
Computer Standards & Interfaces 14 (1992) 117-144
North-Holland

Standard conformance test specification
language TTCN

Behcet Sarikaya a and A. Wiles b

"Department of Computer and Information Sciences, Bilkent University, Bilkent, Ankara, Turkey 06533
" TeleTest Box 1218, 751 42 Uppsa/a, Sweden

Abstract

117

Sarikaya, B. and A. Wiles, Standard conformance test specification language TTCN, Computer Standards & Interfaces 14
(1992) 117-144.

The International Standards Organization (ISO) has defined a protocol test language called TTCN (Tree and Tabular
Combined Notation) to specify abstract test suites for Open Systems Interconnection (OS!) protocols. TTCN combines a
tree notation for dynamic behaviour description with a tabular representation of various language constructs. TTCN allows
tabular constraints to enforce values on the Abstract Service Primitive (ASP) or Protocol Data Unit (PDU) parameters. For
application layer protocols, Abstract Syntax Notation One (ASN.l) constraints are used. Dynamic behaviour description in
TTCN is shown to address many important aspects of conformance testing such as modularity support in terms of test cases,
steps and default behaviour tables and sophisticated timer management. TTCN has a machine processable form called
TTCN-MP that defines all the TTCN syntax using BNF. Semantics of the tests specified in TTCN is operationally defined
rendering TTCN almost a formal notation.

Keywords. Specification languages; distribution systems; conformance testing; communication protocols: test specification:
test suite; tree and tabular combined notation.

1. Introduction

Distributed processing and distributed systems imply that the entities in different systems need to
communicate with each other, 'speaking the same language'. The information transferred must conform
to some mutually acceptable set of rules of syntax and semantics. This is where the ISO (International
Standards Organization) comes in with its OSI (Open Systems Interconnection) model. The model [1] is
divided into seven layers, each performing a function to achieve open communication. The concept of
testing various implementations of these layers for conformance to the relevant ISO standards is a logical
step in the development chain. ISO has developed a standardized methodology and framework for all
aspects of conformance testing of OSI protocol implementations. Conformance testing is not concerned
with the performance or efficiency aspects of an implementation. The stated purpose is to decide
whether the implementation under test (called IUT) adheres to the relevant standard in all instances of
communication, both inter-layer and inter-system. ISO conformance testing standard [2] is a six part
document. The first defines conformance in the OSI context, the second part defines the abstract test
suite specification and the third part defines the TICN. The other parts are on test realization and test
laboratory operations.

We describe the International Standard TICN hereafter called TTCN. Conformance test suites such
as the X.25 test suite [7] have been specified in earlier versions. Test suites are complex, and voluminous,
for example the X.25 test suite contains over 500 tests. It is important to be able to electronically treat
TTCN which is a tabular language. TICN's linear form, called TTCN-MP, is designed to facilitate
electronic exchange of test suites since it is a machine independent internal form of the TTCN tables.

0920-54R9 /92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

118 B. Sarikaya, A. Wiles

Thus it is also important to support TTCN-MP and its conversion to TTCN-GR. Several TTCN editors
have been designed to facilitate interactive editing of TTCN test suites.

Below, in Section 2, we start the discussion by first introducing the Abstract Syntax Notation One
(ASN.l) which is an integral part of TTCN. Section 3 introduces TTCN and declaration facilities of
TTCN, Section 4 is on constraint declarations, Section 5 describes how the dynamic behaviour is
specified, Section 6 develops a test case and discusses its semantics, Section 7 discusses the machine
processable form of TTCN, Section 8 is on test realization from the abstract test suites and the test suite
overview tables, and Section 9 concludes the paper.

2. ASN.l

In this section we introduce the standard ASN.l [5], an integral part of TTCN. Abstract syntax
notation one (ASN.l) is a language for defining types and values. Also a set of encoding/decoding rules,
called basic encoding rules (BER) is defined for ASN.l defined types and values [6]. ASN.l provides
several built-in types such as integers, reals, booleans, bit and octetstrings.

Structured types can also be defined: SEQUENCE and SET for a group of elements (RECORD of
Pascal), CHOICE for a type of alternatives (variant record of Pascal) with a TAG defining a code for
distinguishing the alternatives, SEQUENCE OF and SET OF for a sequence of identical types (array of
Pascal).

Types are defined using the following notation:
typereference === Type

where typereference is the name of the variable which should start with a capital letter and Type is a
built-in or a constructed type.

Values are defined using the following notation:
valuereference Type ::= Value

where valuereference is the name of the variable to which a value Value of type Type is assigned.
The name of the item referred to as identifier consists of one of more letters, digits, and hyphens. The

initial character shall be a lower-case letter. The item valuereference is defined exactly as an identifier.
Every type in ASN.l has a tag. A tag is specified by giving its class and the number within the class.

The class is one of UNIVERSAL, APPLICATION, PRIVATE, and CONTEXT-SPECIFIC. The number is
a non-negative integer, specified in decimal notation. All built-in types are of universal class and they
carry a unique class number.

2.1. Built-in simple types

ASN.l includes several built-in simple types such as BOOLEAN, INTEGER, ENUMERATED, BIT
STRING, OCTET STRING and OBJECT IDENTIFIER. Type definition, corresponding value defini­
tion notation and class numbers for these types are given in Table 1.

Table 1
Built-in simple types

Type definition

Boolean Type'= BOOLEAN
InterType'= INTEGER I INTEGER

{N amedN umber List}
EnumeratedType'= ENUMERATED {Enumeration]
BitStringType'= BIT

STRING I BIT STRING {NamedBitList}
OctetStringType'= OCTET STRING
ObjectldentifierType''= OBJECT IDENTIFIER
NullType'= NULL

Value definition

BooleanValue'=TRUE I FALSE
IntegerValue'= SignedNumber I identifier

EnumeratedValue''= SignedNumber I identifier
BitStringValue'= bstring I hstring I {identifier List}

I{}
OctetStringValue'= bstring lhstring
ObjectldentifierValue'= {ObjidComponentList}
NullValue'= NULL

Class number

1
2

10
3

4
6
5

Standard conformance test specification language TTCN

Example of an (enumerated) integer type definition for ABRTSource is:

ABRTSource ::= INTEGER
{ requestingACPM (0),

requestor (1) }

An example value definition for ABRTSource above is:

defaultABRTSource ABRTSource ::= requestor

An example bitstring type definition for PSREQ is:

PSREQ ::= BIT STRING { context-management(O),
restoration(!) }

and a bitstring value:

defaultPSREQ PSREQ ::= '01 'B

As an example we define the variable Protocol whose type is object identifier as:

Protocol ::= OBJECT IDENTIFIER

Now a value ftam for the above type can be defined as:

ftam Protocol ::= {iso standard 8571}

The same value in numbers can be defined as:

ftam Protocol ::= {I 0 8571}

2.2. Structured types

119

Sequence type is similar to record type in programming languages. A sequence type is defined in Table
2 where SEQUENCE { } is used to define an empty sequence, ElementTypeList is a list of ElementTypes
defined as:

ElementType ::= NamedType I NamedType OPTIONAL
NamedType DEFAULT Value I
COMPONENTS OF Type

where OPTIONAL indicates a type whose value can be optionally included, DEFAULT gives a default
value which can be optionally included in the value. COMPONENTS OF is used for inclusion at this
point of all ElementTypes appearing in the referenced type which must be a SEQUENCE or a SET type.

A typical use of sequence type is to define Protocol Data Units (PDUs), such as in:
ABRTapdu ::= [APPLICATION 4] IMPLICIT SEQUENCE

{ abortSource [0] IMPLICIT ABRTSource,
userlnformation [1] AssociationData OPTIONAL}

Table 2
Structured types

Type definition

Sequence Type::= SEQUENCE{
ElementTypeList} I SEQUENCE { }

SequenceOfType::= SEQUENCE OF Type
SetType::= SET{ElementTypeList} I SET { }
SetOfType::= SET OF Type
Choice Type'= CHOICE {AlternativeTypeList}
TaggedType'= Tag Type I Tag IMPLICIT Type

I Tag EXPLICIT Type

Value definition

Sequence Value::= {ElementValueList} I {}

SequenceOfValue'= {ValueList} I {}
SetValue•:= {ElementValueList} I {}
SetOfValue'= {ValueList} I {}
Choice Value'= NamedVa1ue
Tag'= [Class ClassNumber)

Class number

16

16
17
17
Tag of type chosen
N/A

120 B. Sarikaya, A. Wiles

which defines the abort PDU called ABRTapdu of the ACSE protocol [4]. This type has a tag which is of
application class, number 4. The field AssociationData is defined to be of EXTERNAL type. The type
abortSource is of context-specific class, number 0 whose type is ABRTSource defined above.

