
Problem Representation for Refinement

H. ALTAY GUVENIR and VAROL AKMAN
Dept. of Computer Engineering and Information Science, Bilkent University, 06533 Ankara, Turkey
(guvenir@trbilun.BITNET, akman@trbilun.BITNET)

Abstract. In this paper we attempt to develop a problem representation technique which enables the
decomposition of a problem into subproblems such that their solution in sequence constitutes a
strategy for solving the problem. An important issue here is that the subproblems generated should be
easier than the main problem. We propose to represent a set of problem states by a statement which is
true for all the members of the set. A statement itself is just a set of atomic statements which are
binary predicates on state variables. Then, the statement representing the set of goal states can be
partitioned into its subsets each of which becomes a subgoal of the resulting strategy. The techniques
involved in partitioning a goal into its subgoals are presented with examples.

Key words. Problem-solving, strategy, problem representation, refinement, machine learning, mech-
anical discovery.

I n t r o d u c t i o n

Problem solving has been one of the laboratories of artificial intelligence

(Lauriere, 1990). In very simple terms, problem solving involves finding a path
from an initial state to a goal state using some kind of search (Ernst and Newell,

1969; Simon, 1983). To solve the same problem for a different initial state one has

to go through the same costly search process again. If the same problem will be
solved for many different initial states, then solving the problem for each initial

state becomes infeasible. Instead, it would be more beneficial to solve the

problem in general (that is, independent of the initial states) and then using this

general solution, solve the problem for a particular initial state. We will call such

a general solution a strategy. This paper proposes a problem representation
1 technique which enables the decomposition of a problem into a strategy.

What is a strategy? A strategy for solving a problem is a general solution for

that problem, in other words, a solution for all possible initial states. A strategy

can be constructed as a decomposition of the problem into easier problems. A

strategy to solve a problem P can be defined as a sequence of subproblems

Pa, P2 , Pn such that solving them in sequence is equivalent to solving the

problem P, and each of the subproblems Pi is easier than the problem P. Such a
decomposition of a problem involves symbolic processing on the description of

the problem. This scheme is based on representing a set of problem states by a
suitable for such symbolic processing. In the course of the paper we will develop a

problem representation scheme which is suitable for mechanically discovering a

strategy for a given problem. This scheme is based on representing a set of

problem states by a statement which is true for all the members of the set. Here, a
statement itself is just a set of atomic statements which are binary predicates on

Minds and Machines 2: 267-282, 1992.
(~) 1992 Kluwer Academic Publishers. Printed in the Netherlands.

268 H. A L T A Y G U V E N I R A N D V A R O L A K M A N

state variables. Then, the statement representing the set of goal states can be
part i t ioned into its subsets each of which becomes a subgoal of the resulting
strategy. At the end of the paper the techniques involved in partitioning a goal
into its subgoals are presented with example strategies that are discovered

mechanically.

Problem Representation

In the literature a p r o b l e m , is defined by a 3-tuple P = (S, O, G) where

S: the set of states,
O: the finite set of operators, and
G C S: the set of goal states.

Here , each operator 0 i E O is a function oi: S---~ S.
A p r o b l e m i n s t a n c e Po is defined as a problem P with a particular initial state

s o E S , i.e., Po = (P, So). Then, a s o l u t i o n to the problem instance P0 is sequence

of operators 0 1 , 0 2 , . . . , o n such that o n (o n _ l . . . (0 2 (0 1 (s 0))) . . .) E G . Here
o i (s) is the state obtained by the application of the operator o~ to the state s. A
solution to a problem instance P0 can also be defined as a sequence of states
S o , s I , s 2 , . . . , s n such that for each sg where 0 < i < n , o i (s i_ l) = s ~ for an 0 i E O ,

and finally s n E G . Finding a solution to the problem instance pi requires a search
in S for a path from s o to a state in G. An example problem and a solution for an
instance of it are given in Figure 1.

(a)

P

),

Po f (b) S ~

J
Fig. 1. (a) An example problem; (b) solution to an instance of the problem.

