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Parameter Identification for Partially 
Observed Diffusions 
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Communicated by T. S. Angell 

Abstract. In this paper, we consider the identification problem of drift 
and dispersion parameters for a class of partially observed systems gov- 
erned by Ito equations. Using the pathwise description of the Zakai 
equation, we formulate the original identification problem as a deter- 
ministic control problem in which the unnormalized conditional density 
(solution of the Zakai equation) is treated as the state, the unknown 
parameters as controls, and the likelihood ratio as the objective func- 
tional. The question of existence of elements in the parameter set that 
maximize the likelihood ratio is discussed. Further, using variational 
arguments and the Gateaux differentiability of the unnormalized density 
on the parameter set, we obtain the necessary conditions for optimal 
identification. 

Key Words. Nonlinear filtering, likelihood ratio, parameter identifica- 
tion, optimal control, distributed-parameter systems. 

1. Introduction 

In the last few years, considerable attention has been focused on the 
identification problem of  systems governed by linear or nonlinear Ito equa- 
tions (Refs. 1-6). In Ref. 2, the identification problem for partially observed 
linear time-invariant systems has been considered. Using linear filter theory, 
the maximum likelihood approach, and the smoothness of  solutions of  the 
algebraic Riccati equation, sufficient conditions were obtained for the con- 
sistency of  the maximum likelihood estimate. 
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In Ref. 3, Lipster and Shiryayev have considered the identification prob- 
lem for a class of completely observed systems governed by a stochastic 
differential equation of the form 

dx(t)=ah(t, x(t)) dt+dW(t), t>_O, 

where xeR and a is some unknown parameter. Using the maximum likeli- 
hood approach, an explicit expression for the maximum likelihood estimate 
d, was obtained. Further, utilizing the law of iterated logarithm of Brownian 
motion, it has been shown that, as t ~  0% estimate 4, converges almost 
surely to the true underlying parameter. In Ref. 4, Legland considered the 
identification problem for a more general class of systems governed by 
stochastic differential equation of the form 

dy(t)=h(a, x(t)) dt+dV(t), t>0,  

where a is unknown and x is a diffusion process. Utilizing the maximum 
likelihood approach along with forward and backward Zakai equations, a 
numerical scheme has been developed for computing a given the output 
history {y(s): s_< t}. 

In this paper, we consider the identification problem for a class of 
systems governed by Ito equations of the form 

dx(t)=a(t, x(t), a) dt+b(t, x(t), a) dW(t), 

x(0)=x0, 

and 

teI--[O, T], (la) 

(lb) 

dy(t) =h(x(t), a) dt+ao(t, y(t)) dff'(t), 

y(O) =0, 

tel, (2a) 

(2b) 

where W and /~ are two independent standard Wiener processes taking 
values from R n and R", respectively, and a is an unknown parameter taking 
values from a compact convex set ~ contained in some finite-dimensional 
space. The drift and diffusion coefficients are Borel functions as described 
below, 

a : I x R ~ x o~ ~ R ~, h : R" x ~ ~ R" 

b : I x R n x , ~ R  ('×"), ao: lXRn'~R ( . . . .  ,). 

Further regularity properties of these functions will be presented in the 
sequel as required. We assume that all the random processes and vectors 
described above are defined on a complete probability space (f~o, No, Po). 
Then, loosely speaking, our problem is to identify the unknown parameter 
a on the basis of the output information {y(s)" s>0}. 
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The paper is organized as follows. In Section 2, we present some of 
the notations that have been used in the sequel along with the necessary 
assumptions required to prove the existence result and to obtain the corre- 
sponding necessary conditions of optimality. In Section 3, we formulate the 
nonlinear filtering problem and present some of the well-known results. In 
Section 4, we formulate the identification problem as a deterministic control 
problem; then, following standard partial differential equation arguments, 
we show that the identification problem has a solution. Finally, in Section 
5, we use standard variational arguments and make use of the Gateaux 
differentiability of the unnormalized density on the parameter set to obtain 
the necessary conditions for optimal identification. 

2. Notations and Assumptions 

Notations. Let q(t), t_>O, be any random process, and let 
o-{r/(s), s_< t} denote the o--field generated by r /up to time t. Define 

~-tr-= tr{y(s), s<t}, ~'w-o-{W(s), s<_t}, 

v v o- {Xo} C o. 