The type sequence-of is used to define sequences of a single type similar to arrays. The notation used
to define this type is given in Table 2.

The types SET and SET OF are defined exactly the same manner as SEQUENCE and SEQUENCE
OF respectively (see Table 2). The difference is that the order of elements on set and set-of values is
irrelevant.

Let us first define Presentation _Context _Definition _List as an example for sequence and sequence-of
types:

Presentation_Context_Definition_List ::= SEQUENCE OF
SEQUENCE { context_id INTEGER,

abstract_syntax OBJECT IDENTIFIER}
We next define a value for the above sequence-of-type:

Context_ def _list Presentation_ Context_ Definition_ List
{Presentation_ context Context_ def_ FTAM,

Presentation_ context Context_ def _ACSE }
The value Context _def _FTAM is defined as:

Context_ def _ FT AM Presentation_ context {
Presentation_ context_ identifier TSP _Pres_ Context_ id _ FT AM,
Abstract_syntax_name {1,0,8571,2,1} }

where TSP _Pres_ Context _id _FTAM is an integer constant and { 1,0,8571,2,1} is the object identifier
value that represents the abstract syntax name (the ASN.1 definitions of FTAM protocol) for FTAM.

ASN.1 choice type is similar to Pascal variant records and is defined in Table 2 where Alterna­
tiveTypeList is a list of NamedTypes. In order to unambiguously differentiate each alternative the tags of
all types defined in the AlternativeTypeList shall differ from those of other types. Also the identifier in
all NamedType sequences shall be distinct.

An example choice type definition is the (FTAM) PDU type defined as:
PDU ::= CHOICE {

InitializePD U,
FilePDU,
BulkdataPDU}

and a choice value is:
ftamPDU PDU ::= FilePDU
A tagged type is a new type which is isomorphic with an old type, but which has a different tag. It is

defined in Table 2 where Class is either UNIVERSAL, APPLICATION, PRIVATE, or empty if CON­
TEXT-SPECIFIC. ClassNumber is a decimal number.

3. TTCN overview and declarations

A conformance test suite in TTCN consists of a number of test cases which test the implementations
for conformance. Tests are hierarchically organized into test groups each consisting of one or more test
cases. Test cases are specified using the tree notation and are made up of test steps. The Tree and
Tabular Combined Notation (TTCN) specifies a test suite in four parts:
• test suite overview,
• declarations,
• constraints,
• dynamic behaviour.
We will discuss first the declarations followed by the constraints and the dynamic behaviour. Finally test
suite overview will be discussed together with test realization.

Standard conformance test specification language TTCN 121

Table 3
Tabular type definitions

Simple Type Definitions

Type Name Type Definition Comments

Transport classes INTEG ER(O, 1 ,2,3,4) Classes of the transport protocol
StringS IA5STRING[5] String of maximum length 5

3.1. Declarations

Different type declarations and value declarations must be done before specifying the dynamic
behaviour. Type declarations will be discussed in this section and value declarations, or constraints are
discussed in the next section.

3.1.1. Types
TTCN supports a number of basic types such as INTEGER, BOOLEAN, BITSTRING, HEXSTRING

and OCTETSTRING and all the character string types of ASN.l. Types can be defined in tabular form
using Simple Type Definitions proforma which contains Type Name, Type Definition and Comments
columns. For example the type Transport_ Classes as an enumeration type and StringS as an lAS String
can be defined as shown in Table 3.

As we can see from Table 3 base type such as INTEGER is followed by the type restriction which can
take one of the following forms:
1. a list of distinguished values of the base type; these values comprise the new type. Transport_ classes is

defined with a list of distinguished values.
2. a specification of a range of values of type INTEGER such as:

seq_numbers INTEGER(0 .. 127) or
positive_numbers INTEGER(l..INFINITY) to represent all positive INTEGER numbers.

3. a specification of the maximum length of a predefined string type. StringS in Table 3 is defined with a
maximum length.
Any type definitions using ASN.l language is also accepted in TTCN. In this case ASN.l Type

Definition table is used. As an example the ASN.l type P _address is defined to be of SEQUENCE type
in Table 4.

Structured tabular types are declared using Structured Type Definition table. As an example
TAddresslnfo is defined as a structured type in Table S.

3.1.2. TTCN operators and operations
Commonly used arithmetic operators of '+ ', '- ', ' * ', '/', and MOD are predefined operators in

TTCN. The predefined relational operators are '= ', '< ', '> ', ·o, 1 > = ', '< =' and Boolean
operators are NOT, AND and OR.

Table 4
ASN.l type definition table

ASN.l Type Definition

Type Name: P _address
Comments: Presentation address

Type Definition

SEQUENCE {
Presentation_ selector OCTET STRING,
Session_ selector OCTET STRING,
Transport_ selector OCTET_ STRING,
Network_ Service_ Access_ Point OCTET STRING}

122 B. Sarikaya, A. Wiles

Table 5
Structured type definition

Structured Type Definition

Type Name: T - Address_ info
Comments: Transport address

Element Name Type Definition Comments

Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits

For type conversions a number of predefined operations is supported:
1. HEX_ TO_INT(hexvalue:HEXSTRING)-)INTEGER

which converts a single HEXSTRING to a single INTEGER value.
2. BIT_ TO_INT(bitvalue:BITSTRING)-)INTEGER

which converts a single BITSTRING value to a single INTEGER value.
Similarly INT _ TO_HEX and INT _ TO_BIT are defined.

Other predefined operations are IS_PRESENT, NUMBER_OF _ELEMENTS, IS_CHOSEN and
LENGTH_OF.
1. IS_PRESENT(DataObjectReference)-)BOOLEAN

this operation can be used to check the presence of an OPTIONAL or a DEFAULT field in the
actual instance of the data object defined to have ASN.l SET or SEQUENCE type. As an example
assume received _PDU is of ABRTapdu type defined in Section 2.2 above. Then the operation call
IS_PRESENT(received_PDU.userlnformation)
evaluates to TRUE if user Information (an OPTIONAL field) in the actual instance of received _PDU
is present.

2. NUMBER_OF _ELEMENTS(DataObject_Reference)-)INTEGER
this operation returns the actual number of elements of a data object that is of type ASN.l
SEQUENCE OF or SET OF.

3. IS_CHOSEN(DataObject_Reference)-)BOOLEAN
this operation returns TRUE if the data object reference specifies the variant of the CHOICE type
that is actually selected for a given data object. As an example assume received _PDU is of (FT AM)
PDU type defined above. Then the operation call
IS_ CHOSEN(received _ PDU .field2)
returns TRUE if the actual instance of received _PDU is of the type FilePDU.

4. LENGTH_OF(DataObjectReference)-)INTEGER
returns the actual length of a data object that is of type BITSTRING, HEXSTRING, OCTET­
STRING or CharacterString. For example:
LENGTH_OF('OlO'B) returns 3,
LENGTH_ OF('F3'H) returns 2,
LENGTH_ OF('F2'0) returns 1 (octet),
LENGTH_OF("EXAMPLE") returns 7.
For user defined operations Test Suite Operation Definition table must be used. As an example

diffOBJECT to return an OBJECT IDENTIFIER is defined in Table 6. In this table the operation is
informally defined. More precise definitions in a programming language such as C can also be given.

3.1.3. Test suite parameters
Abstract test suites must be developed based on the protocol standard and they must contain test

cases to correspond to different categories, i.e. basic interconnection, capability tests, behaviour tests,
etc. Some features of protocols are optional, not every IUT is supposed to implement every feature.
Because of these, the IUTs are asked to declare their capabilities in a standard form called Protocol
Implementation Conformance Statement (PICS). PICS proformas are standardized for every protocol.

