lateral po-
sition as the tip is scanned above the sample surface.
The resulting modulation of the conductance, owing to
changes in the potential barrier and in the wave func-
tions of relevant states, is either purely electronics or
induced by displacement of the atom4s (likely a combina-
tion of these effects), and offers a likely explanation of the
anomalously large corrugation observed in STM of the
close-packed surfaces with a nominally very fiat electron
density profile, such as Al(111).4~ A full theory incorpo-
rating the position-dependent self-consistent potential is,
to our knowledge, still lacking. If s is sufficiently large
compared to s„ the appropriate configuration is the ini-
tial one (i.e. , one of the minima in the interaction energy
curve), which may be metastable. As s approaches s„
the atom eventually hops back and forth between alter-
native positions many times during a measurement, and
the tunneling current must be a weighted average which
accounts for the dwell time and thermal motion around
each minimum. Close to s, this motion becomes more
extensive and anharmonic. The corresponding changes
in the current power spectrum are worth investigating.
Finally note that if the interaction energy curve is sym-
metric as in Fig. 4, these motional averaging effects are
enhanced. This situation, which also favors resonant tun-
neling with maximum transmission when s s„can
arise when sample atoms have previously been trans-
ferred to the tip [as-occurred in the STM study of Al(111)
(Ref. 47)].
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VI. FORCE AND CONDUCTIVITY

Going back to Secs. I and II it is clear that the (short-
range) electron-mediated tip-sample interaction arises
because the potential barrier between electrodes allows
wave functions to overlap. According to Bardeen's per-
turbation theory of tunneling, the conductance is
also determined by the same overlap of wave functions
at the Fermi level. Therefore, in the attractive range
it is expected that force and conductance are interre-
lated. Earlier, we pointed out the reversible modifica-
tions of electronic states prior to contact, and correla-
tions between perpendicular force F,~ and barrier height
Pg.~ s Denoting the transfer-matrix element between the
tip (@T) and sample (@s) wave functions with respect
to the combined tip-sample Hamiltonian as UT g(z) =

(@BOIH—T+g(z)IiIrT ), the shifts of the corresponding en-

ergies sT and es can be expressed in first-order pertur-
bation theory. Experimentally, Durig et aLi7 drew at-
tention to the correlation between force gradient and
tunneling conductance G in the course of tip approach.
More recently Chens concluded that the force should
be approximately proportional to the square root of the
conductance. First he related the interaction energy to
the splitting of coupled states via PT &Up s(z). On

the other hand, UT s (z) itself is approximately equaP2

to the tunneling matrix element MT s(z). As a re-
sult, E,(z) = PT, & M~ g(z), and hence the perpendic-
ular component of the electron-mediated force can be
extracted as F,g —QT &BMT,s/Bz If, as a.ssumed
by Chen, a resonance near the Fermi energy localized at
the apex of the tip singles out a dominant MT g, this
leads to F,~ = (tc~G, since the tunneling conductance4s

(4)

by a weak interaction between two subsystems. 53 The
only exception is the special case where one of the sub-
systems has no valence states (e.g. , rare-gas atoms) and
the Hartree-Fock approximation is used. For metallic
or other subsystems with a short-range interaction due
to overlap of their valence states, the LDA is a better
approximation. Although the leading asymptotic term
is then in fact proportional to the sum of the eigen-
value shifts, the next contribution from exchange remains
important. 3 For all these reasons one cannot expect the
relation between F,~, conductance G, and tc to be as sim-
ple as Chen's. Nevertheless, some relation is expected to
exist as long as PA & 0, and should approach Chen's as z
is increased beyond the point where Pg becomes positive.

In order to test the validity of Chen's argument, we
first seek a similar relation between the force I',~ cal-
culated in Sec. II and the maximum barrier height P~.
For P~ we take the difference between the maxirnurn of
the planar average of our calculated SCF potential at z/2
and EF. The plot in Fig. 5 indicates that the short-range
force is in fact (calculated in the range where F,~ is es-
sentially site independent and also P~ & 0) proportional
to Kexp( —rz), where K = v'Pg in a.u. It is important
to realize that /is remains quite low, so that r, i varies
between 2.5 and 5.3 a.u. in the limited range studied,
where a comparison with our previous computations ap-
pears meaningful. Moreover, it extends somewhat be-
yond the range where Durig and co-workersi~ as well as
we (see inset to Fig. 1) obtained close fits to the Rydberg
function with a decay length A 1 a.u. This indicates
that quite difFerent efFective decay lengths can be ob-
tained from fits over a limited range to difFerent functions
containing a decaying exponential whenever the latter is
not sufficiently small. Furthermore, a confinement effect
analogous to that found for a protruding tip atom may
be significant, especially at the lower limit of z for the