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 269

Although a problem can be defined formally as above, P = (S, O, G) , in
practice this representation is inadequate if any symbolic processing has to be
done on a problem. Also, it is hard to enumerate all the possible problem states
and compute the-set S. Another difficulty is that the set of goal states G may not
be specified explicitly in many problems. For example, the goal states of problems
such as the Fool's Disk (Ernst and Goldstein, 1982) and the Rubik's Magic are
not given in their definitions. Instead, a statement describing the goal states is
given. If the actual goal state is known, the solution is trivial in the Fool's Disk
problem. Therefore, in such problems, the difficulty of the problem is to
determine the states that satisfy the goal statement.

Solving a Problem in General or Learning a Strategy for a Problem

One general method of attack upon a problem, employed by human problem
solvers, is to break down the goal to be attained into a set of subgoals, which
together satisfy the conditions of the original problem so that if each subgoal,
taken separately, can be attained, the given problem is solved (Newell and
Simon, 1972). If each of these subgoals will be attained sequentially (either on a
sequential machine or by a human), a solution to a problem in general can be
defined in a similar manner to the definition of a solution to a problem instance,
given above. A solution to a problem (S, O, G) in general is a sequence of
subgoals Go, G 1 , . . . , G, where

G O is the set of all possible initial states,
G, = G, and
for each Gi, 0 <~ i < n, there is a set of operators 0 i C O such that for

states s E G i there is an operator o E Oi such that o(s) E Gi+ 1 .

An example strategy for the problem in Figure 1 and a solution using this strategy
are given in Figure 2.

A strategy, then, is a sequence of transitions from one set of states to another
using a specified set of operators. Each transition itself is a search in the set of all
states S. That is, each transition (or stage) is a subproblem, similar to the main
problem. The problem solver using such a strategy, be it a human or a machine,
backtracks to the previous stage in case it determines that the current subproblem

' , , 2 - - - - 2 " 5 "

\ I

Fig. 2. A strategy for the problem in Figure l(a).

270 H. ALTAY GUVENIR AND VAROL AKMAN

has no solution; that is, it is impossible to reach a goal state using the given set of
operators for that stage. On the other hand, as a special case, if there exists at
least one operator given for each state in Gi, then the solution becomes trivial,
since no search will be required. The strategies learned for Korf's Macro Problem
Solver (MPS) have this property (Korf, 1985). To unify the representation of
problems and subproblems, let us represent a problem by a 4-tuple P =
(S, I, O, G) where I is the set of possible initial states. That is, P is the problem
of finding a path in the universe S from any state in I to a state in G, using the
operators in O. Therefore, a strategy for solving the problem P can be defined as
a sequence of subproblems P1, P2 Pn such that solving them in sequence is
equivalent to solving the problem P, where Pi = (S , I i , Oi , G i) . In order for a
strategy to be of any use, its subproblems should be easier than the problem itself.
Comparison of problems in terms of their difficulties is usually hard. One way of
comparing the difficulties of two problems in the same universe S is to compare
their goal states. A problem Pe is easier than a problem Pd if the set of goal states
of Pd is a subset of that of Pe and every other parameter is the same. That is, the
problem Pe = (S , Ie , O, G e) is easier than the problem Pd = (S , I d , O, G a) if
G d C a e and I e C I a . Notice that this is only a sufficient condition. That is, a
problem Pa may be easier than another problem Pb even though the above
conditions are not satisfied (e.g., both have the same goal but Pa has more
relevant moves). However, this definition will suffice for the purpose of decom-
posing a problem into a strategy. We can now define a strategy as follows:

DEFINITION. A strategy for solving a problem P = (S, I, O, G) is a sequence
of easier subproblems (or stages) P1, P2 Pn that satisfy the following
conditions:

i. 1 1 = 1

ii. I i = G i _ l , for l < i ~ < n
iii. G n = G

iv. O i r , for l < ~ i < - n .

(1)

The set of possible initial states I a of the first stage is equal to the set of possible
initial states of the problem. The set of initial states of any stage is equal to the set
of goal states of the previous stage. The set of goal states of the last stage is the
set of the goal states of the problem. There must exist some operators that are
relevant to solving each of the subproblems. If there is no solution to a
subproblem Pi with the given set of operators, then the problem solver backtracks
to the previous stage and re-solves Pi-1 to obtain another state in Gi_ 1 . Usually,
the set of initial states of a problem is equal to the whole set of problem states,
i.e., I = S. A strategy for solving such a problem is depicted in Figure 3. An
example three-stage strategy for the problem in Figure 1 is shown in Figure 4.