Standard conformance test specification language TTCN 123

Table 6
A test suite operation definition

Test Suite Operation Definition

Operation Name: diffOBJECT(obj:OBJECT IDENTIFIER)
Result Type: OBJECT IDENTIFIER
Comments:

Description

diffOBJECT(obj) returns an OBJECT IDENTIFIER different from the input obj.
For example:
diffOBJECT({1,3,9999,1,7}) = {2,3,9999,1,7}

Table 7
Test suite parameters

Test Suite Parameter Declarations

Parameter Name Type PICSjPIXIT Ref Comments

TSP .. Pres Context
~
id~ FTAM INTEGER PIXIT question yy pres. con text

TSP pres~ address ~tester P ~ADDRESS PIXIT question xx TESTER
TSP FX BOOLEAN PICS question FXl

Some extra information such as the addresses to use in order to apply the tests are declared using
Protocol Implementation Extra Information for Testing (PIXIT) proforma.

Test suite parameters are constants derived from the PICS andjor PIXIT which globally parameter­
ize the test suite. These constants are declared using Test Suite Parameter Declarations table. Table 7
shows the test suite parameter declarations for the Association Control Service Element (ACSE) test
suite [9].

3.1.4. Test case selection expressions
Test case selection expressions declare the Boolean expressions to be used in the test case selection

process. The Boolean expressions defined are given a name and these names are used in test suite
overview tables to indicate the conditions imposed on executing a test case. In Table 8 two test case
selection expression declaration examples are given.

3.1.5. Test suite constants
Test suite constants are a set of names for values not derived from the PICS or PIXIT that will be

constant throughout the test suite. They are declared using test suite constant declarations table. Some
of the test suite constants from the transport test suite is given as an example in Table 9.

3.1.6. Variables
There are two types of variables in TTCN: test suite and test case variables, defined using test suite

variables; test case variables tables, respectively. Test suite variables are globally defined for the test

Table 8
Test case selection expressions

Test Case Selection Expression Definitions

Expression Name Selection Expression Comments

SELl TSP ~ FX Feature X supported
SEL2 TSP~FX~VAL=O Accept Feature X Val = 0

124 B. Sarikaya, A. Wiles

Table 9
Test suite constants

Test Suite Constant Declarations

Constant Name Type Value Comments

CR_code INTEGER 14
CC_code INTEGER 13

Table 10
Test suite variables

Test Suite Variable Declarations

Variable Name Type Value Comments

state IA5STRING 'idle'
used to pass the final state of the previous test
case to determine which preamble to use

Table 11
Test case variables

Test Case Variable Declarations

Variable Name Type Value Comments

{'refl', 'ref2',
used to store the value of the session connection

SESS _CON_ ID _ IUT SSCONID identifier for an established connection. It will be
'ref3'}

used while reestablishing the connection

suite, i.e. they retain their values throughout the test suite. An example suite variable declaration is
shown in Table 10.

A test suite may define a set of variables, test case variables which are declared globally to the test
suite but whose scope is defined to be local to the test case. An example test case variable from the
ACSE test suite is shown in Table 11. The type of this variable SSCONID is an ASN.l SEQUENCE:

SEQUENCE { SS_ user _ref OCTET STRING, Common_ref OCTET STRING,
Additional_ref OCTET STRING}

3.1. 7. PCO declarations
In the PCO Type Declaration table, the set of points of control and observation (PCOs) to be used in

the test suite are declared. For each PCO used, its name, its type identifying the layer boundary where
the PCO is located and its role (either UT for Upper Tester or LT for Lower Tester) must be provided.
As an example:
L TSAP LT

defines the PCO L of the transport service access point at the lower tester.
The number of PCOs in a test suite depends on the test architecture used: one for the Remote and

Coordinated test architectures (see Table 12), and two for Distributed architecture. The PCO model in

Table 12
Points of control and observation

PCO Declarations

PCOName PCOType Role Comments

L PSAP LT Presentation service access point at the lower tester

Table 13
Timers

Timer Name

wait

Standard conformance test specification language TTCN 125

Timer Declarations

Duration Unit Comments

15 sec General purpose wuit

TTCN is based on two First In First Out (FIFO) queues, one for control (stimulus) and one for
observation.

3.1.8. Timers
Timers used in the test suite are declared in the Timer Declarations table which contains Timer

Name, Duration, Units and Comments columns. For example a general purpose timer called wait can be
declared to be of 15 seconds in Table 13. Time units can be ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes).

3.1. 9. ASP type declarations
Abstract Service Primitives are messages exchanged between consecutive layers. In TTCN, ASPs can

be declared either using ASP Type Definition proforma or ASN.l ASP Type Definition proforma.
Tabular ASP type definitions are done by making a separate proforma for each ASP declared in the
service standard. An example tabular ASP definition is shown in Table 14.

Parameters may be of a type of arbitrarily complex structure. If a parameter is to be structured as a
PDU then the type is specified either as a PDU identifier to indicate that in the constraint for the ASP
this parameter may be chained to a PDU constraint of a specific PDU type; or as PDU metatype to
indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint of any
PDU type.

Structured types can be used in ASP declarations. This leads to a multi-level substructure of
parameters if a parameter name is given to be of a substructure type. For example CONreq defined in
Table 14 has a multi-level substructure due to T _Address _info defined above as a structured type.

If a macro symbol (- is used instead of a parameter name then this is equivalent to a macro call
which expands into a list of parameters without introducing an additional level of substructure. For
example we can define an ASP CONreq2 as shown in Table 15. In this case CONreq2 contains the fields
of Source, Destination, T _Class and UserData.

ASPs can be declared in ASN.l using ASN.1 ASP Type Definition proforma. This declaration might
make reference to some parameters that are declared again in ASN .1 using ASN.1 Type Declaration
proforma.

Table 14
ASP type definition proformu

ASP Type Definition

ASP name: CONreq(T ·- CONNECTrequest)
PCO type: TSAP
Comments: Transport connect request service primitive

Parameter Name Parameter Type Comments

Cda (Called Address) T _Address_ info of upper tester
Cga (Calling Address) T _Address_ info of lower tester
Qos (Quality of Service) QOS should ensure class 0 is used

126 B. Sarikaya, A. Wiles

Table 15
Macro symbol in ASP definition

ASP Type Definition

ASP Name: C0Nreq2(T _ CONNECTrequest)
PCO Type: TSAP
Comments: Transport connect request service primitive

Parameter Name Parameter Type Comments

<- T _ Address_ info
T _Class INTEGER
User Data PDU

3.1.10. PDU type declarations
Protocol Data Units are messages exchanged between peer entitles. The declaration of PDUs is

similar to that of ASPs. PDU Type Definition proforma is used to declare various fields of PDUs. All
ASP parameters and PDU fields defined in TTCN are assumed to be optional by default. Optionality of
parameters/ fields must be explicitly specified if ASN.l is used to define ASP jPDUs.

An example PDU Type Definition table from transport test suite for CR PDU is shown in Table 16.
Some fields of CR like PDU _CODE and CDT are of 4-bits long. In the table they are defined as
integers and the details of encoding/ decoding is left to the implementation.

The type for some fields could be PDU (of a higher level protocol) to indicate that in the constraint
for the PDU this parameter may be chained to a PDU constraints identifier of any PDU type. The type
could be a PDU identifier to indicate that in the constraint for the PDU this parameter may be chained
to a PDU constraints identifier of a specific PDU type.

Multi-level substructure of fields can be declared if a field name is given in the declaration referencing
a structured type. Instead if the macro symbol is used to expand directly to a list of fields then no
additional level of substructure is introduced.

Similarly, application layer PDUs can be declared using ASN.l PDU Type Definition proforma in
ASN.l. An example ASN.l PDU type definition from the ACSE test suite is shown in Table 17.