Let C(R") [resp. Cb(R")] denote the space of continuous [resp. bounded 
continuous] functions on R". Let ~(R") denote the Borel field of subsets of 
R" and ~---U~>0~vt. Let f~ [resp. f~r] denote the space of continuous 
functions on Ro-[O, ob] [resp. [0, T]] with values in R ~"+'), and let d 
[resp..~¢r] denote the Borel o--algebra on f~ [resp. f2r]. We call (f~, d )  the 
canonical sample space for the process {x(t), y(t)}, t>0. 

Let L2(I; R") denote the equivalence classes of measureable functions 
f :  I-~ R" such that S/t f(t) I 2 dt < oo. For any Banach space E, we shall use 
L~(I; E) to denote the space of strongly measurable E-valued functions on 
I with the norm 

Hfl l~-ess  sup{Jlf(t)l]e ; tel). 
Let C(I; E) denote the space of strongly continuous E-valued functions on 
I furnished with the uniform topology 

Ilfllc=sup{llf(t)lle; tel}. 
For any pair of Banach spaces E and F, we use Le(E, F) to denote the space 
of bounded linear operators from E to F. Let 

H-L2(R~), V=-H'=-{f~H: Of/Oxi~H, 1 <i_<n), 

with V,' being its dual. We use ( - ,  • ) to denote the pairing of V and V'. 
Further notations will be introduced in the sequel as required. 
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Assumptions 

(A1) a(t, x, a) is measurable in t and continuous in x and a. Further, 
for all (t, a)e[0, T ] x ~ ,  a(t , . ,  a) is bounded and satisfies 
uniform Lipschitz and growth conditions on R". 

(A2) The matrix function b(t, x, a) is measurable in t, continuous in 
x and a ;  and for all (t, a)e[0, T] x ~ ,  b(t , . ,  a) is bounded and 
satisfies uniform Lipschitz and growth condition on R ~. Further, 
there exists a constant ~, > 0 such that 

(bb')(t, x, a) =- or(t, x, a) > ~,I, 

for all (t,x, a)E[0, T] x R " x ~ ,  where I denotes the identity 
matrix. 

(A3) For all (t, a)e[0, T ] x ~ ,  the functions (O/Oxj)t~ o and (02/ 
Oxi Oxj)cr~, 1 <i, j<n,  are bounded and satisfy a Holder condi- 
tion on R". 

(A4) For every (t, x)E[0, T] x R", the mappings a ~ o-(t, x, a) and 
a ~ a(t, x, a) are once Gateaux differentiable on ~.  

(A5) For every a ~ ,  h(. ,  a)eC2(R ") and the map a ~ h ( . ,  a) is 
once Gateaux differentiable. Further, the mappings a --* h(x, a) 
and a ~  (O/Oxi)h(x, a), 1 <i<n, are continuous on ~ for each 
xER n. 

(A6) The matrix-valued functions tyo(t, y) is measurable in t, satisfies 
uniform Lipschitz and growth conditions on R", and 

(i) (tyo(t,y)~. ~ ) > f l l ~ [  2, f l > 0 ,  ~ERm, y~R m, 

(ii) ES,  tr (tyo(t, y),y'o(t, y)) dt <ov, 

where the dot denotes the scalar product in R" and tr(B) denotes 
the trace of B. 

Note that, under the given assumptions, the systems (1) and (2) have 
strong solutions for initial state x0 with E Ix0 [ 2 < ov and y(0) = 0; see, for 
example, Ref. 7. 

In the next section, we present some of the well-known results in non- 
linear filtering theory (Refs. 8-9). These results are used to prove the exist- 
ence of a solution for the identification problem and to derive the 

corresponding necessary conditions of optimality. 

3. Nonlinear Filtering Problem 

In this section, we formulate the filtering problem for the systems (1) 
and (2) and present the corresponding Kushner and Zakai equations (which 
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are parametrized by a). Let pl and /t 2 be the measures induced on the 
canonical sample space (f~, d )  by the system (1)-(2) and the system 

dx(t)=a(t, x(t), a) dt+b(t, x(t), a) dW(t), t>O, (3a) 

dy(t) =ao(t, y(t)) dff'(t), t>O, (3b) 

respectively. For each te[O, T], le t /~,  i=  1, 2, denote the restriction of the 
measure/1; to d r .  Then, under the given assumptions, the measures/1~ and 
/~ are absolutely continuous with respect to one another. Further, the 
Radon-Nikodym derivative of pl with respect to / t t  2 is given by 

