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Abstract. In this paper we attempt to develop a problem representation technique which enables the 
decomposition of a problem into subproblems such that their solution in sequence constitutes a 
strategy for solving the problem. An important issue here is that the subproblems generated should be 
easier than the main problem. We propose to represent a set of problem states by a statement which is 
true for all the members of the set. A statement itself is just a set of atomic statements which are 
binary predicates on state variables. Then, the statement representing the set of goal states can be 
partitioned into its subsets each of which becomes a subgoal of the resulting strategy. The techniques 
involved in partitioning a goal into its subgoals are presented with examples. 
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I n t r o d u c t i o n  

Problem solving has been one of the laboratories of artificial intelligence 

(Lauriere,  1990). In very simple terms, problem solving involves finding a path 
from an initial state to a goal state using some kind of search (Ernst and Newell, 

1969; Simon, 1983). To solve the same problem for a different initial state one has 

to go through the same costly search process again. If the same problem will be 
solved for many different initial states, then solving the problem for each initial 

state becomes infeasible. Instead, it would be more beneficial to solve the 

problem in general (that is, independent of the initial states) and then using this 

general solution, solve the problem for a particular initial state. We will call such 

a general solution a strategy. This paper proposes a problem representation 
1 technique which enables the decomposition of a problem into a strategy. 

What  is a strategy? A strategy for solving a problem is a general solution for 

that problem, in other words, a solution for all possible initial states. A strategy 

can be constructed as a decomposition of the problem into easier problems. A 

strategy to solve a problem P can be defined as a sequence of subproblems 

Pa, P2 . . . .  , Pn such that solving them in sequence is equivalent to solving the 

problem P, and each of the subproblems Pi is easier than the problem P. Such a 
decomposition of a problem involves symbolic processing on the description of 

the problem. This scheme is based on representing a set of problem states by a 
suitable for such symbolic processing. In the course of the paper we will develop a 

problem representation scheme which is suitable for mechanically discovering a 

strategy for a given problem. This scheme is based on representing a set of 

problem states by a statement which is true for all the members of the set. Here,  a 
statement itself is just a set of atomic statements which are binary predicates on 
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state variables. Then,  the statement representing the set of goal states can be 
part i t ioned into its subsets each of which becomes a subgoal of the resulting 
strategy. At  the end of the paper the techniques involved in partitioning a goal 
into its subgoals are presented with example strategies that are discovered 

mechanically. 

Problem Representation 

In the literature a p r o b l e m ,  is defined by a 3-tuple P = (S, O, G )  where 

S: the set of states, 
O: the finite set of operators,  and 
G C S: the set of goal states. 

Here ,  each operator  0 i E O is a function oi: S---~ S. 
A p r o b l e m  i n s t a n c e  Po is defined as a problem P with a particular initial state 

s o E S ,  i.e.,  Po = (P, So). Then,  a s o l u t i o n  to the problem instance P0 is sequence 

of operators 0 1 , 0 2 , . . . ,  o n such that o n ( o n _ l . . .  ( 0 2 ( 0 1 ( s 0 ) ) ) . . . ) E  G .  Here  
o i ( s  ) is the state obtained by the application of the operator  o~ to the state s. A 
solution to a problem instance P0 can also be defined as a sequence of states 
S o ,  s I , s 2 ,  . . . , s n such that for each sg where 0 < i < n ,  o i ( s  i_ l  ) = s ~ for an 0 i E O ,  

and finally s n E G .  Finding a solution to the problem instance pi requires a search 
in S for a path from s o to a state in G. An example problem and a solution for an 
instance of it are given in Figure 1. 

(a) 

P 

), 

Po f (b) S ~  

J 
Fig. 1. (a) An example problem; (b) solution to an instance of the problem. 
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Although a problem can be defined formally as above, P = (S, O, G) ,  in 
practice this representation is inadequate if any symbolic processing has to be 
done on a problem. Also, it is hard to enumerate all the possible problem states 
and compute the-set S. Another difficulty is that the set of goal states G may not 
be specified explicitly in many problems. For example, the goal states of problems 
such as the Fool's Disk (Ernst and Goldstein, 1982) and the Rubik's Magic are 
not given in their definitions. Instead, a statement describing the goal states is 
given. If the actual goal state is known, the solution is trivial in the Fool's Disk 
problem. Therefore, in such problems, the difficulty of the problem is to 
determine the states that satisfy the goal statement. 