When declaring ASP parameters or PDU fields of string types length of the parameter/ field can also
be declared in two forms:
1. field_ type[Length]

restricting the length of that parameter or field to exactly Length, or

Table 16
PDU type definition proforma

PDUType Definition

PDU Name: CR (CONNECTION request)
PCO Type: NSAP
Comments: Transport connect request protocol data unit

Field Name Field Type Comments

Ll_f INTEGER(! ... 254)
PDU_CODE INTEGER CR_CODE is 14
CDT INTEGER(0 .. 15)
DST_REF INTEGER(0 .. 65535) fixed to zero
SRC_ REF INTEGER(l..65535)
CLASS INTEGER 4 bits
OPTIONS INTEGER 4 bits
calling_ TSAP _ ID IASSTRING
called_ TSAP _ ID IASSTRING
TPDU_size INTEGER(? .. 13)
userdata IASSTRING

Standard conformance test specification language TTCN

Table 17
ASN.l PDU type definition

ASN.l Type Definition

PDU Name: PARP
PCO Type: SSAP
Comments: Presentation PDU

Type Definition

SEQUENCE{
provider_ reason [0] IMPLICIT Abort_ reason OPTIONAL,
event [I] IMPLICIT Event_ identifier OPTIONAL}

2. field_type[min_len TO max_len] or field_type[min_len .. max_len]
specifies the minimum length min _len and a maximum length max _len.

127

The units of lengths for BITSTRING is bits, for HEXSTRING is hex digits, for OCTETSTRING
octets and for CharacterString is characters.

4. Constraints

It is necessary to specify values of ASP parameters, PDU fields and structured elements in detail.
These values are specified in the form of constraint tables. TTCN allows two types of constraints:
Tabular constraints or ASN.l constraints.

Constraints are used in SEND and RECEIVE events. If a constraint is used in a SEND event, it shall
contain specific values for each and every ASP parameter or PDU field. If a constraint is used in a
RECEIVE event, the test suite specifier may use special matching symbols where it is not possible to
specify specific values. These special symbols can be used to replace values of single ASP parameters or
PDU fields, groups of ASP parameters or PDU fields or even the entire contents of ASPs or PDUs.

Neither test suite variables nor test case variables can be used in the constraints. They can only be
passed as actual parameters.

Constraints may be parameterized. In this case the constraint name is followed by a parenthesized
formal parameter list and the parameterized ASP parameters or PDU fields shall have these parameters
as values. Each formal parameter name is followed by a colon (:) and the name of the parameter's type.
If more than one parameter is used the parameter name-type pairs are separated from each other by
semicolons. Actual parameters could be literal values, test suite parameters, test suite constants, test
suite variables, test case variables and other constraints.

4.1. Constraint chaining

Constraints may be chained by referencing a constraint as the value of a parameter or field in another
constraint. For example, the value of the Data parameter of an NDAT Areq ASP could be a reference to
a CR PDU constraint, i.e. the transport PDU is chained to the network ASP.

Constraint chaining could be in one of two ways:
1. static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit

reference to another constraint; or
2. dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal

parameter of the constraint. In this case the actual parameter in the dynamic behaviour table defines
the dynamic value.

128 B. Sarikaya, A. Wiles

4.2. Constraint matching mechanisms

Values of all types can be used in constraints. Literal values, test suite parameters/ constants, formal
parameters and test suite operations are all valid as actual values in a constraint. To facilitate static
chaining a (parameterized) constraints reference is also allowed as a parameter or field value. A
constraint ASP parameter or PDU field shall match the corresponding received ASP parameter or PDU
field if the received ASP parameter or PDU field has exactly the same value to which the expression in
the constraint evaluates.

4.2.1. Constraints for SEND events
When a constraint is referenced for a SEND event, it should provide a specific value for each and

every ASP parameter and PDU field. TTCN also allows assigning values explicitly in the SEND event
line.

If an ASP parameter or PDU field is declared optional, then the Omit symbol (-) can be used to
indicate that no value will be sent for the parameter/ field. AnyValue symbol(?) may be used to indicate
that no value is specified in the constraint.

4.2.2. Constraints for RECEIVE events
Complement is a special symbol for matching that can be used on values of all types. Complement is

denoted by the keyword COMPLEMENT followed by a list of constraint values. For a value of type
INTEGER:

COMPLEMENT(S)
shall match the corresponding ASP parameter or PDU field if the received ASP parameter or PDU field
does not match any of the values listed in the value list, i.e., is not equal to 5 for the above example.

Omit is a special symbol for matching that can be used on all values of all types, provided that the
ASP parameter or PDU field is declared as optional. Omit is denoted by '-' in tabular constraints and
OMIT in ASN.l constraints. In ASN.l constraints it is also possible to simply leave out an OPTIONAL
ASP parameter or PDU field instead of using OMIT explicitly.

AnyValue is also a special symbol for matching on values of all types. In both tabular and ASN.l
constraints Any Value is denoted by'?'. Any Value shall match if, and only if, the received ASP parameter
or PDU field evaluates to a single element of the specified type.

AnyOrOmit is a special symbol for matching on values of all types, provided that the ASP parameter
or PDU field is declared as optional. In both tabular and ASN.l constraints it is denoted by ' * '. The
matching mechanism provided is equivalent to those of Omit or AnyValue.

ValueList can be used for values of all types. In both tabular and ASN.l constraints ValueLists are
denoted by a parenthesized list of values separated by commas. A constraint ASP parameter or PDU
field that uses a ValueList shall match the corresponding incoming ASP parameter or PDU field if the
incoming ASP parameter or PDU field value is equal to one of the values in the ValueList. For a value of
type:

CHOICE {a INTEGER
b BOOLEAN}

(a 2, b TRUE)
will match if the values 2 for a and TRUE forb are received.

Ranges can only be used on values of INTEGER types. In both tabular and ASN.l constraints range
is denoted by two boundary values, separated by ' .. ' or TO, enclosed by parentheses.

Range matches if the incoming ASP parameter or PDU field value is equal to one of the values in the
Range. As an example for a value of type INTEGER:

(1 .. 6)
matches if the value is between 1 to 6.

SuperSet denoted by SUPERSET and SubSet denoted by SUBSET are only used in ASN.l constraints
for SET OF types and they match with at least all (possibly more) or all (possibly less) elements,
respectively.

Standard conformance test specification language TTCN 129

4.2.2.1. Inside values. AnyOne denoted by '?' is used for matching within values of string types,
SEQUENCE OF and SET OF. Inside a string, SEQUENCE OF or SET OF a '?' in place of a single
element means that any single element will be accepted.

AnyOrNone denoted by ' * ' is also used within values of string types, SEQUENCE OF or SET OF.
Inside a string, SEQUENCE OF or SET OF a ' * ' in place of a single element means that either none,
or any number of consecutive elements will be accepted. It will match the longest sequence of elements
possible.

4.2.2.2. Attributes of values lfPresent denoted by IF _PRESENT can be used as an attribute of all
matching mechanisms provided that the type is declared as optional. Length denoted by a positive
integer expression, enclosed in square brackets can only be used as an attribute of the following
mechanisms: Specific value, Complement, Omit, AnyValue, AnyOrOmit, AnyOne, AnyOrNone and
Permutation (to match values of SEQUENCE OF type in any permutation).

For a type of IASSTRING the constraint:
'ab * ab'[13]

matches if the string has at least 13 characters starting and ending with 'ab'. For a type of IASSTRING
OPTIONAL the constraint:

'abcdefiF _PRESENT
matches either if the string is equal to 'abcdef' or if this field is absent.

4.3. Tabular constraints

Tabular constraints can be on PDUs and ASPs.

4.3.1. PDU constraints
For every PDU type declaration at least one base constraint must be defined. In a base constraint, a

set of base or default values for every field defined is specified in a horizontal manner. Table 18 contains
the base constraint proforma for the CR PDU defined in Table 16.

Table lk
A constraint on CR PDU

PDU Constraint Declaration

Constraint Name: CRI
PDU Type: CR
Derivation Path:
Comments: Transport connect request protocol data unit base constraint

Field Name Field Value Comments

LI - f (4 . .INFINITY) greater than 3
PDU CODE - 14 CRPDU
CDT 15 credit value
DST _REF 0 must be zero
SRC - REF myref a test suite constant
CLASS 0 class zero
OPTIONS 0 no expedited data
calling_ TSAP _ ID idl a test suite constant
called - TSAP - ID id2 a test suite constant
TPDU - size 7 minimum accepted, i.e. 128
userdata 'testing, testing' arbitrary text

130 B. Sarikaya, A. Wiles

Table 19
Constraint inheritance

PDU Constraint Declaration

Constraint Name: CR2
PDU Type: CR
Derivation Path: CRl.
Comments: CR PDU constraint inheritance

Field Name Field Value Comments

CDT 1 In the base CR1 this value is 15

PDU Constraint Declaration

Constraint Name: CR2
PDU Type: CR
Derivation Path: CRl.
Comments: CR PDU constraint inheritance

Field Name Field Value Comments

TPDU_size ? Accept any legal value

More specific values of PDU parameters are defined in modified constraints. Any fields not specified
in the modified constraint will be inherited from the values specified in the base constraint. The name of
the modified constraint is a unique identifier. The name of the base constraint which is to be modified is
indicated in the derivation path entry in the constraint header. This entry must be left blank for a base
constraint. A modified constraint can itself be modified. In such a case the derivation path indicates the
concatenation of the names of the base and previously modified constraints, separated by dots (' .'). A dot
should follow the last modified constraint name. As an example we modify the base constraint CRl to
obtain CR2 shown in Table 19 to change the credit value CDT to one and furthermore modify CRl to
obtain CR3 to accept any value for TPDU _size to be used in a RECEIVE event.