then decays exponentially with tip-sample separation z.
Although only states at the Fermi level contribute to G,
states below EF (which, in turn, decay faster) are also
involved with perpendicular force. In the typical range
of STM or combined STM/SFM operation, covering 2—
3 A in z (Refs. 17 and 51) beyond electrical contact,
we therefore expect I",~ to decay faster than v G. This
has, in fact, been observed by Durig and co-workers,
who obtained good fits to the Rydberg function with
A ~ 0.42 A. for their data on Ir, and A 0.66 A. for our
results for Al(ill) (Ref. 8) as compared to rc

i 1 A..
Furthermore, in this range the maximum height Pg of
the potential barrier is considerably depressed below its
asymptotic value P (the average of the work functions of
sample and tip) and changes with z together with the
barrier profile. Although the latter effect conspires to
produce an apparent barrier height P~ & P~ which
remains finite almost down to the point of electrical con-
tact, p~ has also been predicted to be depressed. 4s 4s Its
slow z dependence may be difficult to detect over the
limited experimental range, however. Finally the micro-
scopic expressions for the interaction energy and total
force cannot in general be written in terms of shifts and
splittings of the occupied electronic eigenvalues induced

0.15—

0.05—

10 2 x 10
—KZre (a.u.)

3 x10

FIG. 5. Calculated perpendicular component of the
(short-range) force F,~(z) versus rcexp( —ez) for separations
z=9, 10, 11, and 12 a.u.
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T-site geometry. Indeed, the potential V(r) has signif-
icant lateral variation especially close to the corrugated
electrode. Therefore, P~ is obtained from the potential
at z/2 for the II-site geometry, which exhibits a weaker
x, y dependence. In view of all these qualifications, the
proportionality apparent in Fig. 5, although suggestive,
must be viewed with caution.

Owing to the artificial periodic boundary conditions
imposed in supercell SCF calculations and the result-
ing coarse discretization in k space, a calculation of
the conductance is tedious. In order to avoid compli-
cations arising from the x, y dependence of the poten-
tial, and to explore the relation between short-range
force and conductance over a wider range, we now re-
sort to the jellium model following the variational treat-
ment originally applied to determine the interaction be-
tween two Hat metal surfaces. The electronic charge
density of the semi-infinite left electrode is parametrized
as pi, (z ) = p+[1 —exp(Pz )/2] for z & 0 in the posi-
tive background region and pg(z ) = p+ exp( —Pz )/2 for
z ) 0 in the vacuum region. Here p~ is the uniform

I
charge density corresponding to Al, and z = 0 marks
the jellium edge, i.e., z = do/2 in our previous notation.
The charge density pR(z ) of the right electrode is given

I I
by the same expressions with z replaced by zz —z, z~
being the separation between jellium edges. That the
charge density is expressed in terms of a single expo-
nent is of course an approximation, but makes the prob-
lem easily tractable. In density-functional theory, ss the
ground-state energy of a confined interacting electron gas
is expressed as a functional of the electron number den-
sity p(r), which should be minimized for the correct p(r).
In the present study we assume that the electron density
of the coupled system can be represented as pL, + pz and
computed the energy functional with local exchange and
correlation potential as in Ref. 54. In contrast to that
work, we minimized the functional for each separation,
thus obtaining P(zz). In this way the modification of
the electronic states due to electrode-electrode (or tip-
sample) interaction is taken into account to some extent
and the resulting interaction energy is closer to the self-
consistent LDA jellium calculations performed later M.

In Fig. 6 we first examine the validity of this varia-
tional jellium approach that expresses the charge density
between two identical flat parallel electrodes in terms of
a single optimized decay constant P(zz). First, we com-
pare the corresponding potential with the planar average
of the SCF pseudopotential calculated for the K-site ge-
ometry for z~ = 7.2 a.u. and z = 11 a.u. , respectively,
in Fig. 6(a). Second, the variation of P~ with electrode
separation obtained from these calculations is compared
in Fig. 6(b). Finally, we compare F,z(z~) calculated in
the jellium model with that calculated in Sec. II at the
H site in Fig. 6(c). For the sake of direct comparison the
distance z between the outermost layers of the slabs is ex-
pressed in terms of z~ = z —do. Quantities calculated for
the K site are compared with the corresponding jellium
results, because this geometry corresponds to the correct
registry for adhesion at zz

——0. Besides, as mentioned
in our earlier discussion about P~, the three-dimensional

0
05

~~ -0.2
I

N

o -04

I

z -11a.u. (a)

—04

-0.6
-10 - 5

I

0
z'(a. u.)