Solving a Problem in General or Learning a Strategy for a Problem 

One general method of attack upon a problem, employed by human problem 
solvers, is to break down the goal to be attained into a set of subgoals, which 
together satisfy the conditions of the original problem so that if each subgoal, 
taken separately, can be attained, the given problem is solved (Newell and 
Simon, 1972). If each of these subgoals will be attained sequentially (either on a 
sequential machine or by a human), a solution to a problem in general can be 
defined in a similar manner to the definition of a solution to a problem instance, 
given above. A solution to a problem (S, O, G) in general is a sequence of 
subgoals Go, G 1 , . . .  , G, where 

G O is the set of all possible initial states, 
G, = G, and 
for each Gi, 0 <~ i < n, there is a set of operators 0 i C O such that for 

states s E G i there is an operator o E Oi such that o(s) E Gi+ 1 . 

An example strategy for the problem in Figure 1 and a solution using this strategy 
are given in Figure 2. 

A strategy, then, is a sequence of transitions from one set of states to another 
using a specified set of operators. Each transition itself is a search in the set of all 
states S. That is, each transition (or stage) is a subproblem, similar to the main 
problem. The problem solver using such a strategy, be it a human or a machine, 
backtracks to the previous stage in case it determines that the current subproblem 

' , , 2 - - - - 2 " 5 "  . . . . . .  

\ I 

Fig. 2. A strategy for the problem in Figure l(a). 
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has no solution; that is, it is impossible to reach a goal state using the given set of 
operators for that stage. On the other hand, as a special case, if there exists at 
least one operator given for each state in Gi,  then the solution becomes trivial, 
since no search will be required. The strategies learned for Korf's Macro Problem 
Solver (MPS) have this property (Korf, 1985). To unify the representation of 
problems and subproblems, let us represent a problem by a 4-tuple P =  
(S, I, O, G)  where I is the set of possible initial states. That is, P is the problem 
of finding a path in the universe S from any state in I to a state in G, using the 
operators in O. Therefore, a strategy for solving the problem P can be defined as 
a sequence of subproblems P1, P2 . . . . .  Pn such that solving them in sequence is 
equivalent to solving the problem P, where Pi = (S ,  I i ,  Oi ,  G i) .  In order for a 
strategy to be of any use, its subproblems should be easier than the problem itself. 
Comparison of problems in terms of their difficulties is usually hard. One way of 
comparing the difficulties of two problems in the same universe S is to compare 
their goal states. A problem Pe is easier than a problem Pd if the set of goal states 
of Pd is a subset of that of Pe and every other parameter is the same. That is, the 
problem Pe = (S ,  Ie , O, G e ) is easier than the problem Pd = (S ,  I d , O, G a) if 
G d C a e and I e C I a . Notice that this is only a sufficient condition. That is, a 
problem Pa may be easier than another problem Pb even though the above 
conditions are not satisfied (e.g., both have the same goal but Pa has more 
relevant moves). However, this definition will suffice for the purpose of decom- 
posing a problem into a strategy. We can now define a strategy as follows: 

DEFINITION.  A strategy for solving a problem P = (S, I, O, G) is a sequence 
of easier subproblems (or stages) P1, P2 . . . . .  Pn that satisfy the following 
conditions: 

i. 1 1 = 1  

ii. I i = G i _ l ,  for l < i ~ < n  
iii. G n = G 

iv. O i r  , for l < ~ i < - n .  

(1) 

The set of possible initial states I a of the first stage is equal to the set of possible 
initial states of the problem. The set of initial states of any stage is equal to the set 
of goal states of the previous stage. The set of goal states of the last stage is the 
set of the goal states of the problem. There must exist some operators that are 
relevant to solving each of the subproblems. If there is no solution to a 
subproblem Pi with the given set of operators, then the problem solver backtracks 
to the previous stage and re-solves Pi-1 to obtain another state in Gi_ 1 . Usually, 
the set of initial states of a problem is equal to the whole set of problem states, 
i.e., I =  S. A strategy for solving such a problem is depicted in Figure 3. An 
example three-stage strategy for the problem in Figure 1 is shown in Figure 4. 
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Fig. 3. Goals of subproblems forming a strategy. 

f .J -~ ........ -- ~-~. 