PROBLEM REPRESENTATION FOR REFINEMENT 271

Fig. 3. Goals of subproblems forming a strategy.

f .J -~ -- ~-~.

Fig. 4. Subgoals of a strategy for the problem in Figure l(a).

Representation of the Set of States

As ment ioned earlier, neither the set of states S nor the set of goal states G are

given in the problem description explicitly. Problem states are described in terms
of some lower level problem variables. Here , problem variables are the parame-
ters of the problem that can be changed by the operators. For example, in the

well-known Towers of Hanoi Problem (THP) (Banerji , 1980), a state is described
by the values of some lower level components , that is, disks and pegs. One
possible way to represent a state in T H P is to give the positions of all the disks.
The set of goal states is given by a s ta tement which is true only for the goal states.
The goal states of the T H P are described by the statement: "all the disks are on
peg C." Similarly, the goal s ta tement of the Mod-3 puzzle 2 in Guvenier and Ernst
(1990) is "all the cells have the same value." The goal of the Rubik ' s Cube puzzle, 3

on the other hand, is "all the faces o f the cube have a solid color." In general, a
s ta tement describes a set of states, those states which satisfy the statement. A
s ta tement specifies some relations among the state variables. Therefore , it is

natural to represent a state by a vector of state variables.

D E F I N I T I O N . A state is a vector of state variables (S 1 , $ 2 , . . . , Sin) where each
s i is chosen f rom a set of values V~. Note that S C V 1 x 112 x �9 �9 �9 x V m .

This is similar to Korf ' s definition (in Korf, 1985). For example, if the positions of
the disks are the state variables in the THP, the vector (A , C, B, A) represents
the state in which the first and the fourth disks are on peg A, the second disk is on

272 H. ALTAY GUVENIR AND VAROL AKMAN

peg C and the third disk is on peg B. However , in Korf ' s representat ion the state
vector for the Rubik 's cube is composed of the position and the orientation values
of 26 cubicles, whereas here a state vector contains the color values of each of the

54 facets.
To represent a s ta tement about states we propose the following definitions:

D E F I N I T I O N . An atomic statement is a predicate with two arguments�9 The
arguments can be constants or state variables�9

For example, diskl = C is an atomic s ta tement in the THP. Similarly, in the
Mod-3 puzzle, s l l = s12 is an atomic s tatement which indicates that the upper left
and upper middle cells have the same values�9 In the Rubik 's cube puzzle the
atomic s ta tement F2 = F9 indicates that the center facet (F9) in the front face has

the same color as the upper middle facet (F2) of the front face; see Figure 9 for
naming of the facets�9

D E F I N I T I O N . A statement is a set of atomic statements. A s ta tement is inter-

pre ted as the conjunction of its elements.

A s ta tement Q(s) represents a set of problem states Sq = {s lQ(s)} . Therefore ,
Q(s) ~ s E S q . For instance, the s tatement Q(s) = {disk2 = C, disk2 = disk3,
disk3 = C} represents the set of states in which both disk2 and disk3 are on the
peg C in the T H E The s ta tement

{ F I = F 2 , . . . , F 1 = F 9 ,
F 2 = F 3 , F 2 = F 9 ,
�9 �9 ~

F8 = F9}

in Rubik ' s Cube represents the set of states in which all the facets in the front face

have the same color. Similarly, the set of goal states of the Mod-3 puzzle can be
represented by the s ta tement G(s) = {s l l --- s12, s l l = s 1 3 , . . . , s32 = s33}.

An empty s ta tement is true for all states and therefore represents the set of all
p rob lem states, S. The set union of two statements is equivalent to their logical

conjunction�9 That is, if Q(s) represents the set of states Sq and R(s) the set S r,
then the s ta tement Q(s) u R(s) represent the set of states Sq n Sr. I f Q(s) is a
subset of R(s), then every problem state s that satisfies R(s) also satisfies Q(s);

Table I. Statements and the sets they represent

Statements Problem states Logical meaning

Q(s) = It { s I Q (s) } = S Q(s) = t rue

Q(s) = R(s) U T(s) {sl a(s)) = {sIR(s) and T(s)} Q(s) = R(s) & T(s)

Q(s) c R(s) (s I R(s)} C (s I Q(s)) R(s) ~ Q(s)

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 273

that is, R(s) logically implies Q(s). The relations between the statements and the

sets of states are shown in Table I.

