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Asymptotic solution of transonic nozzle flows with homogeneous
condensation. 1. Subcritical flows

Can F. Delalea),b) Ganter H. Schnerr, and Jargen Zierep
Institut fur Stromungslehre und Stromungsmaschinen, Universitit (TH) Karlsruhe, Germany

(Received 3 August 1992; accepted 7 June 1993)

The one-dimensional (1-D) asymptotic solution of subcritical transonic nozzle flows with
nonequilibrium homogeneous condensation is presented. An algorithm based on a local iterative
scheme that exhibits the asymptotic solution in distinct condensation zones is developed for
transonic moist air expansions under atmospheric supply conditions. Two models that
characterize the state of the condensed phase as water drops or ice crystals are employed,
together with the classical nucleation theory and Hertz-Knudsen droplet growth law. It is
shown that the 1-D asymptotic predictions are in good agreement with the recent static pressure
measurements of moist air expansions in relatively slender nozzles when the condensed phase is
assumed to consist purely of water drops.

I. INTRODUCTION

Nonequilibrium condensation in transonic nozzle
flows has been investigated both experimentally and theo-
retically for a long period, not only because it has applica-
tion in various technologies such as steam turbine technol-
ogy, but also that it can be used to improve our
understanding of condensation kinetics. It is commonly
viewed as a process attributed to the collapse of the super-
saturated vapor state (onset of condensation) initiated by
homogeneous nucleation reaching a state of thermody-
namic equilibrium in a few microseconds by subsequent
violent droplet growth in the supersonic region. During
this process a considerable amount of heat is released,
causing the pressure, temperature, and density of the work-
ing fluid to continuously rise over a relatively small thick-
ness (subcritical flow). If the amount of heat exceeds a
certain value, normal shock waves occur due to compres-
sive effects from excessive heat release, and the flow in this
case is termed supercritical. This event was first reported
by Prandtll and the problem was later formulated by
Oswatitsch.2 Presently the subject can be studied in the
informative articles by Wegener and Mack,3 Stever,4

Wegener,5 Hill,6 Barschdorff,7 Gyarmathys and in their
extensive references. Qualitative description of the conden-
sation zones with detailed analytical structure is also avail-
able in Blythe and Shih9 and Clarke and Delalel° using
asymptotic methods. Actually, asymptotic methods serve
as alternatives against which computational results can be
compared. They offer analytical structure of the flow field
so that physically distinct condensation zones can be com-
pared with measurements mapped over the same regions.

In this paper we present the asymptotic solution of
transonic nozzle flows in distinct condensation zones in a
format convenient for numerical predictions. For this rea-
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son the integroalgebraic formulation of the flow and state
equations is considered. The asymptotic analysis of the
condensation rate equation incorporating the contribution
from initial critical nuclei is carried out quite generally in
terms of some thermodynamic functions and parameters
that enter the nucleation rate equation and the radius-
independent droplet growth rate law. These thermody-
namic functions and parameters are identified from the
classical nucleation theory and the Hertz-Knudsen droplet
growth law for transonic moist air expansions under atmo-
spheric supply conditions by assuming two distinct models
for the condensed phase. An algorithm based on an itera-
tive scheme is presented for the predictions of the asymp-
totic solution for such flows. The effect of wall curvature is
then exhibited by employing two distinct nozzles, one slen-
der and the other effectively two dimensional, but with the
same cooling rate. It is shown that the predictions of the
asymptotic theory for transonic moist air expansions in
slender nozzles under atmospheric supply conditions agree
well with experiments when the condensed phase is as-
sumed to consist purely of water drops. In nozzles of rel-
atively large wall curvature the predictions show the ne-
cessity of extending the asymptotic solution to account for
the 2-D flow field structures in various condensation zones.

Only predictions of subcritical transonic nozzle flows
of moist air under atmospheric supply conditions are pre-
sented in this paper.

II. FLOW AND RATE EQUATIONS IN CONDENSING
NOZZLE FLOWS

We consider the quasi-one-dimensional transonic noz-
zle flow of a mixture of a condensible vapor and a carrier
gas with initial specific humidity wo, initial relative humid-
ity q90, and initial temperature To, and assume that the
state of the condensible vapor crosses the coexistence line
during its expansion. In this and all subsequent sections we
use subscript 0 to denote the initial reservoir conditions
and subscript s to denote saturation conditions. Using the
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normalization carried out in Blythe and Shih9 and Clarke
and Delale,1 0 the flow equations and the thermal equation
of state of the mixture of perfect gases can be conveniently
written as

putA =us,

pA +pju 2A = 1+u + R (g~x),

cpO T+1u 2 -L(T)g=cpO +P2=cPOTO,

(1)
(9)