I 2__ a__ { fO ~ dllt/dl a, =p, =exp - 1 / 2  I crol(s, y(s))h(x(s), a)12 ds 

f0 + (a-[l(s, y(s))h(x(s), a). crol(s, y(s)) dy(s)) , (4) 

for all a E~, where the dot denotes the scalar product in any finite- 
dimensional space. It is known (Ref. 10) that if, for each re[0, T], 

E2p7 =- f .  p~ du ~, = 1, 

then the process 

{W(t),f/Cro'(S,y(s))dy(s),t~[O,T]} 

is a standard Wiener process on the probability space (f~, ~¢,/t2). For any 
bounded measurable function f on R", the optimal estimate (in the mean- 
square sense), relative to ~, ' ,  is given by 

f(t)=E,{f(x(t))  l ~'~}, 

where E~ denotes the expectation with respect to / t  ~. Using the fact that the 
measures/t I and/ t  z are absolutely continuous with respect to one another, 
it follows from (4) and the Bayes formula that 

.f(t) =E2{pTf(x(t)) l ~Y}/E2{pT l ~ } .  (5) 

Clearly, .f(t) depends on a. This dependence will be indicated by writing 
j~(t)  instead off( t ) .  Let trY(t)= Ir~(t, • ) denote the conditional density of 
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x(t) relative to ~~, t>0.  It is known that ~r~(t), t>0,  satisfies the following 
Kushner equation (Ref. 8): 

drc~(t) =A*(t, a)rc~(t) dt + (h ~ - f1~(t))Tr~(t)Fol(t)[dy(t) - fz~(t) dt], (6a) 

zr~(O) =Po, a e~ ,  (6b) 

for t>0,  where po denotes the initial density, Fo(t)=_(CroCr~)(t, y(t)), and 

A*(t, a)f=--  ~. (O/dxi)(ai(t, x, a) f)  
i~1 

+ ~ (OZ/Oxi Oxj)(tyij(t, x, a)f) ,  (7) 
t , j=l 

with 

or(t, x, a)= (bb')(t, x, a). 

Define q~'~(t)= q¢~(t, • ), t_>0, so that 

rc~( t," ) = cP~( t, " )/S~ if(t ,  x) dx, (8) 

where ~o ~ is known as the unnormalized conditional density and satisfies the 
following Zakai equation (Ref. 9): 

dtp~(t) =A*(t, a)cp"(t) dt+ r o ' ( t ) h " q ~ ° ( t )  • dy(t), t>O, (9a) 

q~(0) =po, a e ~ .  (9b) 

Since 

E2{p'/f(x(t)) [ ~'~} =JR" ~f(t, x)f(x) dx, (10) 

E2{p~ I~} = f,~ q,"(t, x) dx, (11) 

it follows from (5) that 

f°(o= f.. tPa( t, x)f(x) dx / f . .  ~o"(t, x )dx  

- (tp~(t), f) /(cpa(t) ,  1 ). (12) 

Let X - C ( I ;  R"), I--[0, T], and let g e n t  y. Then, it follows from (4) that 

fxxzd#'=fxxPgdu~" 
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Since under the measure p2, the process y is independent of x, it follows that 
p2 is given by the product of the two measures v x and 9 which are defined 
on ~(X)  and ~Y, respectively. Then, it follows by Fubini's theorem that 

6t - -  1 f ~ ' t ( X ) = ~ t ( X x ~ " )  = P7 dlt2t 
xX 

=fz (fxP~dv~(x))dv(y)=fzEvx{P~ly}dv(y) • 

Clearly, Z~(Z) defines a measure on ~-Y. Let j7 be a realization of the process 
{y(s), s > 0}. Then, for the one point set X =y~ = {y(s), s < t}, one can verify 
that 

is defined ~-¢'-almost surely. We denote this by/~(y). 
In the completely observed case where both x and y are observable, the 

likelihood ratio is given by the Radon-Nikodym derivative p~ (Ref. 3). On 
the other hand, for the partially observed case one should consider l~(y), as 
defined above, to be the likelihood ratio. It is known (Ref. 3) that the 
maximum likelihood estimate of a for the completely observed case is 
obtained by maximizing p~ (or In p~). For the partially observed case, this 
is obtained by maximizing 

l~(y) = E2{p'~ lYe}. 