Operators and Their Properties

An opera tor has two important parts: its precondition, and its effect on the state
it is applied. Therefore , we will represent an opera tor by a pair o = (PC(s) , A)
where PC(s) is the precondition statement, possibly empty, and A is the set of
assignments which are made to the state variables by the application of the
opera tor . Formally, an opera tor o is a function o: {slPC(s)}--~ S.

D E F I N I T I O N . An opera tor o is safe over a s ta tement Q(s) if when o is applied
to a state s satisfying Q(s), the resulting state o(s) also satisfies the s ta tement

Q(s). Formally, o is safe over Q(s) if

Vs[Q(s) ~ Q(o(s))] .

For example , any opera tor that moves disk1 is safe over the s ta tement
{disk3 = C} in the THP. Similarly, opera tor o13, which increments the values of
cells in first row and third column by one modulo 3, is safe over the s ta tement
{s l l = s12} in the Mod-3 puzzle. The operators F + and F - , which rotate the
front face 90 ~ in the positive direction (counterclockwise) and in the negative

direction, respectively, are safe over the s tatement {F1 = F2, F1 = F3 , F8- -
F9} in the Rubik ' s cube puzzle.

D E F I N I T I O N . An opera tor o is irrelevant to going f rom Q(s) to R(s) if o is safe

over Q(s), and when applied to a state that satisfies Q(s) but not R(s), then the
resulting state o(s) will never satisfy R(s). That is, the application of o to a state
that does not satisfy R(s), will not generate a state satisfying R(s). Formally, o is
irrelevant to going f rom Q(s) to R(s) if o is safe over Q(s) & ~ R(s).

For example, any disk 1 move in the T H P is irrelevant to going f rom {disk3 =

C} to {disk2 = C, disk2 = disk3, disk3 = C}. Opera tor o13 in the Mod-3 puzzle is
relevant to going f rom { s l l = s l 2 } to { s l l - - s l 2 , s23=s33} . Similarly the
opera tors B + and B - , that rotate the back face, are irrelevant to going f rom • to
{F2 = F9} in the Rubik ' s Cube puzzle.

D E F I N I T I O N . An opera tor o is relevant to going f rom Q(s) to R(s) if o is safe
over Q(s) and not irrelevant to going f rom Q(s) to R(s). That is, if o is relevant to
going f rom Q(s) to R(s), then there is a chance that R(o(s)) will be true if s
satisfies Q(s) but not R(s).

For example , any disk 2 move in the T H P is relevant to going f rom {disk3 = C}
to {disk2 = C, disk2 = disk3, disk3 = C}. Opera to r o13 in the Mod-3 puzzle is

274 H. ALTAY GUVENIR AND VAROL AKMAN

(a)

(b)

(c)

Fig. 5. Properties of operators. (a) o is safe over Q(s); (b) o is irrelevant to going from Q(s) to R(s);
(c) o is relevant to going from Q(s) to R(s).

relevant to going f rom {s l l = s12} to {s l l =s12 , s l l =s13 , s12= s13}. The
opera tors U + and U - , that rotate the upper face, are relevant to going f rom Q

to {F2 = F9} in the Rubik 's Cube puzzle.
Safety, relevancy and irrelevancy of operators are illustrated in Figure 5.

D E F I N I T I O N . An opera tor o is potentially applicable to a set of states repre-
sented by Q(s) if the precondit ion s tatement PC(s) of o does not conflict with

Q(s). That is, there are some states that satisfy both Q(s) and PC(s). Formally,

BsIQ(s)&PC(s)] .

For example, in the T H P the opera tor o2AB (move disk2 f rom peg A to peg

B), whose precondit ion s ta tement is {diskl = C, disk2 = A}, is potentially applic-
able to all states in {diskl = C} or {disk3 = C}, but is not potentially applicable to
any state in {disk2 = C}. 4

Problem Representation by Statements

The sets of states of a problem can be represented by statements as defined
above. Therefore , we can represent a problem as a 4-tuple P = (S, l(s), O, G(s))
where I(s) and G(s) are statements representing the set of initial states and the set

of goal states, respectively.
Difficulties of problems can be compared by checking their initial and goal

s ta tements as well. A problem Pe is easier than a problem Pe if

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 275

Fig. 6. Comparison of difficult and easy problems,

Ie(s) ~ Id(S) and (2)

G d(S) ~ Ge(S) .