In Eq. (8), the (-) sign should be chosen for the subsonic
(2) branch and the ( + ) sign for the supersonic branch of the

flow field. The remaining flow variables p, p, and T can
(3) then be given in functional form in terms of u (gx) as

(4) ~P g'x) = U
(4) ~~u (g~x)A (x) '

where
p (g~x) = 

1 +u2+R (g~x) - uu (g~x)

(10)

(11)
A (x)

R (g~x) =f Tdd (5)

and where the conventional momentum differential equa-
tion is replaced by the integral momentum theorem, Eq.
(2). In Eqs. (l)-(5) p, p, and T are, respectively, the
density, the pressure, and the temperature of the mixture,
cPOy/(ry-1) denotes the dimensionless specific heat of
the mixture at constant pressure, L(T) is the latent heat of
condensation at the local temperature T, u is the flow
speed, A is the local cross-sectional area of the nozzle, and
g is the normalized condensate mass fraction. All the flow
variables, except u, are normalized with respect to satura-
tion conditions, so that ps=p,=Ts=Ls=l. The cross-
sectional area 4 is normalized with respect to its value at
saturation and the axial coordinate x is normalized with
respect to the nozzle throat height (2y*). The flow speed u
and the condensate mass fraction g are normalized some-
what differently by

Hog--Hg' (6)
MU

and

U,

(7)

where Mio and ji, are, respectively, the mixture molecular
weight in the reservoir and the vapor molecular weight,
Xt= 8.314 J/mol K is the universal gas constant, g' is the
actual condensate mass fraction, u' is the actual flow
speed, Ts is the actual saturation temperature, and
H=(M1 L )/(RT-) is a suitable normalization constant
with Ls, denoting the actual latent heat of condensation at
saturation (in this work all primed variables denote the
actual flow variables).

The system of Eqs. (1 )-(4) can be solved for the flow
speed u in functional form as

[ 1+s+R (gsx) ] /(2u,) -i- JOSH1
u (gx)= [?'+= 1+(r-I)g, (8)

where A (gx) is defined by

L(T)g [U(gx)]2

T(gx) = To+ -cO 2co
(12)

The above functional relations (8)-(12) will presumably
yield a complete solution when the condensate mass frac-
tion g is solved from the corresponding rate equation. The
nonequilibrium condensation rate equation for g is
constructed2 ' 9' 0 from a condensation nuclei production
rate J, conveniently normalized as

J= 2(pVT)exp[- K-'B(pU,T) (13)

and a normalized droplet growth rate law, assumed to be
independent of the droplet radius,

dr
(14)

Here I (p,, T) is a normalized multiplicative factor in the
rate equation, B (p, T) is the normalized activation func-
tion, K is the nucleation parameter, assumed small (Kg 1),
fl(pu,T,g) is a conveniently normalized droplet growth
function, and A is the droplet growth parameter, assumed
large (A> 1). Furthermore, the droplet radius r is normal-
ized with respect to a conveniently defined droplet normal-
ization radius [e.g., see Delalell or Eq. (34) of this paper]
and p,, the normalized vapor pressure, is related to the
mixture pressure p by

MOCOH-Mig
(15)

Assuming that the normalized critical radius for nuclei
formation at any location x is r*(x), the integral conden-
sation rate equation takes the form (Oswatitsch, 2 Blythe
and Shih,9 and Clarke and Delalel°)

g(x) = XS ( ± q(f)d17) 3 ()A4(0)

X expK-lCB~g ]dg, ( 16)

where it is understood that the values assumed by the ther-
modynamic functions P, A, B, and fl at any location along
the nozzle axis are evaluated from the local thermody-
namic state utilizing Eq. (15). The integral condensation
rate equation (16) is strongly coupled to the flow relations
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(8)-(12), so that, although they form a closed system,
Eqs. (8)-(12), together with Eqs. (5) and (16), do not
seem to constitute an explicit solution. However, the rate
equation contains two disparate parameters: K(41), the
nucleation parameter signifying a large nucleation time;
and A(>1), the droplet growth parameter signifying a
small droplet growth time. This suggests asymptotic anal-
ysis of the rate equation in the double limit as K-O and
A- cco.