Fig. 4. Subgoals of a strategy for the problem in Figure l(a). 

Representation of the Set of States 

As ment ioned earlier, neither the set of  states S nor the set of goal states G are 

given in the problem description explicitly. Problem states are described in terms 
of some lower level problem variables. Here ,  problem variables are the parame-  
ters of the problem that  can be changed by the operators.  For  example,  in the 

well-known Towers  of Hanoi  Problem (THP)  (Banerji ,  1980), a state is described 
by the values of some lower level components ,  that is, disks and pegs. One 
possible way to represent  a state in T H P  is to give the positions of all the disks. 
The  set of  goal states is given by a s ta tement  which is true only for the goal states. 
The  goal states of the T H P  are described by the statement:  "all the disks are on 
peg C." Similarly, the goal s ta tement  of the Mod-3 puzzle 2 in Guvenier  and Ernst 
(1990) is "all the cells have the same value." The goal of the Rubik ' s  Cube puzzle, 3 

on the other  hand,  is "all the faces o f  the cube have a solid color." In general,  a 
s ta tement  describes a set of states, those states which satisfy the statement.  A 
s ta tement  specifies some relations among the state variables. Therefore ,  it is 

natural  to represent  a state by a vector  of state variables. 

D E F I N I T I O N .  A state is a vector of state variables ( S 1 ,  $ 2 ,  . . . , Sin) where each 
s i is chosen f rom a set of values V~. Note  that S C V 1 x 112 x �9 �9 �9 x V m . 

This is similar to Korf ' s  definition (in Korf,  1985). For  example,  if the positions of 
the disks are the state variables in the THP, the vector ( A ,  C, B, A )  represents 
the state in which the first and the fourth disks are on peg A,  the second disk is on 
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peg C and the third disk is on peg B. However ,  in Korf ' s  representat ion the state 
vector  for the Rubik 's  cube is composed of the position and the orientation values 
of 26 cubicles, whereas here a state vector contains the color values of each of the 

54 facets. 
To  represent  a s ta tement  about  states we propose  the following definitions: 

D E F I N I T I O N .  An atomic statement is a predicate with two arguments�9 The 
arguments  can be constants or state variables�9 

For  example,  diskl  = C is an atomic s ta tement  in the THP. Similarly, in the 
Mod-3 puzzle, s l l  = s12 is an atomic s tatement  which indicates that the upper  left 
and upper  middle cells have the same values�9 In the Rubik 's  cube puzzle the 
atomic s ta tement  F2 = F9 indicates that the center facet (F9) in the front face has 

the same color as the upper  middle facet (F2) of the front face; see Figure 9 for 
naming of the facets�9 

D E F I N I T I O N .  A statement is a set of atomic statements.  A s ta tement  is inter- 

pre ted  as the conjunction of its elements. 

A s ta tement  Q(s) represents a set of  problem states Sq = {s lQ(s)} .  Therefore ,  
Q(s) ~ s E S q .  For  instance, the s tatement  Q(s) = {disk2 = C, disk2 = disk3, 
disk3 = C} represents  the set of states in which both disk2 and disk3 are on the 
peg C in the T H E  The s ta tement  

{ F I = F 2 , . . . , F 1  = F 9 ,  
F 2 = F 3  . . . .  , F 2 = F 9 ,  
�9 �9 ~ 

F8 = F9} 

in Rubik ' s  Cube represents the set of states in which all the facets in the front face 

have the same color. Similarly, the set of  goal states of the Mod-3 puzzle can be 
represented  by the s ta tement  G(s) = {s l l  --- s12, s l l  = s 1 3 , . . . ,  s32 = s33}. 

An empty  s ta tement  is true for all states and therefore represents the set of all 
p rob lem states, S. The set union of two statements is equivalent to their logical 

conjunction�9 That  is, if Q(s) represents the set of  states Sq and R(s) the set S r, 
then the s ta tement  Q(s) u R(s) represent  the set of states Sq n Sr. I f  Q(s) is a 
subset of  R(s), then every problem state s that satisfies R(s) also satisfies Q(s); 

Table I. Statements and the sets they represent 

Statements Problem states Logical meaning 

Q(s) = It { s  I Q ( s ) }  = S Q(s) = t rue  

Q(s) = R(s) U T(s) {sl a(s)) = {sIR(s ) and T(s)} Q(s) = R(s) & T(s) 

Q(s) c R(s) (s I R(s)} C (s I Q(s) ) R(s) ~ Q( s) 
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that  is, R(s) logically implies Q(s). The relations between the statements and the 

sets of states are shown in Table I. 