Note, however, that 

Ez{P~/lYe} = (~PU(t), 1), (13) 

where cp'(t), t>O, is the solution of the Zakai equation (9) corresponding 
to the realization y. 

4. Formulation of Identification Problem 

In this section, we use the pathwise description of the Zakai equation 
(see, for example, Refs. 11-12) to formulate the identification problem as a 
deterministic control problem. Then, following similar arguments as those 
of Ahmed (Refs. 13-16), we show that this problem has a solution. First, 
let us verify how the above identification problem can be treated as an 
identification problem of systems governed by differential equations on 
Banach spaces. 

Let the state process x(t), t>0,  and the output process y(t), t>_O, be 
governed by (1) and (2), respectively, with a being unknown. Let opt(t), 
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t >0,  a e~ ,  be the strong solution of Zakai equation (9). Clearly, for each 
a ~ ,  the solution ¢ ( t ) ,  t >_0, is ~'~'-adapted. Utilizing the maximum likeli- 
hood approach, given the history {y(s), s_< t}, the unknown parameter a is 
determined by maximizing (13) over ~', subject to the constraint (9). Clearly, 
the choice a = at is dependent on the available information {y(s), s<  t}. 

It is interesting to note that, when the process x(i), t>O, is completely 
observable and governed by 

dx(t)=a(t, x(t), a) dt+b(t, c(t)) dW(t), t>O, (14a) 

x(O) =xo, (14b) 

with a being unknown, the likelihood ratio is given by (Ref. 3) 

I f0 ~ - p ~ = e x p  - (1 /2)  Ib-l(s, x(s))a(s, x(s), a)l z ds 

+ b-t(s, x(s))a(s, x(s), a).  b-l(s, x(s)) dx(s) . 

Using Ito's lemma, one can easily verify that p~', t > 0, satisfies the following 
integral equation: 

p~ = 1 + p~/b-l(s, x(s))a(s, x(s), a) . b-l(s, x(s)) dx(s), a.s. 

In this case, the identification problem can be stated as follows. Given the 
path {x(s), s<t}, find an a ° e ~  such that Y,(a°)>Z(a), for all a ~ .  For 
the case where the drift coefficient a is linear in a, i.e., a(t, x, a)=K(t, x)a, 
where K(t, x)~R ("×"), Lipster and Shiryayev (Ref. 9) obtained an explicit 
expression for the optimal parameter a~ °, t>0.  This is given by 

o_( fo  K'(s, x(s))[(bb')(s, x(s))]-'K(s, x(s))ds)-' O~t m 

x K'(s, x(s))((bb')(s, x(s))) -~ dx(s). 

From the above expression, it is clear that a~, t__> 0, is ~ -adap ted .  For the 
case where process x(t), t > 0, is partially observable, the identification prob- 
lem becomes much more difficult. In this case, one can treat this problem as 
an identification problem of infinite-dimensional systems by considering the 
unnormalized density ¢(s),  s<_ t [see Eq. (9)], to be the state and the likeli- 
hood ratio, 

J,(a)=e~{p~ I~f}-<¢(O, 1>, 05) 
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to be the objective functional. Here, the output process {y(s), s_< t} is consid- 
ered to be the input to the Zakai equation (state equation). By maximizing 
J,(a) over ~,  one obtains the maximum likelihood estimate a °, which is 
clearly a functional of the observed history {y(s), s < t}. 

In view of the above discussion, we can formulate the identification 
problem as follows. Define p~(t)=pa(t, • ), t>O, such that 

~oa(t)=p~(t) exp(h u. Z(t)), t_>0, (16) 

where ~o"(t), t_>0, a e ~ ,  is the solution of (9), the dot denotes the scalar 
product in R ' ,  and Z(t), t > 0, is given by 

fo z ( o -  y(s)) dy(s)- ro'(s) dy(s). (17) 

Using (16)-(17) and utilizing Ito's lemma, one can convert the Zakai equa- 
tion (9), which is driven by the process y, into a parabolic partial differential 
equation with coefficients parametrized by the output process {y(s), s_< t}; 
see Ref. 12. This equation is given by 

(d/dt)p'~(t)=F(t, a)p~(t), t>_O, (18a) 

p~(0) =p0, a e ~ ,  (18b) 

where the operator F is given by 

F(t, a)u = exp(-h a. Z(t))(A*(t, a)u exp(h ~. Z(t))) 