III. ASYMPTOTIC SOLUTION OF THE RATE
EQUATION AND CONDENSATION ZONES

Asymptotic analysis of the condensation rate equation
(16) with different ordering of the double limit as KRO
and A - co has already been carried out in Blythe and Shih9

and Clarke and Delale,' 0 where the initial critical radius r*
of nuclei formation is neglected. For numerical predictions,
the contribution to the normalized condensation rate equa-
tion from the normalized initial critical radius r* may be-
come very important, especially near the onset of conden-
sation, where the nucleation rate is near its peak; therefore,
it is essential to improve the asymptotic theories by taking
into account the initial critical radius correction. More-
over, the previous asymptotic theories9"10 demand the or-
dering of the double limit as K - O and A - cc, so that the
onset of condensation and the order of magnitudes of the
flow variables in different condensation zones can be deter-
mined. In particular, determining the order of magnitude
estimates of the flow variables at the onset (which depends
on the ordering of the double limit as KILO and A, cc) is
very essential in each theory, since the perturbation expan-
sions and the scaling coordinates in the proceeding zones
depend on these estimates. Different ordering of the double
limit leads to different perturbation expansions of the flow
variables and thus to different scaling coordinates in the
condensation zones following onset. Furthermore, the per-
turbation solutions of the flow variables given in each as-
ymptotic theory9' 10 for the condensation zones following
onset neglect the contribution from area change, and thus
cannot, in general, secure a reliable physical solution in
these zones. The above-mentioned difficulties of the previ-
ous asymptotic theories have to be overcome before any
numerical predictions can be made.

In what follows, aside from justifying the convenience
of the scaling variables of Eqs. (D3) and (D4) introduced
in Appendix D, solely for numerical predictions, no use of
the ordering of the double limit as K- O and A - co will be
made; therefore, the asymptotic expressions given in the
appendices of this paper should be regarded as being quite
general. The asymptotic analysis of the condensation rate
equation of this paper is indeed carried out in a unique
fashion. Moreover, the perturbation solution of the various
asymptotic theories9 "10 in the condensation zones following
onset is replaced by a local iterative solution, which con-
verges to the actual solution. We let xl denote the turning
point of the normalized activation function B, i.e., the
point where the nucleation rate is at its maximum. This
turning point will be referred to as the "relative onset
point." The asymptotic analysis then distinguishes differ-

T0',

U,0

I F II ID 
Z I

I I i

(b)

FIG. 1. (a) Typical and frozen behavior of the normalized activation
function B in transonic nozzle flows (x, is the saturation point, xk is the
empirically or numerically defined onset point, and xi is the relative onset
point, where the nucleation rate is maximum). (b) Characteristic con-
densation zones in transonic nozzle flows.

ent regions, which may be divided into physically distinct
condensation zones, according to their locations with re-
spect to this relative onset point x1. A typical variation of
the normalized activation function B along the nozzle axis
exhibiting the various physically distinct condensation
zones is shown in Fig. 1(a).

In the interval x,<x<xl the flow is nearly frozen, i.e.,

CX dA
R (g,x) zRf (x)-JPf (a)Tfdad ( 17)

and

L(T)zL(Tf), (18)

where by subscript f we denote the condensate-free frozen
flow for which g=O. In particular, Rf (x) can be evaluated
exactly from Eq. (17) as

2971 Phys. Fluids A, Vol. 5, No. 11, November 1993

g'.

Delale, Schnerr, and Zierep 2971



01~~~~~
*0 2y-i../ ERL

FIG. 2. Geometry of nozzles employed.

Ms I 1+[(,r-l)/2]M,2
Rfx(x) x) 1 + [](- f )/21M}(X)

X [ I + rM~f (x) I]-gM2 _1

where Mf (x) is the condensate-free frozen Mach nui
distribution and M, is its value at saturation. In thi
proximation the flow functionals u (gx), p (gx), etc
Eqs. (8)-(12), consequently the thermodynamic func
B, 1, Ql, and r* become known functions of g and x,

u=W(g,x), p=;5(gx), etc.,

and

B=B(g,x), M=i(gx), etc.

Thus, in the interval x,<x<xl the rate equation (16) c;
completely decoupled from the flow and state equa
and becomes a nonlinear Volterra integral equation
g(x). The variation of the normalized activation fun
B, as shown in Fig. 1, then discriminates the various I
ically distinct condensation zones using Lapl
method12-14 in the double limit as K @0 and A - co.