Operators and Their Properties 

An opera tor  has two important  parts: its precondition, and its effect on the state 
it is applied. Therefore ,  we will represent  an opera tor  by a pair o = (PC(s ) ,  A) 
where PC(s) is the precondition statement, possibly empty,  and A is the set of 
assignments which are made to the state variables by the application of the 
opera tor .  Formally,  an opera tor  o is a function o: {slPC(s)}--~ S. 

D E F I N I T I O N .  An  opera tor  o is safe over a s ta tement  Q(s) if when o is applied 
to a state s satisfying Q(s), the resulting state o(s) also satisfies the s ta tement  

Q(s). Formally,  o is safe over  Q(s) if 

Vs[ Q(s) ~ Q( o(s))] . 

For  example ,  any opera tor  that moves  disk1 is safe over  the s ta tement  
{disk3 = C} in the THP. Similarly, opera tor  o13, which increments the values of 
cells in first row and third column by one modulo 3, is safe over  the s ta tement  
{s l l  = s12} in the Mod-3 puzzle. The operators  F +  and F - ,  which rotate the 
front  face 90 ~ in the positive direction (counterclockwise) and in the negative 

direction, respectively, are safe over  the s tatement  {F1 = F2, F1 = F3 . . . .  , F8- -  
F9} in the Rubik ' s  cube puzzle. 

D E F I N I T I O N .  An opera tor  o is irrelevant to going f rom Q(s) to R(s) if o is safe 

over  Q(s), and when applied to a state that satisfies Q(s) but not R(s), then the 
resulting state o(s) will never  satisfy R(s). That  is, the application of o to a state 
that  does not satisfy R(s), will not generate a state satisfying R(s). Formally,  o is 
irrelevant to going f rom Q(s) to R(s) if o is safe over  Q(s) & ~ R(s). 

For  example,  any disk 1 move in the T H P  is irrelevant to going f rom {disk3 = 

C} to {disk2 = C, disk2 = disk3, disk3 = C}. Opera tor  o13 in the Mod-3 puzzle is 
relevant  to going f rom { s l l = s l 2 }  to { s l l - - s l 2 ,  s23=s33} .  Similarly the 
opera tors  B + and B - ,  that rotate the back face, are irrelevant to going f rom • to 
{F2 = F9} in the Rubik ' s  Cube puzzle. 

D E F I N I T I O N .  An opera tor  o is relevant to going f rom Q(s) to R(s) if o is safe 
over  Q(s) and not irrelevant to going f rom Q(s) to R(s). That  is, if o is relevant  to 
going f rom Q(s) to R(s), then there is a chance that R(o(s)) will be  true if s 
satisfies Q(s) but not R(s). 

For  example ,  any disk 2 move in the T H P  is relevant to going f rom {disk3 = C} 
to {disk2 = C, disk2 = disk3, disk3 = C}. Opera to r  o13 in the Mod-3 puzzle is 
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(a) 

(b) 

(c) 

Fig. 5. Properties of operators. (a) o is safe over Q(s); (b) o is irrelevant to going from Q(s) to R(s); 
(c) o is relevant to going from Q(s) to R(s). 

relevant  to going f rom {s l l  = s12} to {s l l  =s12 ,  s l l  =s13 ,  s12=  s13}. The 
opera tors  U +  and U - ,  that rotate the upper  face, are relevant to going f rom Q 

to {F2 = F9} in the Rubik 's  Cube puzzle. 
Safety, relevancy and irrelevancy of operators  are illustrated in Figure 5. 

D E F I N I T I O N .  An opera tor  o is potentially applicable to a set of states repre- 
sented by Q(s) if the precondit ion s tatement  PC(s) of o does not conflict with 

Q(s). That  is, there are some states that satisfy both Q(s) and PC(s). Formally,  

BsIQ(s)&PC(s)] . 