-(1/2)(Fol(t)h ~ . h~)u. (19) 

Let H-L2(Rn), and consider the Sobolev space 

V=M j ={fEH: Of/~xi~H, 1 ~i<n}, 

with V'-z--(HI) ' being its dual. Let Le(V, V') denote the class of all bounded 
linear operators from V to V'. Then, for any u, v~ 1I, the operator F gives 
rise to the following bilinear form: 

(F(t, a)u, v)=(1/2)(Z(t)" i,j~=, f,~ cr~(Oh"/Oxi)(~u/~xj)v dx) 

-(1/2) ij- f..   (Ou/Oxj)(Ov/Ox,) dx 

+ aT(Ov/Oxj)u 6'luv dx, (20) 
t = l  n " =  
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where ( . ,  • ) denotes the pairing of V and V'. Further, the coefficients 
~ and ~ are given by 

t~_=a~-(1/2)  ~ Ocr~/Oxj-(1/2) ~ cr~(Oh~/Oxj) • Z(t), (21) 
j = |  j=l 

~_.= (1/2)Z(t) .  ~ (Ocr~/Oxj)(Oh~/Oxt) - a~'(Oh~/Ox~) • Z(t) 
j = l  

+(1/2)  ~ cr~((Oh"/Oxe). Z(t))((Oh~/Oxj). Z(t)) 
j = l  

- ( 1 / 2 ) ( F o  1 (t)h ° .  h~), (22 )  

with 

aT--a~(t, x, a), 

cr~=-ao(t, x, a), 

and Z(t), t>__0, is given by (17). 
Using (13), the stochastic identification problem can be formulated as 

an identification problem of a deterministic infinite-dimensional system as 
follows. 

P r o b l e m  (P). Given the system 

(d/dt)p"(t)=F(t, a)p~(t), t>_O, (23a) 

p'~(0) =P0, a e ~,  (23b) 

find an a°e~  such that J~(a°)>Jt(a), for all a ~ # ,  where 

Jr(a) - (~p"(t), 1 ) - (p"(t) exp(h ~- Z(t)), I). (24) 

In the remainder of this section we will show that Problem (P), as stated 
above, has a solution. For this, we need the following result which shows 
that the initial-value problem (23) has a unique weak solution and it satisfies 
certain bounds if the initial distribution p0 has certain properties. 

L e m m a  4.1 .  

(i) 

(ii) 

Suppose that Assumptions (A1)-(A6) hold. Then: 

for every pooH and a ~ ,  the Cauchy problem (23) has a unique 
solution p~eL2((O, t); V) n C([0, t]; H) ;  
for every pooh  satisfying 

[ po(x) [ _</3 exp(-  r/Ix [ 2), 



JOTA: VOL. 75, NO. 1, OCTOBER 1992 43 

for some fl, 1/> 0, there exist 7 -- 7( fl, r/) and 8, 0 < 6 < 17 (possibly 
depending on/3, 77, and t) such that 

Ip~(s, x)l-<r exp(-6lxlZ), 
for all O<_s<.t and a e ~ .  (25) 

Proof. The first part is a special case of Ref. 16, Theorem 1.1. The 
second part follows from the fact that, under the given assumptions, the 
fundamental solution of the initial-value problem (23), denoted 
S~(x, t; ~, ~), t>  ~, satisfied the following estimate (see Ref. 4): 

[S"(x, t; ~, r) I < [ k ~ / ( t -  O "/2] e x p { - k 2 1 x - ~ t 2 / ( t  - r)}, 

for all a ~ ,  x, ~ R  n, and 0<r_<t ,  where kl and k2 are certain positive 
constants depending on the coefficients of the operator F and the parameter 
set ~.  Using this estimate along with the assumptions on po, one can verify 
(25). [] 

Defining 

q'~(t, x)=p~(t ,  x) exp{(8/2)lxl2}, 

one can easily verify that q~ satisfies the Cauchy problem 

(d/dt)q ~ = G(t, a)q ~, t > O, 

q~(0)=qo, 

where 

and 

qo(x) =po(X) exp{ ( 6 /2) l xl2} 

(26a) 

(26b) 

G(t, a ) f  = exp{-h" .  Z(t)  + (8/2) I xl2)A*(t, a) 

× ( f  exp{h ".  Z(t )  - (8/2) I xl 2} ) 
- (1/2)(Fo~(t)h ~, h~). (27) 

Under Assumptions (A1)-(A6), one can verify that the operator G satisfies 
the following properties: 

(P1) For each a e ~ ,  and for any u, v~V,  the mapping 
t ~ (G(t,  a)u, v)  is measurable and there exists a constant e> 0 
such that 

I(G(t, a)u, v)l <-cllullvllvll~, t>_o. 
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(P2) There exist constant ~/>0 and 7~eR such that 

- ( a ( t ,  a)u, o>+ ~llull~._>~,llullv 2, a ~ ,  t>_0. 