In the initial growth (IGZ) and further gr
(FGZ) zones, dB/dx=O(l) by definition. The i
growth zone (IGZ) is defined as the zone where the a

ber of condensation nuclei or clusters of critical size,
ated in the parent phase by highly improbable collisio
the vapor molecules (homogeneous nucleation), is no
ficient enough to influence the isentropic flow field.
the flow remains frozen (isentropic) throughout this
and all of the flow variables and thermodynamic func
assume their frozen values (i.e., p=pf, p=pf, T=
B= Bf, fluff, etc.). In the further growth zone (F
B starts to deviate from Bf (although this deviation
be negligibly small in some cases), and as a result d.
and dBf/dx [both of 0(1) in this zone] become nui
cally distinct. In spite of the fact that the condens
nuclei production rate continuously increases through
this zone, this rate is not sufficient for the onset of coI
sation to occur in this zone for smooth flows (if the
of condensation occurs in this zone, meaning that a
cient number of condensation nuclei for onset bec
available in this zone, then the flow cannot be contir
or subcritical since there would then be an abrupt ci
in the sign of dB/dx from excessive latent heat add
giving rise to a normal shock wave). The two zones
and FGZ distinguished above physically are not asym
ically distinct and the asymptotic solution of the rate C
tion (16) presented in Appendix A applies to both z
although it can further be simplified in IGZ (see Appc

A). Consequently, the asymptotic solutions in these zones
(in the nearly frozen approximation) are now directly ob-
tained from the asymptotic solution of the rate equation
presented in Appendix A, together with the functional re-
lations (8)-(12).

As dB/dx diminishes to O(K"'2 ) as K-b 0, the solution
given above in FGZ is no longer valid, and we are, by
definition, in the rapid growth (RGZ) and onset (OZ)
zones. Actually, the onset zone can be thought as being
embedded in RGZ. It contains the "onset point" Xk, which
is defined empirically (e.g., by static pressure measure-
ments) or numerically (e.g., by fixing a certain value for g
as an onset value for a given working fluid with similar

(19) supply conditions and nozzle geometry), that marks the
mber beginning of the collapse of the supersaturated vapor state.
is ap- In particular, the nucleation rate peaks at the relative onset
c., of point xi, which is defined by (dB/dx)x=xr=0 and that
-tions marks the end of the onset zone. Once again these two
,i.e., zones are not asymptotically distinct, and the asymptotic

solution of the rate equation (16) presented in Appendix B
(20) applies to both zones. This asymptotic solution, together

with the functional relations (8)-(12) and the nearly fro-
(21) zen approximations (17) and (18), determine the flow

(21) field inside these zones (in the nearly frozen approxima-
an be tion), together with the relative onset point xl.
Nations The asymptotic solutions presented above in the inter-
n for val x,<x~xl for the condensation zones IGZ, FGZ, RGZ,
ction and OZ utilize the nearly frozen approximation given by
phys- Eqs. (17) and (18). The actual flow field in these zones
lace's can, in principle, be calculated from the functional rela-

tions (8)-(12) and the asymptotic solutions of Appendices
rowth A and B by iteration, starting with the nearly frozen flow
initial field; however, this is not necessary since it can be shownl'
num- that the deviation of the actual flow field from its nearly

cre- frozen approximation in these zones can be neglected for
ins of any practical consideration.
at suf- For x>xl we have two physically and asymptotically
Thus distinct condensation zones: The nucleation zone with
zone growth (NZ) and the droplet growth zone (DGZ), as

ctions shown in Fig. 1. The nucleation zone with growth NZ
= Tf, proceeds the onset zone OZ and ends as the nucleation rate
BUGZ), diminishes. In this zone, where both nucleation and drop-
1 may let growth are important, the nucleation rate decreases
'B/dx (dB/dx>0) until it completely diminishes. Droplet
imeri- growth on condensation nuclei of size exceeding the criti-
sation cal size results in considerable heat release to the flow. As
ghout a result an increase in the pressure, temperature, and den-
nden- sity and a decrease in the flow speed of the mixture are first
onset observed in this zone. The asymptotic solution of the rate
suffi- equation (16) presented in Appendix C, together with the
omes functional relations (8)-(12) and Eq. (5), determine the
Arduous local flow field inside this zone. Downstream of NZ, where
hange nucleation has completely ceased for any practical consid-
dition eration, droplet growth takes over and we are, by defini-
; IGZ tion, in the droplet growth zone (DGZ). In this zone a
aptot- remarkable amount of latent heat (supposedly not exceed-
equa- ing a critical amount for smooth flows) is set free, giving
zones, rise to an increase in the temperature, pressure, and density
appendix of the mixture over a relatively small thickness (this phe-
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nomenon is inappropriately called a "condensation shock"
in the literature). The approach to saturated thermody-
namic equilibrium of the two-phase mixture also takes
place in this zone. The asymptotic solution presented in
Appendix D, together with Eqs. (8)-(12) and Eq. (5),
form a complete system that determines the local flow field
in DGZ. It should also be mentioned that the solution for
NZ and DGZ of this work is quite different from that given
in Clarke and Delale, since in this format of solution there
is no more need to carry out the flow field perturbation
expansions, which in the first approximation neglect the
contribution from the area variation in these zones. The
asymptotic analysis presented in this section completely
determines the local flow field with detailed structure in
distinct condensation zones in terms of the thermodynamic
functions r*, B, 1, and fl and the parameters K and At
underlying the physics of nonequilibrium condensation.
Identification of these thermodynamic functions and pa-
rameters requires a detailed discussion of the phenomenol-
ogy of nonequilibrium condensation.