For  example,  in the T H P  the opera tor  o2AB (move disk2 f rom peg A to peg 

B),  whose precondit ion s ta tement  is {diskl = C, disk2 = A}, is potentially applic- 
able to all states in {diskl = C} or {disk3 = C}, but is not potentially applicable to 
any state in {disk2 = C}. 4 

Problem Representation by Statements 

The sets of  states of a problem can be represented by statements as defined 
above.  Therefore ,  we can represent  a problem as a 4-tuple P = (S, l(s), O, G(s)) 
where I(s) and G(s) are statements representing the set of initial states and the set 

of  goal states, respectively. 
Difficulties of problems can be compared  by checking their initial and goal 

s ta tements  as well. A problem Pe is easier than a problem Pe if 
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Fig. 6. Comparison of difficult and easy problems, 

Ie(s ) ~ Id(S ) and (2) 

G d(S) ~ Ge(S) . 

In other words, if the possible initial states of Pe a r e  also initial states of Pd and 
the goal states of Pd are also goal states of Pe, then Pe is easier than I'd. Again, 
this is only a sufficient condition. Comparison of difficulties of two problems is 
depicted in Figure 6. In this figure, the problem Pd of obtaining a state that 
satisfies Gd(S ) from a state that satisfies Id(S ) (the bigger arrow) is more difficult 
than the problem Pe of obtaining a state that satisfies Ge(s ) from a state that 
satisfies Ie(S ) (the smaller arrow). 

Refining a Problem into a Strategy 

Refinement is based on a decomposition of the goal statement of a problem 
into subgoals by partitioning the goal statement G(s) into subgoals GI(s), 
G2(s) . . . .  , Gn(s ), and finding the relevant operators 01 , 0 2 . . . .  , O n for each 
subgoal such that P1, P 2 , - . . ,  Pn where Pi = (S, Si_l(S), O, Gi(s)) , satisfy the 
following conditions which are derived from (1): 

i. Go(s )=I ( s )  
ii. G,(s)= G(s) (3) 

iii. O i r  for l~<i~<n 

The formal description of the refinement algorithm is given in Figure 7. The 
refinement algorithm is based on grouping those statements that have exactly the 
same set of relevant operators into subgoals. The heuristic used here is that if a 
set of atomic statements have exactly the same set of relevant operators, then 
there is a high amount of interaction between them and, therefore, they should be 
satisfied at the same time. For example, the atomic statements F2= F9 and 
U6 = U9 in the Rubik's Cube problem have exactly the same set of relevant 
moves, namely, {F+, F - ,  U+,  U - } .  Therefore, both of these atomic statements 
must be satisfied at the same time. If there is an atomic statement for which no 
relevant operators are found, the problem is considered to be 'unsolvable'. If all 
the operators in O are relevant to every atomic statement in G(s), then no 
refinement is possible, and the refinement algorithm terminates by returning the 
problem unchanged. 
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1. 

2. 

3. 

4. 

ref ine(<S,  l(s), O, G(s)> ): 

For each atomic statement gi(s) in G(s), find the set of  operators 0 i that are relevant 

to going from l(s) to {slgi(s)}. 

If  there is any atomic statement gi(s) with no relevant operators, then return "problem 

is unsolvable." 

Form statements Gi(s ) by grouping the atomic statements with the same relevant 

operators into one statement. 

If all atomic statements are grouped into a single statement, then the problem cannot 

be refined; hence return <S, l(s), O, G(s)>. 

For each statement Gi(s), determine the set of  operators OS i that are safe over and 

potentially applicable to l(s) ~) Gi(s), and form a list of candidates <Gi(s), Oi, OSi>. 

While the list of  candidates is not empty do: 

Choose the candidate <Gi(s), Oi, OSi> such that IOSil is the largest. 

Let rest be r e f n e (  <S, l(s)uGi(s), G(s) - Gi(s), OSi> ). 
I__f rest is not unsolvable, then return <S, l(s), Gi(s), Oi> followed by rest, 

else remove the first candidate from the list of  candidates. 

end of while. 

Problem cannot be refined, return <S, l(s), O, G(s)>. 

Fig. 7. The refinement algorithm in pseudo-code. 