(P3) For any sequence {a"} that converged to a ° in ~ ,  

G(t, a ~) ~ G(t, a°), t>O, 

in the strong operator topology of ~(V,  V'). 
(P4) The mapping a ~ G(t, a),  t>>_O, is once Gateaux differentiable in 

the strong operator topology of £a(V, V') in the sense that 

lim II{[G(t, a ' ) u - G ( t ,  a°)u]/e}O(t,  a°; a-a°)ul lv , - -O,  

for all t>O, a, a ° e ~ ,  0 < e < l ,  and ueV ,  where 
a ~ = a ° + e ( a - a  °) and G ( t , a ° ; a - a ° ) ,  t>O, denotes the 
Gateaux differential of G at the point a ° in the direction tt - a °. 

From the above discussion, it is clear that qoeH and 
q~L2((O,  t); V)c~ C([0, t]; H)  for all a ~ #  and t<  ~ .  The objective func- 
tional (24) can then be written in terms of q~' as 

J,(a) =(q°(t), ~(0),,, (28) 

where 

rla(t)=rl'~(t, x )=exp{h~(x)  • Z(t)} exp{-(a/2)  Ix12}, x~R".  

Note that under Assumption (A5), r/a(t) ~H for each t < oo. In fact, r/~(t) e H  
even for h a satisfying a linear growth condition. In view of the above discus- 
sion, the optimization problem (23)-(24) is equivalent to the problem 
(26)-(28). We recall that our problem is to find an a ~#' that maximizes 
(28), subject to the differential constraint (26). 

The following result claims that Problem (P) has a solution. 

Theorem 4.1. Existence. Consider Problem (P), and suppose that our 
basic assumptions hold and the # is compact. Then, the mapping a ~ Jr(a), 
t < ~ ,  where Jr(a) is given by (28), is continuous on ~ and Problem (P) has 
a solution. 

Proof. If d~(a), t < oo, is infinite for some a ~ ,  there is nothing to 
prove. Thus, we assume that J , ( a ) < ~ ,  for all a ~ .  For the proof of 
continuity, let a", a ° ~  such that a ' ~  a °, and let q~ and qO denote the 
solutions of (26) corresponding to a ~ and a °, respectively. Defining 

z '( t)  = q~(t) - q°(t), t > O, 
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one can easily verify that F(t), t>O, satisfies the following differential 
equation: 

(d/dt)z"(t) = G(t, W)z"(t) 

+(G(t, a")-G(t, a°))q°(t), t>_O, (29a) 

z"(O) =0. (29b) 

Scalar multiplying the above equation on both sides by z", integrating over 
[0, t], and using Property (P2), we have 

L L tF(t) 1,~-2~7 lz"(O)l~dO+2r Iz"(O)l~dO 

fo <2 ((G(o, a")-s(o,  a°))q°(O), z"(o))v,_v dO. 

Using the Schwartz inequality, it follows that 

f0 ~ L Iz"(t)l~-2~7 tF(O)l~dO+2r Iz"(O)l%dO 

(fo f <2 II(G(0, a")-G(O, a° ) )q° (O) l l2v  , dO 

(fl "~ × Iz"(O)l%dO) . (30) 

Using the elementary inequality 

ab < (1/2e)a 2 + (e/2)b 2, 

a, b~R, and E>0, and taking E= y, it follows by the Gronwall lemma that 

L Iz"(t)l~,+ r Ir(O)l~, dO 

_<[exp{2~t/rl II(G(0, a")-G(O, a°))q°(O)ll~, dO. 