Parameterized constraints specify the constraint values in a parameterized form. The constraint name
in this case contains the list of formal parameters with their types, such as in:

Table 20
ASP constraint declaration

ASP Constraint Declaration

Constraint Name: P _ CONreqbase(aarq:AARQ)
ASP Type: p _CONNECT_ request
Derivation Path:
Comments: ASP constraint example

Parameter Name Parameter Value Comments

Calling_ presentation_ address TSP _pres_ address_ tester test suite parameter
Called_ presentation_ address TSP _ pres_ address_ JUT test suite parameter
Presentation_ context_ definition_ list Context_ deL list_ 2
Default_ context_ name -

Quality_ of_ service TSP _QOS
Presentation_ requirements -

Mode Mode-normal
Session_ requirements FU _duplex_ only
Initial _synchronization_ point_ serial_ number -

Initial_ assignment_ oL tokens Initiator_ side
Session_ connection_ identifier -
User _data aarq

Standard conformance test specification language TTCN 131

Table 21
Structured type constraint declaration

Structured Type Constraint Declaration

Constraint Name: Ccl
Structured Type: T _ Addressinfo
Derivation Path:
Comments: Structured type constraint example

Element Name Element Value Comments

Source TS - PAR! test suite parameter
Destination TS_ PAR2 test suite parameter

CO(Pl:INTEGER,P2:BOOLEAN).
Both base and modified constraints can be parameterized.

If the ASP or PDU declaration refers to a structured type as a substructure of a parameter or field
then a Structured Type Constraint Declaration should be made and the name should be referenced at the
value column. Structured constraint tables are very similar to PDU constraint tables, as an example see
Table 21.

If the ASP or PDU declaration refers to a parameter or field specified as being of PDU metatype
then in a corresponding constraint the value for that parameter or field shall be specified as the name of
a PDU constraint, or formal parameter.

4.3.2. ASP constraints
ASP constraints are similar to PDU constraints. As an example the ASP constraint P _ CONreqbase of

the ACSE test suite is shown in Table 20. This is a parameterized ASP base constraint. The constraint
value for the ASP parameter User _data defined to be of metatype PDU is a formal parameter aarq to
be of the type AARQ PDU of the ACSE protocol.

4.4. ASN 1 constraints

Constraints on ASPs and PDUs can be declared using ASN.l constraints. ASN.l value definitions
discussed in Section 2 is extended to allow use of matching mechanisms of TTCN.

Table 22
ASN.l PDU constraint

ASN.l PDU Constraint Declaration

Constraint Name: AARQbase_ S(extconrq: SEQUENCE OF EXTERNAL)
PDUType: AARQ
Derivation Path:
Comments: Base constraint for AARQ for SEND events

Constraint value
{

protocol_ version VersionOOl,
application_ context_ name Application_ context_ name_ FT AM,
called_ AE _qualifier TSP _ AE _qualifier_ JUT,
calling_ AP _title TSP _ AP _title_ tester,
calling_ AE _qualifier TSP _ AE _qualifier_ tester,
user_ information extconrq

}

132 B. Sarikaya, A. Wiles

Table 23
Modified ASN.1 PDU constraint

ASN.1 PDU Constraint Declaration

Constraint Name: AARQmod(extconrq: SEQUENCE OF EXTERNAL)
PDU Type: AARQ
Derivation Path: AARQbase_ S.
Comments: Modified constraint for AARQ for SEND event

Constraint Value

{

REPLACE protocol_ version BY Version002
OMIT called_ AP _title
OMIT calling_ AP _title
OMIT calling_ AE_ qualifier
user_ information extconrq

}

4.4.1. PDU constraints
PDU base constraints can be defined in ASN.l. Table 22 is an example ASN.l PDU constraint for

SEND events for AARQ PDU of the ACSE test suite. This constraint is also parameterized with the
formal parameter extconrq providing constraint value for user information field of the PDU.

Table 24
ASN.1 ASP constraint declaration

ASN.1 ASP Constraint Declaration

Constraint Name: N _ DATAreq_ base
ASP Type: N _ DATArequest
Derivation Path:
Comments: Base constraint for N _ DAT Arequest for SEND events

Constraint Value

{

callingNetworkAddress TS_ PAR_ 3,
calledNetworkAddress TS_ PAR_4,
connectionidentifier 'ABCDEF'H,
data TCON _Class - 4 - 1

}

Table 25
ASN.1 type constraint

ASN.l Type Constraint Declaration

Constraint Name: p _ addr _cons
Structured Type: p _address
Derivation Path:

Comments: Presentation address constraint

Constraint Value

SEQUENCE{
presentation_ selector TSP _ 1,
session_ selector TSP _ 2,
transport_ selector ? ,
network_ Service_ Access_ Point?}

Standard conformance test specification language TTCN 133

!CONNECTreq

/'··---------------.,..
?CONNECTconf ?DISCONNECTind

!DATAreq

?DATAind ?DISCONNECTind

/
!DISCONNECTreq

Fig. L A test tree.

PDU base constraints can be modified to create a new constraint by using the REPLACE/ OMIT
mechanism. As an example we can modify the base constraint AARQbase ~S by omitting some of the
optional fields and by replacing protocol ~version. The resulting constraint is shown in Table 23.

4.4.2. ASP constraints
If ASPs are defined in ASN.l their constraints should then be declared in ASN.l ASP constraints. An

example base constraint declaration for N ~DATArequest ASP is shown in Table 24. The parameter data
defined to be of PDU type TPDUS is assigned the static PDU constraint value TCON~Class ~4~1.

4.4. 3. ASN.l type constraints
Both ASN.l ASP and PDU constraints can be structured by using references to ASN.l type

constraints for values of complex fields. ASN.l type constraint tables are similar to ASP constraint
tables. An example type constraint for P ~address type defined above is shown in Table 25.

5. Dynamic behaviour

The dynamic behaviour of test suites are declared in this section. Test case, test step and default
behaviour tables comprise the dynamic behaviour.

In the dynamic behaviour specification TTCN uses the tree notation. For example, suppose the
following events can occur during a test whose purpose is to establish a connection, exchange some data
and then disconnect (see Fig. 1).

The tree notation expresses this sequence of events as:
TREE[L]

L! CONNECTrequest
L? CONNECTconfirm

L! DATAreq
L? DATAind

L ! DISCONNECTreq
L ? DISCONNECTind

L ? DISCONNECTind

134 B. Sarikaya, A. Wiles

Table 26
Test case table

Test Case Dynamic Behaviour

!fest Case Name: EX1
Reference: TTCN - EXAMPLES
Purpose: To illustrate use of labels, GOTO and REPEAT
pefault:
~omments

Nr Label Behaviour description Cref v Comments

1 GOTOTREE
2 LA !A A1
3 LB ?B B1
4 LB2 + B-tree
5 LC ?C C1
6 LD [D=1)
7 -->LA
8 LE [E= 1)
9 LF !F F1 F

10 REPEATTREE
11 (FLAG'= FALSE)
12 !A
13 REPEAT STEPl(FLAG) UNTIL [FLAG) A1
14 a. !E E1 p

15 STEPl(F: BOOLEAN)
16 ?B (F '=TRUE)
17 ?OTHERWISE B1

Here, L stands for the PCO at which the lower tester exercises the test. The symbols ? and ! stand for
receive and send respectively. So, L! CONNECTrequest means that the tester transmits the CONNEC­
Trequest primitive at the PCO L at this point in the test. TREE[L] is the identifier for this behaviour
tree and L stands for the formal PCO used.