In the third step of the refinement algorithm, the set of operators,  OSi, that are 
safe over and potentially applicable to both I(s) and Gi(s ) (i.e., I(s) tO G / s )  as 
sets of atomic statements) are determined for each Gi(s ). This is to find the 

operators  that can be used to solve the rest of the problem, if the s t a t e m e n t  Gi(s  ) 
is selected to be the goal of the first stage. Each statement Gi(s ) is a candidate to 
be the first subgoal. A list of candidates with their relevant operators and safe 
operators  is formed. 

The first subgoal is determined in the fourth step. In order  for a candidate to be 
selected as the first subgoal the remaining part of the problem, G(s) - G / s ) ,  must 
be solvable. The candidate with the maximum number of safe operators (the one 
which leaves the largest number of operators to solve the rest of the problem) is 
tried first. The heuristic used here is that the larger the number o f  available moves 
in a problem, the more likely that it will be solvable. The test of solvability is done 
by trying to refine the rest of the problem recursively. If the result indicates that 
the rest of the problem is unsolvable, then the next candidate is tried. Otherwise, 
the result of the refinement is a list whose first element is the subproblem 
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representing the selected candidate and the rest of the list is the refinement found 
for the rest of the problem. If all the candidates are exhausted, the refinement 
algorithm terminates unsuccessfully, returning the problem unchanged. 

The initial statement of the first subproblem is the same as the initial statement 
of the main problem, that is, 1 l(s) = I(s). The initial statement of each remaining 
subproblem is the goal statement of the preceding subproblem; that is, Ii(s)= 
G i l(S), cf. (1). Also, each subgoal statement generated by the refinement 
algorithm is a subset of the goal statement of the main problem. That is, for each 
subproblem I~(s) ::), I(s) and G(s) ~ Gi(s ). Therefore, each subproblem generated 
by the refinement algorithm is easier than the main problem, cf. (2). 

Determination of Properties of an Operator over Statements 

The refinement algorithm makes use of properties such as safety and relevancy of 
an operator over a given statement. These properties depend on the effects of the 
assignments of the operator on the relations representing the atomic statements. 
This kind of knowledge is problem- or, in general, domain-dependent,  and should 
therefore be separated from the strategy learning mechanism and put into a 
domain-dependent knowledge base (DDKB).  For example, the DDKB for Mod-3 
puzzle should include facts such as incrementing a value modulo 3 three times will 
not change its value, or facts such as if x = y, then f(x) = f(y)  for any function f. 

A DDKB is designed to answer a question in the form 

"Does Q(s) imply r(o(s))?" 

The input to DDKB is a statement Q(s), an atomic statement r(s) and an 
operator o; the output is "yes" if r(o(s)) can be inferred from Q(s), "don ' t  know" 
otherwise. 

Given such a DDKB,  the safety of an operator o over a statement Q(s) can be 
determined by asking the question "Does Q(s) imply qi(o(s))?" for each atomic 
statement qi(s) @ Q(s). If the answer is "yes" for all atomic statements, then o is 
safe over Q(s). 

In the first step of the refinement algorithm, operators that are relevant to 
going from an initial statement I(s) to an atomic s t a t e m e n t  gi(s) of the goal are 
sought. In order to determine the relevancy of an operator o, the question "Does 
I(s) & --gi(s) imply gi(o(s))?" is asked. If the answer is "yes" ,  then the operator 
o is irrelevant, otherwise it is considered to be relevant to going from I(s) to 

{gi(s)}. 

Some Example Strategies 

The algorithm given above has been implemented in Allegro Common Lisp on a 
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PI :  I1(s) = 0 

0 t = {o21, o22,  o31,  o32};  

Gt(s ) = { s l l  = s12, s23 = s33}; 

P2: 12(s) = { s l l  = s12, s23 = s33}; 

0 2 = {o23, o33};  

G2(s ) = { s l l  = s13, s21 = s31, s22 = s32};  

P3: 13(s) = { s l l  = s12, s l l  = s13, s21 = s31, s22 = s32, s23=s33};  

0 3 =  {o12, o13};  

G3(s ) = { s l l  = s21, s22 = s23}; 

P4" 14(s) = { s l l  = s12, s l l  = s13, s l l  -- s21, s21 = s31, s22 = s32, 

s22 = s23, s23 = s33}; 

O g =  {o11}; 

G4(s ) = {sl  1 = s22};  

Fig.  8. R e f i n e m e n t  of  Mod-3  puzz le  in to  a four -s tage  s t ra tegy.  