Therefore, I~L2((0,  t); V)c~ L~([0, tl; It), and by Property (P3) and the 
dominated convergence theorem, it follows that 

lim sup IF(t)tH=0, 
n t 

and hence q"(t) --* q°( 0 in H, uniformly in t. 
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Since tt ~ h ( x ,  a)  is continuous on ~ ,  for each x e R  n, and since h ~ has 
at most linear growth, it follows by the dominated convergence theorem that 

lira ] rff~(t) - r/~°(t) In = 0, for each t < oo, 
n - ~ o o  

whenever a n ~ a °. This fact and the continuity of q~ on ~ ,  as shown above, 
imply the continuity of J,(a)  on ~ .  Since ~ is compact, J,(a) attains its 
maximum on ~.  This completes the proof. [] 

In the next section, we utilize standard variational arguments (see, for 
example, Refs. 13-16) and make use of Gateaux differentiability of q~ on 
to derive the necessary conditions of optimality for Problem (P). 

5. Necessary Conditions for Optimal Identification 

In this section, we present the necessary conditions of optimality for 
the identification problem [Problem (P)] as stated in the previous section. 
In our derivations, we shall follow similar arguments as those of Ahmed 
(Refs. 13-15) and make use of the Gateaux differentiability of q~ [see Eq. 
(26)] on the parameter set ~ .  

Let a ~ - a ° + e ( a - a ° ) ,  ee[0,1], and let q ' ( t ) - q ( t , a  ~) and 
q ° ( t ) - q ( t ,  a°), t>O, denote the solutions of the initial-value problem (26) 
corresponding to a" and a °, respectively. Let 

~t°(t)-gl(t, a °, a - a ° ) - - l i m [ q ~ ( t ) - q ° ( t ) ] / E ,  t>O, 
E$O 

denote the Gateaux differential of q at a ° in the direction a - a °. The follow- 
ing result shows that the Gateaux differential ~o exists and it is the solution 
of a related differential equation. 

Lemma 5.1. Consider the system (26) and suppose that Assumptions 
(AI)-(A6) hold and the ~ is compact and convex. Then, the map a ~ q~ is 
Gateaux differentiable on ~.  Further, at each point a ° ~ ,  the Gateaux 
differential o fq  in the direction a - a  °, denoted by ~(t, a °, a - a ° ) ,  t>O, is 
given by the weak solution of the following differential equation: 

( d /d t )~ ( t )=G( t ,  a ° ) ~ ( t ) + G ( t ,  a °, a - a ° ) q ° ( t ) ,  t>_O, (31a) 

~(0) =0, (31b) 

where qO is the solution of (26) corresponding to a ° and ~ is the Gateaux 
differential of G in the sense of Property (P4). 
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Proof. Let a °, a e ~ .  Since ~ is convex, we have 

a ' = a ° + E ( a - a ° ) e ~ ,  0<e_<l .  

Defining 

71"(t ) = (1 /e ) (q ' ( t )  - q°(t)), t>  O, 

and using (26), one can easily verify that 

(d/dt)~f( t)  = G(t, a ' )# ' ( t )  

+ (1/e)(G(t ,  a ' )  - G(t, a°))q°(t), t>O, (32a) 

~ '(o)=0.  (32b) 

By arguments similar to those of Theorem 4.1, we arrive at the following 
estimate: 

< [exp{2 t}/y] 

I q'(0) f~ dO 

fo tI{[G(0, a ' ) - G ( O ,  a°)l/e}q°(O)lle , dO, 

for all 0_< t < oo. Hence, it follows from the above inequality and Property 
(P4) that the set {c] ~, eel0,  1]} is contained in a bounded subset of 
L2((0, t); V) n L~([0, t]; H). Hence, from every seqeunce ~ - ~ ] " ,  with 
e,e[0, 1] and E,-+0, one can extract a subsequence relabeled as {~} and 
q'°eLz((0, t); V ) n  L~([0, t ] ;H)  such that ~7" ~ o  weakly in L2((0, t); V). 
Hence, the Gateaux differential of q exists and is given by 
~( t, a °, a - a  °) -( t°( t) ,  t > O. It remains to show that ~o satisfies (31). Indeed, 
since G(t, a") ~ G(t, a °) in the strong operator topology of 5¢(V, V') and 
~ ~o weakly in L2((0, l); V), then G(. ,  a " ) ( - ~  G( . ,  a°)~l ° weakly in 
/-.2((0, t); V'). Hence, by Property (P4), it follows from (32) that (d/  
d t ) (6L2( (O,  t); V') for all n and (d/dO(l" -~ ~ in L2((0, t); V'), for a suitable 

in L2((0, t); V'), and that V is the distributional derivative of ~o. Hence, 
~o satisfies the differential equation 