As can be seen from the proforma for dynamic behaviour (Table 26), there are six fields:
• line number (Nr),
• label (L),
• behaviour description,
• constraints reference (Cref),
• verdict (V),
• comment (C).
The behaviour description column contains the specification of all the possible combinations of events
which may occur. There is a provision called attach to use library test steps. Other test events are the
sending or receiving of ASPs, timer events and so-called pseudo-events, which are Boolean expressions
or assignments. Goto and repeat statements are provided to specify loops and related structures.

The line number column is used to optionally indicate line numbers. This is useful especially when the
behaviour lines are too long when printed. When this column is not used the line continuation can be
indicated by a hash ('#') symbol located at the leftmost position within the behaviour column. The
comment column is used to clarify and explain the various test events.

5.1. Label and constraints reference columns

The label column gives the labels for the Goto statements used in the behaviour description column.
The constraints reference column is used to specify a particular value of a data type (ex. PDU) or event

Standard conformance test specification language TTCN 135

which is used to be sent or received in the corresponding event. For example:
Event Cref
L?CONNECTconfirm CC1
The above line says that the event matches if at the PCO L, the tester receives a CONNECTconfirm if
the parameter values match the constraint CCL CONNECTconfirm must be defined in the declarations
part as ASP type declaration, and CCI should be declared as an ASP constraint in the constraints.
ASP jPDU type definitions define the template in which the received event is decoded. The template
disappears at the end of the event line, therefore should an access to the primitive parameters needed,
they must be stored in global variables.

5.2. Verdicts column

This column is used to assign verdicts to those events at the tip of a branch of the test tree. There are
two types of verdicts: preliminary and final. Preliminary results are used to indicate if part of the test
purpose has been achieved, to be used in assigning final verdicts. The preliminary result can be stored in
a predefined global variable called 'R'. Possible preliminary results are Pass, Fail and Inconclusive. The
final verdict specifies the actual verdict to be assigned to a test case and should be computed in a manner
that is consistent with the value of 'R'.

5.3. Behavior description

Event lines in TTCN are structures as in the following:
• event ::= Send I Implicit Send I Receive I Otherwise I Timeout,
• statement ::= Goto I Attach I Repeat,
• pseudo event ::= Boolean Expression I Arithmetic Expression I Timer Operation,

Test events can be accompanied by Boolean expressions, assignments and timer operations. Boolean
expressions, assignments and timer operations can also stand alone constituting pseudo events.

The otherwise statement is used to specify the reception of unforseen or don't care events. Otherwise
is used to specify that the tester will accept any event which has not been given previously as an
alternative.

The timeout event specifies the action to be taken on the expiration of a given or default timer.
The goto statement is used to unconditionally jump to another part of a test tree which is labeled

using the second column of the test case 1 step proforma. The referenced event must be the first set of
alternatives, if any.

The attach statement is used to modularize test trees by acting as procedure calls. The attach
statement which is symbolized by ' +' is used to specify that a particular test step is to be attached at that
point of the tree. The test step referenced may be either a locally defined one or a library test step.

The repeat statement is used to specify iteration over a test step a required number of times, the
minimum being once. Boolean guards may be used to come out of the loop. Since REPEAT will always
succeed at least once, it is redundant to place any alternatives to a REPEAT statement.

A pseudo euent consists of boolean, arithmetic expressions and timer operations. These may be
specified on a line by themselves or may follow regular events. Boolean expressions are used as guards
for events. Arithmetic expressions are performed only if the event which preceds the expression can
occur and any boolean expression specified is satisfied. For example in:

L!NDAT AReq [X > 1] (a := 2)
NDAT AReq is sent and the variable 'a' is set to 2 only if X is greater than 1.

Timer operations consist of Start, Cancel and Readtimer statements. Start operation (re)starts the
specified timer, Cancel deactivates a timer and Readtimer stores the current value of a timer into a
global variable.

136 B. Sarikaya, A. Wiles

5.3.1. Send I receive
In send/ receive events the PCO name can be omitted if there is only one PCO in the test suite.

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE can only be used to
reference ASP parameter and PDU field values on the statement line itself.

For send events relevant ASP parameters and PDU fields can be set on the SEND line, as in:
!PDU (PDU.FIELD == 3).
In case of receive events the whole ASP or PDU or a relevant part of it can be assigned to variables

on the event line. These variables may then be referenced in subsequent lines. For example:
?PDU (VAR == PDU.FIELD).

5.3.2. Implicit send
In the Remote Test Architecture [2] it is necessary to have a means of specifying that the IUT should

be made to initiate a particular PDU or ASP. Implicit send is used for this purpose. For example to
specify that the IUT should initiate sending a CR PDU of the transport protocol we use:

(IUT!CR).
Since implicit send is always considered to be successful, any alternatives at the same level and coded

after are unreachable. No verdict can be coded on an implicit send event.

5.3.3. OTHERWISE
The predefined event OTHERWISE is for dealing with unforeseen test events. The syntax is as

follows:
[pco-id] ? OTHERWISE verdict
If a tree uses multiple PCOs then the OTHERWISE must be preceded by a PCO identifier.

OTHERWISE is used to denote that the appropriate tester accepts any incoming event which has not
previously matched one of the alternatives to the OTHERWISE. Due to the significance of ordering of
alternatives in tree notation, incoming events which are alternatives following an unconditional OTHER­
WISE on the same PCO will never be matched.

OTHERWISE can be used in conjunction with Boolean expressions and assignments. If a Boolean
expression is used, this Boolean becomes an additional condition for accepting any incoming event. If an
assignment is used, the assignment will take place only if all conditions for matching the OTHERWISE
are satisfied. For example consider the following TTCN tree:

partiaL tree(pcol :XSAP;pco2:YSAP)

pcol?A PASS

pco2?B [X = 2] INCONC
pcol?C PASS

pco2?0THERWISE [X02](Reason =="X not equal2") FAIL

pco2?0THERWISE (Reason== "X equals 2 but event not B") FAIL

Assuming that no event is received at peal, reception of event B at pco2 when X= 2 gives an
inconclusive verdict. Reception of any other event at pco2 when X02 results in a fail verdict and
assigns a value of 'X not equal to 2' to the CharacterString variable Reason. The final OTHERWISE will
match if an event is received at pco2 that satisfies neither of these scenarios.

5.3.4. TIMEOUT
The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a test case.

Timeout for the timer T is indicated as:
?TIMEOUT T
If the timer identifier (T) is omitted, then the TIMEOUT applies to any timer which has expired.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if
there is a timeout event matching the timer name, that event is removed from the list, and the
TIMEOUT event succeeds.

Standard conformance test specification language TTCN 137

5. 4. Assignments and Boolean expressions

Both assignments and Boolean expressions may contain explicit values. Test suite parameters,
constants, test suite and test case variables, formal parameters of a test step, default or local tree can be
referenced. On event Jines, ASPs and PDUs can be referenced.

To reference ASN.l defined data objects TTCN requires a dot notation to be used. For example
assume the following type definition:

example_ type ::= SEQUENCE { fieldl INTEGER,
field2 BOOLEAN
OCTETSTRING}

A variable, varl should be defined to be of example _type. Then m the assignments or Boolean
expressions we could write:

varl.fieldl - - to refer to the first INTEGER field
varl.(3) - - to refer to the third unnamed field

For PDU references assume XY_PDUtype defined in ASN.l as:
XYPDUtype ::= SEQUENCE{ .

user_ data OCTETSTRING,

Then we could write on an event line:
L?XY _PDU (buffer::= XY _PDUtype.user _data)

References to data objects defined using tables are done in a similar way by a reference to the
parameter, field or element identifier followed by a dot and the identifier of the item within that
substructure.

5.5. Timer management

A set of operations are used to model timer management. There are three predefined timer
operations: START, CANCEL and READ TIMER. These operations can appear in combination with
events or standalone pseudo-events.