5 10
-0.6

0 2 4 6 8 10
zj (a.u)

-0.5
Z',
t:

~ -1.0

(c)

I I I I

0 2 4 6 8 10
zI (a.u.)

SCF pseudopotential then has a weaker x, y dependence
in the middle of the barrier. As indicated in connec-
tion with Fig. 2, force curves from our SCF calculations
exhibit a significant site dependence in the range where
P~ & 0. Actually, the barrier height calculated from the
planar average of the SCF pseudopotential for the T site
is consistently higher than that for the H site because
the higher potential between K sites facing each other
in the former geometry contributes more to the average.
The difference persists even if P~ ) 0, becoming small
at large z (gF& —Pg = 0.2 eV for z = 11 a.u. ), and large
close to the point where P~ = 0 (gFz —Pg = 0.6 eV
for z = 9 a.u.). In spite of all these reasons for devia-
tions between the results of our two quite different ap-
proaches, the level of agreement seen in Figs. 6(a)—6(c)
is remarkable. For z & 9 a.u. (z~ & 5.2 a.u. ) the mag-
nitudes of the attractive forces from our SCF pseudopo-
tential calculations systematically exceed those obtained
from our jellium approximation. This is related to the
collapse of the potential barrier below EF, which makes
self-consistency and the discrete atomic structure of elec-
trodes particularly important. Nevertheless, our jellium
approach yields a very reasonable force curve. In par-
ticular, I"8~ almost vanishes at zz ——0, as it should and
also does in a self-consistent treatment, in contrast to
the original work where P was kept equal to the optimum
value for a single electrode. 5 Even for large separations

FIG. 6. (a) Potential energy V(z ) relative to the Fermi
level E~ for z = 11 a.u. ; the full curve corresponds to a planar
averaged SCF pseudopotential, the dotted curve is obtained
from the jellium calculations with z~ 7.2 a.u. (b) Potential
barrier P~ versus separation z~ between jelllum edges; the full
curve is our jellium approximation, squares are SCF results.
(c) Perpendicular force versus separation as in (b).
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(z & 12 a.u.) both approaches show that P~ still varies
appreciably, so that the decaying tails of the wave func-
tions at Ez, and hence the charge density, cannot be
well represented by a single decay constant. As a matter
of fact, at large separation SCF slab calculations in a su-
percell also fail to give an accurate representation of such
tails because of the truncated plane-wave basis set. Nev-
ertheless, the jellium approach described above provides
a simple and reasonably accurate way of calculating the
interaction energy, force, and potential between two flat
simple metal electrodes in a broader range than much
more demanding SCF pseudopotential calculations.

Having tested our variational jellium approximation,
we next consider the corresponding transmission prop-
erties. To this end we first compare the transmission
probability T of an electron tunneling at the Fermi level
through the potential barrier between two electrodes
as a function of zz calculated essentially exactly us-
ing the transfer-matrix method4s and in the Wentzel-
Kramers-Brillouin (WKB) approximation for an opaque
barrier. sr We also consider the quantities exp( —2Kz~)
and exp( —2rt', ozz) (it, ti corresponding to the barrier height
at infinite separation) which, strictly speaking, govern
transmission through a barrier of constant height, but
are often used to extract an apparent barrier height from
an exponential fit to conductance versus separation. Fig-
ure 7 compares the variation of these quantities as func-
tions of z~. The transmission probability calculated ex-
actly becomes unity when z~=0 (i.e., when two jelliums
merge), and so does exp( —2Kpz&) for a mathematical
reason. However, both T(WKB) and exp( —2zz~) reach
unity earlier, i.e. , when the barrier collapses for z~ + 5
a.u. One interesting conclusion from Fig. 7 is that the
T(WKB) overestimates the exact transmission probabil-
ity, but stays reasonably close at large separations, as
expected. In fact, for sufficiently large separations all
quantities shown in Fig. 7 become proportional since the
underlying potential barrier is rather flat and wide. For
small zz, on the other hand, all approximate expressions

0.10 0.10

(b)

z
~ 0.05

U
I

0.05—

fail to give good estimates for the transmission proba-
bility. This statement also applies for the original and
modified forms of the transfer Hamiltonian approach.
The quantity exp( —2rz~), which gives rise to the simple
dependence apparent in Fig. 5, poorly reflects the z de-
pendence of the transmission. This can be traced back to
the changing barrier shape which cannot be described by
its maximum height alone. Integrating the exact trans-
mission over transverse momenta, keeping E = E~, we
obtain a conductance curve (not shown) with the same
appearance lying closer to exp( —2roz~).