NeXT system and tested for several problems. The Mod-3 puzzle is decomposed 
into the four step strategy shown in Figure 8. 5 The initial statement of the first 
step is empty, which represents the logical value true. Therefore, Ii(s ) is true for 
any state; i.e., the initial state can be any state. The goal of the first stage is to get 
the first two cells in the first row (s l l  and s12) equal and also the last cells in the 
second and third rows (s23 and s33) equal. For example, 

1 1 0 
2 0 2  
0 1 2 

is such a state. Note that the goal of the first stage is easier to satisfy than the goal 
of the main problem. Also, only the operators {o21, o22, o31, o321 will be used in 
the search for the first step; this reduces the branching factor from 9 to 4. 
Therefore stage 1 is easier than the whole problem; the same is true for the other 
three stages as well. 

When solving stage 2 it is known that all the initial states satisfy Gl(s ) and that 
statement should not be violated at this step; therefore G~(s) is the statement 
about the initial states of stage 2. Similar conditions hold for the remaining stages 
as well. If, in the second stage, no state satisfying G z ( S  ) c a n  be found with the 
operators o23 and o33, then the problem solver backtracks to the first stage and 
finds another state satisfying Ga(s). 

The decomposition of the Rubik's Cube puzzle is given in Figure 9. The 
resulting strategy has 5 stages. Although all the stages are easier than the whole 
problem, their difficulties are not uniform. The first stage is the easiest and the 
level of difficulty increases towards the later stages. Such a decomposition 
resembles the strategy that would be learned by a person who is just introduced to 
the puzzle. 
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Stage: 1 Stage: 2 
Moves: F+, F-, U+, U- Moves: L+, L- 

Stage: 3 
Moves: R+, R- 

Stage: 4 
Moves: D+, D- 

J 

Stage: 5 
Moves: B+, B- 

Fig. 9. Decomposition of the Rubik's Cube puzzle into 5 subproblems. 

However ,  after fooling around with the cube and acquiring a few useful 

combinations of operators, the same person would come up with a different and a 

finer grain decomposition. Such a useful combination of operators is called a 
macro.6 For example, such a person would learn that the macro U - L + U + D - 

F + F + D + U - L + U + is a useful one since it rotates only three side cubies and 

does not modify the other cubies. The person would generalize this macro and use 

all its symmetric versions for other sides. Similarly, the macro U + R + U - L - 

U + R - U - L + rotates only three corner cubies in the upper face and does not 

modify the others; and its other symmetric forms can be used for other faces. 

With these new macros at his disposal the person should be able to decompose 
the puzzle into a finer grain strategy. We can expect a similar behavior from our 

refinement algorithm. The decomposition of the Rubik's Cube puzzle with the 

enhanced set of moves (12 operators and 48 macros) is a 15-stage strategy as 
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Stage: 1 
Moves: F+, F-, U+, U-, [ " 1 ' ~ i ~  
U-L+U+D-F+F+D+U-L+U+, ~ [~ 
D-F+D+U-L+L+U+D-F+D+, 
F-R+F+B - U+U+B+F-R+F+, 
B -U+B+F-R+R+F+B -U+B +, 
L-D+L+R -F+F+R+L-D+L+, R-B+R+L-U+U+L+R-B+R+ 

Stage: 3 [~ 
Moves: R+, R-, D+, D-, 
D-B +D+U-R+R+U+D-B+D+, 
R-F+R+L-D+D+L+R-F+R+ 

Stage: 2 
Moves: B+, B-, L+, L- [ ~ ~  
U-R+U+D-B+B+D+U-R+U+, 
F-L+F+B-D+D+B+F-L+F+, 
B-D+B+F-L+L+F+B-D+B+, 
L-U+L+R-B+B+R+L-U+L+ 