The START operation is used to indicate that a timer should start running. An optional timer value
parameter in parentheses can follow the timer name. In this case the default value specified in the timer
declarations is overriden to assign an expiration time. As an example consider the following behaviour
description and verdict columns:
U!TConReq START retransmission timer

?TIMEOUT retransmission timer INCONC
U? TCONConf
U? TD!Slnd
U? OTHERWISE

PASS
INCONC
FAIL

The test is terminated with an inconclusive verdict if the timer is expired or if a disconnection request is
received from the service provider. The test is concluded with a pass verdict if a connection confirmation
is received and with a fail verdict in any other cases. Another example is:

START T2(V2)
which starts a timer T2 with a default integer value V2.

The CANCEL operation is used to stop a running timer, such as in:
CANCELT1

which cancels the timer Tl, i.e., if a TIMEOUT event for Tl is in the timeout list, that event is removed
from the list.

The READ TIMER operation is used to retrieve the time that has passed since the specified timer
was started and to store it into the specified test suite or test case variable of type INTEGER. For
example:

READ TIMER T1 (Vl)
reads the amount of time which has passed since starting the timer into the test suite variable Vl.

138 B. Sarikaya, A. Wiles

5. 6. Tree attachment

Trees can be attached to other trees by using the ATTACH construct, which has the syntax:
+ tree-identifier [par-list]
A tree-identifier is the name of one of the trees in the current behaviour description; this is

attachment of a local tree. Tree-identifier can be a test step identifier denoting the attachment of a test
step that resides in the test step library.

The par-list defines the formal parameters. On encountering a tree attachment, the execution replaces
formal parameters by actual ones (which may be PCO names, variable names, values or parameter
names). Constraints may be passed as parameters to test steps. If the constraint has a formal parameter
list then the constraint shall be passed together with its actual parameter list. As an example assume a
subtree STEP:

STEP(PAR:A_PDU)

!A_PDU PAR

Now this tree can be attached from another tree TOP TREE:
TOP_TREE

+ STEP(Cl(3))

assuming that the constraint Cl has a single formal parameter of type INTEGER.

5.7. GOTO and REPEAT

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with
the first of a set of alternatives, one of which is an ancestor node of the point from which the GOTO is to
be made. A GOTO is specified by placing an arrow (4) or the keyword GOTO, followed by the name of
the label, on a statement line on its own in the behaviour tree, at the appropriate level of indentation. A
test case with an example GOTO is shown in Table 26.

The REPEAT construct describes a mechanism for iterating a test step a number of times. The syntax
of this construct is:

REPEAT tree-reference (par-list) UNTIL [Boolean-exp]
where the tree-reference is a reference to either a local tree or a test step defined in the test step library.
Par-list is an optional parameter list of actual parameters and Boolean-exp is a Boolean expression used
to control the iteration.

The REPEAT construct has the following meaning: first the tree is executed. Then the Boolean
expression is evaluated. If it evaluates to TRUE, execution of the REPEAT construct is completed. If
not, the tree is executed again, followed by the evaluation of the Boolean expression, and this process is
repeated until the Boolean expression evaluates to TRUE. A test case with an example REPEAT
construct is shown in Table 26.

5.8. Referencing constraints in dynamic behavior tables

Constraint names are placed in the constraint reference column of test case I step or default
behaviour tables along with the name of the ASP 1 PDU to which it applies. A constraint reference takes
the form of:

cons-name(par -list)
where the cons-name is the name of the reference which must be defined in one of the constraint tables,
and par-list is an optional (possibly nested) parameter list defining the actual parameter values to the
formal parameter list.

Standard conformance test specification language TTCN 139

Table 27
A TP2 test case

Test Case Dynamic Behaviour

Test Case Name: ABCT2UMAOO
Group: TP2jValidjDataTransfer
Purpose: Send expedited data and receive normal data
Default: Defl
Comments:

Label Behaviour description CRef v Comments

+Preamble
(result ,=open)

+Send_ ed(16)
+ Rec_ data(1,250) Send Exp. Data to UT

[result = open] Receive Normal Data from UT
+Give _counts

+ Postamble Check UT gotten data
[result = fail]

+ Postamble

A constraint reference with a parameter list is:
NSAP?NDATA_req Dl(P1,CR1(P2))

where D1 is a constraint on N_DATAreq with two parameters (actual parameters PI and CRl), and
CR1 is a constraint with one parameter (actual parameter P2).

6. Example test case

A valid behaviour test case for the data transfer capability of the transport protocol class 2 is shown in
Table 27. This test case is taken from the ATS developed within the CTS-WAN project [10]. The
architecture used is the coordinated single layer (CS) which assumes a single PCO, L, and a test
management protocol to communicate with the upper tester on the IUT side.

The purpose of the test case is to send 16 octets of expedited data and receive 250 octets of normal
data from the IUT. The test management protocol that is part of this ATS is used to instruct the upper
tester to introduce the normal data. This part of the test case is omitted from Table 27. The subtrees
Preamble and Postamble establish/ disconnect the transport connection required. These subtrees are not
shown.

The subtrees Send _ed and Rec _data are shown in Tables 28 and 29 as test step trees.
According to TICN semantics, the execution of the test case ABCT2UMAOO will take place in two

steps:
1. Obtain the test case in pure tree form - static semantics,
2. Execute this tree - snapshot semantics.

In order to get the test case in pure tree form the behaviour specification is scanned and all tree
attachments are removed by body replacements of the trees attached, starting with the subtree Preamble.
Next the subtree Send _ed is attached at level 3. In this attachment the formal parameter param is
replaced by the actual parameter 16. Step 1 terminates after the last subtree Postamble is attached.
Finally, default tree Defl is attached to every level.

In Step 2 the pure tree obtained from Step 1 is interpreted considering the PCOs as queues and the
timeout list. Interpretation starts at level 1. The behaviour lines in this level are evaluated in sequence,
until a successful match is found. With a match the level is changed and a new set of alternatives are
considered. Test case interpretation stops at the leaf nodes in the tree by resetting the values of all test
case variables and all timers.

140 B. Sarikaya, A. Wiles

Table 28
Send_ ed test step

Test Step Dynamic Behaviour

Test Step Name: Send_ ed
Group: TP2jValid /Data Transfer /Subtrees
Objective: Send expedited data of param size
Default:
Comments:

Label Behaviour description CRef v Comments

Send_ ed(param)
L!ED Start B EDl(param) Send param octets of expedited data

Start Timer B
L?EA EA1 Receive EA

Cancel B (P)
L?OTHERWISE

?TIMEOUTB
(result o= fail) JUT not responding
+Postamble (F)

Suppose the interpretation of the test case ABCT2UMAOO has reached to the first event line in the
test step Send _ed. Since this is a send event and there is no Boolean guard specified a successful match
is found. Corresponding action is to perform the sending by first creating a SendObject and then placing
it into the output queue at the PCO L. The SendObject in this case is the ASP TEXTDATAreq
containing an ED PDU formed with values obtained from the constraint EDJ, i.e. containing 16 bytes of
data.

Similarly, the receive event is executed if the subsequent event in the queue matches the constraints in
the receive event. Any mismatch would cause a match with the OTHERWISE event at the same
indentation.

Table 29
Rec _data test step

Test Step Dynamic Behaviour

Test Step Name: Rec_ data
Group: TP2 jValidjDataTransfer /Subtrees
Objective: To receive "tsdu" TSDUs of "octet" octets
Default: None
Comments

Label Behaviour Description CRef v Comments

Rec_ data(tsdu, octet)
(rec- tsdu o= 0) No tsduss received so far

T1 [rec _ tsdu = tsdu) All tsdus received?
(result o= open) (P) If yes, quit

[rec _ tsdu (tsdu))
T2 Start B

L?DT DT52 Not end of TSDU
Cancel B
L!AK-> T2 AKSl

L?DT DTSl DT with end of TSDU
Cancel B

L!AK AKSl
(rec_ tsdu ,= rec_ tsdu + 1)-> T1

L?OTHERWISE
?TIMEOUTB (F) IUT not responding

(Result o= fail)

Standard conformance test specification language TTCN

$Begin_TTCN_ASP_TypeDef
$ASP Id CONreq (T CONNECTrequest)

$PCO_Type TSAP
$ASP ParDc1s
$ASP ParDc1
$ASP Parld CdA ~Called Address>
$ASP ParType T Address info
$End ASP ParDc1
$ASP ParDc1
$ASP_Parid CgA (Calling Address)
$ASP_ParType T_Address info
$End ASP ParDc1
$ASP ParDc1
$ASP Parld Qos (Quality of Service)
$ASP_ParType QOs
$End ASP ParDc1
$End ASP ParDc1s - -
$End TTCN_ASP TypeDef

Fig. 2. Example MP form.