In other words, if the possible initial states of Pe a r e also initial states of Pd and
the goal states of Pd are also goal states of Pe, then Pe is easier than I'd. Again,
this is only a sufficient condition. Comparison of difficulties of two problems is
depicted in Figure 6. In this figure, the problem Pd of obtaining a state that
satisfies Gd(S) from a state that satisfies Id(S) (the bigger arrow) is more difficult
than the problem Pe of obtaining a state that satisfies Ge(s) from a state that
satisfies Ie(S) (the smaller arrow).

Refining a Problem into a Strategy

Refinement is based on a decomposition of the goal statement of a problem
into subgoals by partitioning the goal statement G(s) into subgoals GI(s),
G2(s) , Gn(s), and finding the relevant operators 01 , 0 2 , O n for each
subgoal such that P1, P 2 , - . . , Pn where Pi = (S, Si_l(S), O, Gi(s)) , satisfy the
following conditions which are derived from (1):

i. Go(s)=I (s)
ii. G,(s)= G(s) (3)

iii. O i r for l~<i~<n

The formal description of the refinement algorithm is given in Figure 7. The
refinement algorithm is based on grouping those statements that have exactly the
same set of relevant operators into subgoals. The heuristic used here is that if a
set of atomic statements have exactly the same set of relevant operators, then
there is a high amount of interaction between them and, therefore, they should be
satisfied at the same time. For example, the atomic statements F2= F9 and
U6 = U9 in the Rubik's Cube problem have exactly the same set of relevant
moves, namely, {F+, F - , U+, U - } . Therefore, both of these atomic statements
must be satisfied at the same time. If there is an atomic statement for which no
relevant operators are found, the problem is considered to be 'unsolvable'. If all
the operators in O are relevant to every atomic statement in G(s), then no
refinement is possible, and the refinement algorithm terminates by returning the
problem unchanged.

276 H. A L T A Y G U V E N I R A N D V A R O L A K M A N

1.

2.

3.

4.

ref ine(<S, l(s), O, G(s)>):

For each atomic statement gi(s) in G(s), find the set of operators 0 i that are relevant

to going from l(s) to {slgi(s)}.

If there is any atomic statement gi(s) with no relevant operators, then return "problem

is unsolvable."

Form statements Gi(s) by grouping the atomic statements with the same relevant

operators into one statement.

If all atomic statements are grouped into a single statement, then the problem cannot

be refined; hence return <S, l(s), O, G(s)>.

For each statement Gi(s), determine the set of operators OS i that are safe over and

potentially applicable to l(s) ~) Gi(s), and form a list of candidates <Gi(s), Oi, OSi>.

While the list of candidates is not empty do:

Choose the candidate <Gi(s), Oi, OSi> such that IOSil is the largest.

Let rest be r e f n e (<S, l(s)uGi(s), G(s) - Gi(s), OSi>).
I__f rest is not unsolvable, then return <S, l(s), Gi(s), Oi> followed by rest,

else remove the first candidate from the list of candidates.

end of while.

Problem cannot be refined, return <S, l(s), O, G(s)>.

Fig. 7. The refinement algorithm in pseudo-code.

In the third step of the refinement algorithm, the set of operators, OSi, that are
safe over and potentially applicable to both I(s) and Gi(s) (i.e., I(s) tO G / s) as
sets of atomic statements) are determined for each Gi(s). This is to find the

operators that can be used to solve the rest of the problem, if the s t a t e m e n t Gi(s)
is selected to be the goal of the first stage. Each statement Gi(s) is a candidate to
be the first subgoal. A list of candidates with their relevant operators and safe
operators is formed.

The first subgoal is determined in the fourth step. In order for a candidate to be
selected as the first subgoal the remaining part of the problem, G(s) - G / s) , must
be solvable. The candidate with the maximum number of safe operators (the one
which leaves the largest number of operators to solve the rest of the problem) is
tried first. The heuristic used here is that the larger the number o f available moves
in a problem, the more likely that it will be solvable. The test of solvability is done
by trying to refine the rest of the problem recursively. If the result indicates that
the rest of the problem is unsolvable, then the next candidate is tried. Otherwise,
the result of the refinement is a list whose first element is the subproblem

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 277

representing the selected candidate and the rest of the list is the refinement found
for the rest of the problem. If all the candidates are exhausted, the refinement
algorithm terminates unsuccessfully, returning the problem unchanged.