(d/dt)~°(t) = G(t, a°)q'°(t) + ~(t ,  a °, a - a°)q°(t), 

in the sense of distribution in V'. Since el°eL2((0, t); V) and (d/dt)~°e 
/-.2((0, t); V'), it is clear that q~eC([0, t]; H)  and 4°(0) is well defined and 
equals 4"(0)=0 for all n. Hence, 4 ° satisfies the differential equation (31) 
and one may identify ~° as ~. This completes the proof. [] 

With the help of the above lemma, we now prove the following necessary 
conditions of optimality for Problem (P). 
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Theorem 5.1. Necessary Conditions of Optimality. Consider Problem 
(P) given by (23) and (24), or equivalently (26) and (28), and suppose that 
Theorem 4.1 holds. Then, in order that a ° be the maximum likelihood 
estimate of the unknown parameter a, it is necessary that it satisfies the 
optimality conditions given by the system equation 

(d/ds)q(s)=G(s,  a°)q(s), O<s_<t< oo, (33a) 

q(0) =qo, (33b) 

the adjoint equation 

- (d /ds ) r ( s )=G*(s ,  a°)r(s), 0<s<_t<o% (34a) 

r( t) = rla° ( t) = rl°( t), (34b) 

and the inequality 

o~ (~r(s, a °, a - a ° ) q ° ( s ) ,  r°(s)) ds+(q°( t ) ,  ~l(t, a °, a - a ° ) ) < O ,  (35) 

for all a ~ .  Here, G* is the formal adjoint of G; G and 7"1 are the Gateaux 
differentials of G and 0, respectively; and qO and r ° are the solutions of (33) 
and (34). 

Proof. The proof follows from standard variational arguments as in 
Refs. 13-16. Since a ~ q" has a Gateaux differential on ~,  it follows that J, 
as defined by (28), also has a Gateaux differential. Then, in order that J 
attains its maximum at a ° ~ # ,  it is necessary that 

g ( a ° ;  a - a °) =-l im(1/E){J,(a ° + E(a - a°)) - J,(a°)} ~0, (36) 
eJ.o 

for all a e ~ .  Using the result of Lernma 5.1, it follows from (28) and (36) 
that 

J](a °, a - a ° ) = < ~ ( t ) ,  rl°(t)>+(q°(t),  ~l(t, a°; a - a ° ) > < O ,  (37) 

for all a e ~ ,  where ~o denotes the Gateaux differential of q as defined by 
Lemma 5.1. Inequality (37) can be further simplified by introducing the 
adjoint variable r, which is the solution of the following differential equation: 

- (d /ds ) r ( s )=G*(s ,  a°)r(s), 0 < s < t < ~ ,  (38a) 

r( t) = rl°(t) = rl°( t). (38b) 

Reversing the flow of time, s ~ t - s ,  and noting that rl°(t)EH, t>O, it 
follows from Lemma 4.1 that (38) has a unique solution 



JOTA: VOL. 75, NO. 1, OCTOBER 1992 49 

rEL2((O, t); V)c~ C([O, t]; H). Using (37), (38), and Lemma 5.1, one can 
easily verify that 

fo (77°(t), rl°(t))= (Cr(s, a °, a -  a°)q°(s), r°(s)) ds. (39) 

Now, Inequality (35) follows from (37) and (39). This completes the 
proof. [] 

Remark 5.1. Here we have not considered the question of consistency 
of the estimated parameter a °. This question was settled in Ref. 3 for the 
case where the state process is completely observable and the drift coefficient 
is linear in a. The consistency question was also settled in Refs. 1-2 for the 
case where both state and observed processes are governed by linear time- 
invariant stochastic systems. For partially observed nonlinear stochastic sys- 
tems, this remains as open problem. 

As a final remark, it should be noted that similar results can be obtained 
for the general case where the state process x is governed by a stochastic 
differential equation of the form 

dx(t)=a(t, x, a) dt +b(t, x, a) dW(t) 

+ ~  c(t, x, a, ~)fl(dt, d~), t>O, 
JR 

x(0) =x0, 

where R~==-R'\{O} and fl is a counting measure obeying a generalized 
Poisson distribution with certain mean. 
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