7. TTCN-MP

141

Machine processable form of TTCN, TTCN-MP is a linear form of the TTCN-GR (graphic) that is
discussed above with the difference that tokens serve as delimiters between fields instead of tables. In
the MP form, a definite order in which the various parts of TTCN must appear is given. Another
difference in the MP form is that, in the dynamic behaviour, indentation is explicitly denoted. For
example,
L!ASP1

L?ASPZ
would be represented in TTCN-MP as:
$Behaviourline $Line[OJ L!ASP1 $End Behaviourline
$Behaviourline $Line[1] L?ASPZ $End Behaviourline

Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin~KEYWORD $End~KEYWORD

Both sets of lines of a table and sets of fields are represented by productions of the kind:
$KEYWORD $End~KEYWORD

Individual fields in a line are represented by:
$KEYWORD
An example MP form of the ASP definition given in Table 14 is given in Fig. 2.

8. Test realization

Test realization is based on the abstract test suite (ATS), PICS and PIXIT. PICS proforma is basically
used to select tests from the ATS and PIXIT is used to parameterize the selected tests.

The abstract test suite becomes a Selected ATS after the selection mechanism and a Parameterized
ATS after the parameterization, and its executable form is called a Parameterized Executable Test Suite
(PETS). This process is shown in Fig. 3.

142 B. Sarikaya, A. Wiles

ATS (reference abstract l test suite) derivation ---- ETS (executable test suite)

1
Selection with PICS Selection with PICS

1 1
SATS (selected ATS) ---derivation --- SETS (selected ETS)

1 1
parametrization with PIXIT parametrization with PIXIT

1 1
PATS (param. SATS) --- derivation ---PETS (param. SETS)

1 1
derivationjexecution of a PETS execution

Fig. 3. The PETS derivation process.

8.1. Suite overview

The test suite overview table is for describing structure of the ATS and for providing an index of its
test cases and steps/ defaults. Test suite structure table describes grouping and objectives of each group
in an ATS. For example the test suite structure of the test suite called ATS_2 is shown in Table 30. The
selection expressions SELEXP _100 and SELEXP _101 are evaluated to determine if test cases in the
groups ABCT2BASOO and ABCT2BVEOO, respectively can be executed. These expressions are defined
in test case selection expression definition tables described in Section 3.

The test suite structure proforma must be followed by test case I step and default index tables. An
example test case index table is shown in Table 31. Selection reference column may contain a selection

Table 30
Test suite structure proforma

Test Suite Structure

Suite Name: ATS_2
Standards Ref: IS 8072/8073
PICS Ref: IS 8073jAM3
PIXIT Ref:
Test Method(s): Coordinated single layer
Comments: Transport abstract test suite for class 2

Test Group Reference Selection Ref Test Group Objective Page Nr

ABCT2BASOO SELEXP _ 100 Basic Interconnection 20
ABCT2BVEOO SELEXP _101 Valid Behaviour 38

Standard conformance test specification language TTCN 143

Table 31
Test case index table

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr

ABCT2BVEOO ABCT2URAOO Sel_ uraOO Connection Establishment 39
Test Group

ABCT2BVEOO ABCT2CRAOO Sel_ craOO idem 40

expression which should evaluate to true for the test case to be executed provided that the group
selection expression specified in test suite structure table also evaluates to true. Selection expressions
should be defined in test case selection expression definitions table. Test step and default index tables
are similar, but they do not contain the selection reference column.

9. Conclusions

We described a tabular language designed for specifying conformance test suites. TTCN divides a test
specification into four parts. Test suite overview part is for documentation, declarations part is for
declaring types as well as templates for the PDUs and ASPs. Dynamic behaviour part specifies dynamic
behaviour of the tests using a tree notation. This part modularizes the test specification into test cases
which are made up of one or more test steps. Test cases/ steps can have default behaviour. Constraints
on the parameter values of the events to be sent/ received are declared in the constraints declaration
part.

Despite its unusual appearance, TTCN should be treated as a high-level test specification language.
As such it has potential to become a formal technique to study various test architectures, conversion of
the tests designed for one architecture to another. Those test suites that are manually derived have to be
validated for correctness. In this case some sort of comparison of the TTCN dynamic behaviours with the
behaviours derived from the formal specification of the protocol is needed.

Conversion of TTCN specifications to an executable form is being investigated. It is desirable to
obtain executable test suites from abstract test suites, i.e. executable TTCN, such as in the case of formal
specification techniques. It would also be interesting to investigate how test suites in TTCN form could
be semi-automatically obtained from FDTs such as SDL, Estelle and LOTOS.

TTCN extensions [8] such as parallel trees are presently being progressed in the standardization
committees. How to treat spontaneous outputs from the implementations, nondeterminism in ASN .1
encoding/ decoding are among the issues being investigated.

References

[1] ISO, Data Processing - Open Systems Interconnection - Basic Reference Model, ISO International Standard 7498, 1984.
[2] ISO, Conformance Testing Methodology and Framework, IS 9646 Parts 1 and 2, February 1989.
[3] ISO, Conformance Testing Methodology and Framework, IS 9646 Part 3 : The Tree and Tabular Combined Notation (TTCN),

September 1991.
[4] ISO, Protocol Specification for the Association Control Service Element, IS 8650, 1988.
[5] ISO, Information processing- Open Systems Interconnection - Specification of Abstract Syntax Notation One, (ASN.1). IS

8824, 1987.
[6] ISO, Abstract Syntax Notation One-Encoding Rules, IS 8825, 1987.
[7] ISO, X.25 - DTE Conformance Testing: Data Link Layer Test Suite, DIS 8882 Part 2, 1990.
[8] ISO, Working Draft Amendment to ISOjiEC 9646-3: TTCN Extensions, ISO/IEC JTC1/ SC21 9646-3 PDAM1, June 1991,

18p.
[9] PTT-NL, ACSE Abstract Test Suite (version 2.00), PTT Netherlands, January 1991.

[10] CTS-WAN, ISOjOSI Transport Class 2 CTS-WAN Abstract Test Suite (version 2.1), National Computing Centre Ltd., UK,
October 1988.

144 B. Sarikaya, A. Wiles

Behcet Sarikaya received his B.S.E.E. degree (honors) from the Middle East Technical University
(METU), Ankara, Turkey in 1973, M.Sc. degree in Computer Science from METU in 1976, and Ph.D.
degree in Computer Science from McGill University, Montreal, Canada, in 1984.

He worked in the Universities of Sherbrooke and Concordia as Assistant Professor. He is presently
working in the Department of Computer and Information Sciences, Bilkent University, Ankara. He has
published over 40 papers in protocol engineering and related areas. He has been co-chairman of the
conference IFIP PSTV VI held in Montreal in 1986. He served in the program committees of all three
protocol conferences. His current research interests lie in all aspects of conformance testing and
high-speed networks. He is a senior member of IEEE.

He is actively involved in OSI standardization activities. He is an active member of the joint CCITT SG
X Question 10, ISO IEC JTC1/SC21 Project 54 on Formal Methods in Conformance Testing. This
committee aims at developing a standard that will relate the Formal Description Techniques to the
Conformance Testing Methodology and Framework.

Anthony Wiles has been actively involved in the national and international development of the ISO
conformance testing standard (ISOjiEC 9646) since 1984. His participation in the ISOjiEC
JTC1jSC21jWGl standards committees includes being editor of the TTCN (ISO/IEC 9646-3). He also
actively participates in CCITT working groups on conformance and is a project rapporteur within ETSI
ATM (Advanced Testing Methods).

He graduated from Uppsala University, Sweden with a BSc. in Technical Physics and an MSc. in
Computer Science. His work has included the implementation of several OSI protocols (including
Transport and FT AM) and management of one of the first X.25 networks in Sweden. He currently
specializes in all aspects of protocol validation and testing, and is project manager and conformance expert
at Swedish Telecom's test laboratory, TeleTest, in Stockholm. He previously worked in the protocol
communications department at the Swedish Institute of Computer Science (SICS).