The initial statement of the first subproblem is the same as the initial statement
of the main problem, that is, 1 l(s) = I(s). The initial statement of each remaining
subproblem is the goal statement of the preceding subproblem; that is, Ii(s)=
G i l(S), cf. (1). Also, each subgoal statement generated by the refinement
algorithm is a subset of the goal statement of the main problem. That is, for each
subproblem I~(s) ::), I(s) and G(s) ~ Gi(s). Therefore, each subproblem generated
by the refinement algorithm is easier than the main problem, cf. (2).

Determination of Properties of an Operator over Statements

The refinement algorithm makes use of properties such as safety and relevancy of
an operator over a given statement. These properties depend on the effects of the
assignments of the operator on the relations representing the atomic statements.
This kind of knowledge is problem- or, in general, domain-dependent, and should
therefore be separated from the strategy learning mechanism and put into a
domain-dependent knowledge base (DDKB). For example, the DDKB for Mod-3
puzzle should include facts such as incrementing a value modulo 3 three times will
not change its value, or facts such as if x = y, then f(x) = f(y) for any function f.

A DDKB is designed to answer a question in the form

"Does Q(s) imply r(o(s))?"

The input to DDKB is a statement Q(s), an atomic statement r(s) and an
operator o; the output is "yes" if r(o(s)) can be inferred from Q(s), "don ' t know"
otherwise.

Given such a DDKB, the safety of an operator o over a statement Q(s) can be
determined by asking the question "Does Q(s) imply qi(o(s))?" for each atomic
statement qi(s) @ Q(s). If the answer is "yes" for all atomic statements, then o is
safe over Q(s).

In the first step of the refinement algorithm, operators that are relevant to
going from an initial statement I(s) to an atomic s t a t e m e n t gi(s) of the goal are
sought. In order to determine the relevancy of an operator o, the question "Does
I(s) & --gi(s) imply gi(o(s))?" is asked. If the answer is "yes" , then the operator
o is irrelevant, otherwise it is considered to be relevant to going from I(s) to

{gi(s)}.

Some Example Strategies

The algorithm given above has been implemented in Allegro Common Lisp on a

278 H. A L T A Y G U V E N I R A N D V A R O L A K M A N

PI : I1(s) = 0

0 t = {o21, o22, o31, o32};

Gt(s) = { s l l = s12, s23 = s33};

P2: 12(s) = { s l l = s12, s23 = s33};

0 2 = {o23, o33};

G2(s) = { s l l = s13, s21 = s31, s22 = s32};

P3: 13(s) = { s l l = s12, s l l = s13, s21 = s31, s22 = s32, s23=s33};

0 3 = {o12, o13};

G3(s) = { s l l = s21, s22 = s23};

P4" 14(s) = { s l l = s12, s l l = s13, s l l -- s21, s21 = s31, s22 = s32,

s22 = s23, s23 = s33};

O g = {o11};

G4(s) = {sl 1 = s22};

Fig. 8. R e f i n e m e n t of Mod-3 puzz le in to a four -s tage s t ra tegy.

NeXT system and tested for several problems. The Mod-3 puzzle is decomposed
into the four step strategy shown in Figure 8. 5 The initial statement of the first
step is empty, which represents the logical value true. Therefore, Ii(s) is true for
any state; i.e., the initial state can be any state. The goal of the first stage is to get
the first two cells in the first row (s l l and s12) equal and also the last cells in the
second and third rows (s23 and s33) equal. For example,

1 1 0
2 0 2
0 1 2

is such a state. Note that the goal of the first stage is easier to satisfy than the goal
of the main problem. Also, only the operators {o21, o22, o31, o321 will be used in
the search for the first step; this reduces the branching factor from 9 to 4.
Therefore stage 1 is easier than the whole problem; the same is true for the other
three stages as well.

When solving stage 2 it is known that all the initial states satisfy Gl(s) and that
statement should not be violated at this step; therefore G~(s) is the statement
about the initial states of stage 2. Similar conditions hold for the remaining stages
as well. If, in the second stage, no state satisfying G z (S) c a n be found with the
operators o23 and o33, then the problem solver backtracks to the first stage and
finds another state satisfying Ga(s).