Stage: 4 [~ 
Moves: 
F-D+F+B-R+R+B +F-D+F+, 
B- R+B+F-D+D+F+B -R+B+, 
L-F+L+R-U+U+R+L-F+L+, 
R-U+R+L-F+F+L+R-U+R+ 

Moves: Moves: 
F-U+F+B-L+L+B+F-U+F+, L-B+L+R-D+D+R+L-B+L+ 
B-L+B+F-U+U+F+B-L+B+, 
R-D+R+L-B+B+L+R-D+R+ 

Stage: 7 
Moves: 
U-F+U+D-R+R+D+U-F+U+, 
D-R+D+U-F+F+U+D-R+D+ 

Stage: 8 
Moves: [~ 
U-B+U+D-L+L+D+U-B+U+ 

Stage: 9 [~D 
Moves: 
D-L+D+U-B+B+U+D-L+D+ 

Stage: 11 
M ..... [~g] 
D+L+D-R-D+L-D-R+, 
D+R+D-L-D+R-D-L+, 
B+U+B-D-B+U-B-D+, 
B+D+B-U-B+D-B-U+, 
R+U+R-D-R+U-R D+, R+B+R-F-R+B-R-F+ 

Stage: 10 
Moves: 
U+R+U-L*U+R-U-L+, [~ 
U+F+U-B-U+F-U-B+, 
F+D+F-U-F+D-F-U+, 
F+L+F-R-F+L-F-R+, 
L+U+L-D-L+U-L-D+, L+D+L-U-L+D-L-U+ 

Stage: 12 [~ 
Moves: 
U+L+U-R-U+L-U-R+, 
F+U+F-D-F+U-F-D+, 
R+D+R-U-R+D-R-U+ 

Stage: 13 
Moves: 
D+B+D-F-D+B-D-F+ 

Stage: 14 
Moves: [~ 
L+F+L-B-L+F-L-B+ 

Stage: 15 ~ 
Moves: 
B+R+B-L-B+R-B-L+ 

Fig. 10. Refinement of the Rubik's Cube puzzle into a 15-stage strategy. 

shown in Figure 10. Note  that the goal of  the first stage is the same as the goal of  
the first stage of  the strategy in Figure 9. The second stage of  first strategy is 
completed  in the 10th stage of the second one.  Up to the 10th stage all the side 
cubies are put into their goal positions. The third stage in the first strategy 
corresponds to the 12th stage, and fourth stage to the 14th stage in the second 
strategy. The second strategy is more  useful than the first one  since its stages are 
easier than the stages of  the first strategy. This improvement  in the decompos i t ion  
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reflects the improvement we would expect to see in human problem solving after 
acquiring useful macro moves (Nourse, 1981). 

Conclusion 

Solving a problem independent of its initial states requires developing a strategy 
for that problem. Although a strategy can be in any form, we defined here a 
strategy as a sequence of easier subproblems. Statements, which are sets of 
atomic statements, are proposed to represent sets of problem states. With this 
representation, a strategy can be learned by decomposing the goal statement into 
its subsets each of which corresponds to a subgoal. 

An algorithm for decomposing a problem into a sequence of subproblems is 
given. Using this algorithm, along with a goal statement for each stage a set of 
relevant operators is learned. The algorithm is tested on problems with different 
characteristics. The strategies learned by this algorithm are similar to the ones 
developed by humans. 

Sometimes the decomposition of a problem does not yield a useful strategy. 
This stems from the fact that the operators modify a large number of state 
components in the representation of the problem. As in human problem solving, 
macro moves are helpful in decomposing such problems. This refinement al- 
gorithm has been shown to reflect the same improvement by decomposing the 
problem into easier subproblems. 
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Notes 

1 A brief precursor  to this paper  was presented  by the  first author  to the Working Session on Algebraic 
Approaches to Problem Solving and Representation, Philips Laboratories,  Briarcliff, NY, 1990. 
2 The  Mod-3 puzzle is played on a 3 • 3 board,  where each cell can take any integer value between 0 
and  2 (inclusive). A n  operator  consists of  playing on a cell, which will increment  by modulo  3 the 
value of each cell that  is in the same row or the  same column as the cell that  is being played on. The 
goal is to have the  same value on every cell. 
3 Rubik ' s  Cube  is a t rademark  of Ideal Toy Corporation,  Hollis, NY. 
4 We assume that  each variable is single-valued. 
5 Note  that  in Figure 8 atomic s ta tements  of  the initial s ta tements  are not  shown in the  goal 
s ta tements .  
6 The  idea of composing a sequence of operators  and viewing the sequence as a single operator  in 
machine  problem solving goes back as far as Amare l ' s  paper  on representat ions for the Missionaries 
and Cannibals  problem (Amarel ,  1968). 
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