Figures 8(a)—8(d) display how the short-range force
and the conductance or various quantities related to the
transmission probability T at EF are related within our
jelliurn model. It is important to clarify some aspects re-
lated to the trends apparent in this figure, as compared
to Fig. 5. First, Figs. 8(a)—8(d) span a wider and difFer-
ent range of separation, which extends beyond the range
included in Fig. 5, especially Figs. 8(c) and 8(d). How-
ever, the range must still be limited because it is not
appropriate to represent the charge density throughout
the barrier by a single P(z~) for either very small or very
large separations. .Also, as seen in Figs. 6(a) and 6(b),
the potential barrier is slightly underestimated as com-
pared to our SCF results. Finally, for large separations
F,~ becomes so small that it is swamped by the VdW
contribution, which is absent in the LDA. Hence only a
portion of the curves depicted in Figs. 5 and 8 may be
relevant for a meaningful comparison.

In Fig. 8(a) the plot of perpendicular force versus
r, exp( —Kz~) once again indicates a simple relation in the
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FIG. 7. Transmission probability at Ez versus separation
z~ between jellium edges. The dependence emerging from an
accurate computation (full curve) is compared with various
approximations. For details refer to the text.
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FIG. 8. Perpendicular force versus (a) tr, exp( —ttz~) as in
Fig. 5, (b) rt, ~G, (c) transmission probability T calculated ex-
actly (full curve) and using the WKB approximation (dotted
curve), (d) conductance G. All calculated within the jellium
approximation.
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weak-attractive force range. However, this relation is ap-
proximately linear only in a limited range where the at-
tractive force is very weak. Since exp( —2zzs) is a poor
approximation to the exact transmission probability T or
to the conductance 0, it is not surprising that plots of
force versus e~G or versus T in Fig. 8(c) fail to reveal
any proportionality, and by the same token do not sup-
port a relation of the type proposed by Chen, except
perhaps very close to the origin (i.e., for very large sep-
arations) in Fig. 8(b). On the other hand, approximate
linear relations, albeit over different limited ranges, are
found between F,~ and the WKB approximation for T
in Fig. 8(c), and the exact conductance G in Fig. 8(d).
Taken together, these plots demonstrate that there is no
simple relation between force and any quantity related
to the exact transmission or conductance over the range
of zs sPanned in Figs. 8(b)—8(d). Although our jellium
calculations confirm the approximate proportionality be-
tween the short-range force and the quantity z exp( —~z)
related to the maximum average barrier height pointed
out earlierm and in Fig. 5, it appears to have less physi-
cal significance than the fit to the Rydberg function dis-
cussed in Sec. II, just like the other approximate linear re-
lations described above. Keeping in mind all the approx-
imations involved in the jellium model as well as Chen's
arguments, we can only expect a trend rather than an
exact and universal relation. In actual STM/SFM ex-
periments deviations from any universal expression are
expected depending on the measurement conditions. For
example, the structure of the tip enters because it pro-
duces a confinement effect and also affects the contribu-
tion of the VdW force. Theoretical results obtained by
different approximate methods can also differ in properly
representing the shape of the potential barrier.

VII. SUMMARY

In this work we investigated difFerent manifestations of
the interaction between two rigid Al(001) slabs for differ-
ent separations using the SCF pseudopotential method.
We calculated the interaction energy, perpendicular, and

lateral forces acting on one slab for several relative posi-
tion of the other slab. The interaction energy of a sin-
gle Al atom located between H sites of such two slabs
has also been studied. Similar physical quantities, as
well as the transmission probability and conductance be-
tween two electrodes, have also been calculated within a
variational jellium approximation. Our results are rele-
vant for the interpretation of SFM experiments with a
blunt tip and their correlation with simultaneous STM
measurements on metals. The important aspects of the
work can be summarized as follows. (i) The interaction
energy and the short-range perpendicular force are site
dependent, but both can be accurately represented at
different sites by a Rydberg function in terms of differ-
ently scaled energy but with the same decay length A 1
a.u. (ii) Calculated force curves indicate a corrugation of
1.2 a.u. for constant perpendicular load in the range of
+1 nN/atom. (iii) With an extra atom in between, a
crossover between an energy dependence with two min-
ima to one with one much deeper minimum in the center
is found for a slab separation of 2.5 interlayer spacings.
This observation is relevant for controlled atom transfer
experiments. (iv) The net Van der Waals force and its
gradient can be important at small tip-sample separation
if the support tip has a radius of curvature as small as
200 A.. However, they have negligible efFects for a sharp
conical tip. (v) Although the short-range perpendicular
force turns out to be proportional to a simple quantity
related to the maximum height of the tunneling barrier
in the manner suggested by Chen, no simple relation is
found with the conductance or the transmission proba-
bility at the Fermi energy calculated within our jellium
approximation.
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