The decomposition of the Rubik's Cube puzzle is given in Figure 9. The
resulting strategy has 5 stages. Although all the stages are easier than the whole
problem, their difficulties are not uniform. The first stage is the easiest and the
level of difficulty increases towards the later stages. Such a decomposition
resembles the strategy that would be learned by a person who is just introduced to
the puzzle.

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 279

Stage: 1 Stage: 2
Moves: F+, F-, U+, U- Moves: L+, L-

Stage: 3
Moves: R+, R-

Stage: 4
Moves: D+, D-

J

Stage: 5
Moves: B+, B-

Fig. 9. Decomposition of the Rubik's Cube puzzle into 5 subproblems.

However , after fooling around with the cube and acquiring a few useful

combinations of operators, the same person would come up with a different and a

finer grain decomposition. Such a useful combination of operators is called a
macro.6 For example, such a person would learn that the macro U - L + U + D -

F + F + D + U - L + U + is a useful one since it rotates only three side cubies and

does not modify the other cubies. The person would generalize this macro and use

all its symmetric versions for other sides. Similarly, the macro U + R + U - L -

U + R - U - L + rotates only three corner cubies in the upper face and does not

modify the others; and its other symmetric forms can be used for other faces.

With these new macros at his disposal the person should be able to decompose
the puzzle into a finer grain strategy. We can expect a similar behavior from our

refinement algorithm. The decomposition of the Rubik's Cube puzzle with the

enhanced set of moves (12 operators and 48 macros) is a 15-stage strategy as

280 H. ALTAY GUVENIR AND VAROL AKMAN

Stage: 1
Moves: F+, F-, U+, U-, [" 1 ' ~ i ~
U-L+U+D-F+F+D+U-L+U+, ~ [~
D-F+D+U-L+L+U+D-F+D+,
F-R+F+B - U+U+B+F-R+F+,
B -U+B+F-R+R+F+B -U+B +,
L-D+L+R -F+F+R+L-D+L+, R-B+R+L-U+U+L+R-B+R+

Stage: 3 [~
Moves: R+, R-, D+, D-,
D-B +D+U-R+R+U+D-B+D+,
R-F+R+L-D+D+L+R-F+R+

Stage: 2
Moves: B+, B-, L+, L- [~ ~
U-R+U+D-B+B+D+U-R+U+,
F-L+F+B-D+D+B+F-L+F+,
B-D+B+F-L+L+F+B-D+B+,
L-U+L+R-B+B+R+L-U+L+

Stage: 4 [~
Moves:
F-D+F+B-R+R+B +F-D+F+,
B- R+B+F-D+D+F+B -R+B+,
L-F+L+R-U+U+R+L-F+L+,
R-U+R+L-F+F+L+R-U+R+

Moves: Moves:
F-U+F+B-L+L+B+F-U+F+, L-B+L+R-D+D+R+L-B+L+
B-L+B+F-U+U+F+B-L+B+,
R-D+R+L-B+B+L+R-D+R+

Stage: 7
Moves:
U-F+U+D-R+R+D+U-F+U+,
D-R+D+U-F+F+U+D-R+D+

Stage: 8
Moves: [~
U-B+U+D-L+L+D+U-B+U+

Stage: 9 [~D
Moves:
D-L+D+U-B+B+U+D-L+D+

Stage: 11
M [~g]
D+L+D-R-D+L-D-R+,
D+R+D-L-D+R-D-L+,
B+U+B-D-B+U-B-D+,
B+D+B-U-B+D-B-U+,
R+U+R-D-R+U-R D+, R+B+R-F-R+B-R-F+

Stage: 10
Moves:
U+R+U-L*U+R-U-L+, [~
U+F+U-B-U+F-U-B+,
F+D+F-U-F+D-F-U+,
F+L+F-R-F+L-F-R+,
L+U+L-D-L+U-L-D+, L+D+L-U-L+D-L-U+

Stage: 12 [~
Moves:
U+L+U-R-U+L-U-R+,
F+U+F-D-F+U-F-D+,
R+D+R-U-R+D-R-U+

Stage: 13
Moves:
D+B+D-F-D+B-D-F+

Stage: 14
Moves: [~
L+F+L-B-L+F-L-B+

Stage: 15 ~
Moves:
B+R+B-L-B+R-B-L+

Fig. 10. Refinement of the Rubik's Cube puzzle into a 15-stage strategy.

shown in Figure 10. Note that the goal of the first stage is the same as the goal of
the first stage of the strategy in Figure 9. The second stage of first strategy is
completed in the 10th stage of the second one. Up to the 10th stage all the side
cubies are put into their goal positions. The third stage in the first strategy
corresponds to the 12th stage, and fourth stage to the 14th stage in the second
strategy. The second strategy is more useful than the first one since its stages are
easier than the stages of the first strategy. This improvement in the decompos i t ion

P R O B L E M R E P R E S E N T A T I O N F O R R E F I N E M E N T 281

reflects the improvement we would expect to see in human problem solving after
acquiring useful macro moves (Nourse, 1981).

Conclusion

Solving a problem independent of its initial states requires developing a strategy
for that problem. Although a strategy can be in any form, we defined here a
strategy as a sequence of easier subproblems. Statements, which are sets of
atomic statements, are proposed to represent sets of problem states. With this
representation, a strategy can be learned by decomposing the goal statement into
its subsets each of which corresponds to a subgoal.

An algorithm for decomposing a problem into a sequence of subproblems is
given. Using this algorithm, along with a goal statement for each stage a set of
relevant operators is learned. The algorithm is tested on problems with different
characteristics. The strategies learned by this algorithm are similar to the ones
developed by humans.

Sometimes the decomposition of a problem does not yield a useful strategy.
This stems from the fact that the operators modify a large number of state
components in the representation of the problem. As in human problem solving,
macro moves are helpful in decomposing such problems. This refinement al-
gorithm has been shown to reflect the same improvement by decomposing the
problem into easier subproblems.

Acknowledgements

We are grateful to the editor of Minds and Machines and two anonymous referees
for their invaluable comments on earlier drafts of this paper. We wish to thank
George W. Ernst (Case Western Reserve University) and Ranan B. Banerji
(Temple University) for useful conversations.

Notes

1 A brief precursor to this paper was presented by the first author to the Working Session on Algebraic
Approaches to Problem Solving and Representation, Philips Laboratories, Briarcliff, NY, 1990.
2 The Mod-3 puzzle is played on a 3 • 3 board, where each cell can take any integer value between 0
and 2 (inclusive). A n operator consists of playing on a cell, which will increment by modulo 3 the
value of each cell that is in the same row or the same column as the cell that is being played on. The
goal is to have the same value on every cell.
3 Rubik ' s Cube is a t rademark of Ideal Toy Corporation, Hollis, NY.
4 We assume that each variable is single-valued.
5 Note that in Figure 8 atomic s ta tements of the initial s ta tements are not shown in the goal
s ta tements .
6 The idea of composing a sequence of operators and viewing the sequence as a single operator in
machine problem solving goes back as far as Amare l ' s paper on representat ions for the Missionaries
and Cannibals problem (Amarel , 1968).

282 H. A L T A Y G U V E N I R A N D V A R O L A K M A N

References

Amarel, S. (1968), 'On Representation of Problems of Reasoning about Actions', in D. Michie, ed.,
Machine Intelligence 3, Edinburgh, Scotland: Edinburgh University Press.

Banerji, R. B. (1980), Artificial Intelligence: a Theoretical Approach, New York, NY: North-Holland.
Ernst, G. W. and Goldstein, M. M. (1982), 'Mechanical Discovery of Classes of Problem-Solving

Strategies', Journal of ACM 29, pp. 1-23.
Ernst, G. W. and Newell, A. (1969), GPS: A Case Study in Generality and Problem Solving, New

York, N.Y.: Academic Press.
Guvenir, H. A. and Ernst, G. W. (1990), 'Learning Problem Solving Strategies Using Refinement and

Macro Generation', Artificial Intelligence 44, pp. 209-243.
Korf, R. E. (1985), Learning to Solve Problems by Searching for Macro-Operators, Boston, MA:

Pitman Advanced Publishing Program.
Lauriere, J.-L. (1990), Problem Solving and Artificial Intelligence, London: Prentice-Hall.
Newell, A. and Simon, H. A. (1972), Human Problem Solving, Englewood Cliffs, N.J.: Prentice Hall.
Nourse, J. G. (1981), The Simple Solution to Rubik's Cube, New York: Bantam Books.
Simon, H. A. (1983), 'Search and Reasoning in Problem Solving', Artificial Intelligence 21, pp. 7-29.