IV. KINETICS OF CONDENSATION

The kinetics of nonequilibrium condensation can be
studied in two stages: The initial new phase formation in
the form of condensation nuclei, called nucleation, and the
subsequent growth of these nuclei into small drops or crys-
tals, called droplet growth. Small drops or crystals may be
formed in the presence of inert impurities (heterogeneous
nucleation or condensation) or by statistical cluster forma-
tion due to thermal fluctuations (homogeneous nucleation
or condensation). Condensation in nozzle flows usually
implies a homogeneous nucleation mechanism; therefore,
we will herein only consider homogeneous condensation.
The first attempt on the mechanism of spontaneous forma-
tion of condensation nuclei in metastable vapors was taken
by Volmer and Weber1 5 by application of Boltzmann's dis-
tribution law for the equilibrium cluster distribution of
condensation nuclei of critical size and the theory was fur-
ther improved by Farkas,16 Becker and Doring,17
Volmer,"8 Zeldovich,' 9 and Frenkel2 0 (today this theory is
known as the classical nucleation theory). The more recent
statistical mechanical theories that take into account the
translational, rotational, and vibrational contributions
from clusters have been suggested by Lothe and Pound,2 '
Courtney,2 2 and can also be found in Zettlemoyer.23 A
comprehensive discussion of various nucleation theories is
given in the work of Skripov2 4 and Feder et alt25 A recent
improvement on the classical nucleation theory is also
available from the work of Dillmann and Meier, 2 6 who
employ a semiphenomenological model for the formation
energy of condensation nuclei. Despite all, no universally
accepted theory of nucleation exists yet. Even when some
of the poorly known thermodynamic functions that enter
the theories are treated as curve-fitted parameters, some
theories work better for some fluids, whereas they yield
poorer results for other fluids in comparison with existing
experimental data. For nozzle experiments with moist air
to be considered herein, it has been demonstrated over
years that the classical nucleation theory yields better re-

suits; therefore, we proceed with the application of the
classical nucleation theory. In this theory the rate of con-
densation nuclei production J' per unit time and per unit
volume is given by (e.g., see Wegener5 )

r2 p' (, AG*
J1= PWU1 -(m') 3 2 exp -kT (22)

IrPeonkT

where m' is the mass of a single vapor molecule, pD and
Pcon are, respectively, the actual vapor density and the ac-
tual density of the condensed phase, k= 1.38 X 10-23 J/K
is Boltzmann's constant, a' is the surface tension, which, in
general, depends on the actual temperature T' and on the
droplet size (characterized by the actual droplet radius r',
assuming all condensation nuclei to be spherical in shape),
and AG* is the Gibbs formation energy for a nucleus of
critical size given by

A\G*=it(r'*)2a>', (23)

with the critical radius r'* to be evaluated from the
Thomson-Gibbs equation,

2a'

PcoR T' Ln S (24)

In Eq. (24), R,=nR/,ut=k/m' denotes the gas constant of
the vapor and S-pD/P S,(T') denotes the supersaturation
ratio, where Pa (T') is the actual planar saturation pres-
sure at T'. Having determined the production rate of con-
densation nuclei of critical size in terms of the thermody-
namic functions a', pc and p',0 , which presumably will
be supplied, we proceed to discuss the second stage of con-
densation kinetics, i.e., the growth of condensation nuclei
of critical size.

In condensing nozzle flows droplet growth is domi-
nated by further condensation of the vapor on the unstable
nuclei (coagulation of growing drops or crystals can be
neglected). The rate of vapor condensing on unstable nu-
clei is governed by the rate at which latent heat is carried
away from the surface of the drop or crystal into the cooler
vapor. The heat and mass transfer mechanisms, which as-
sume no slip and infinite vapor surrounding, are described
either by continuum or molecular laws, depending on the
Knudsen number Kn defined by

I'

where 1' is the mean-free path of the vapor molecules. For
moist air expansions to be considered in this study, where
Kn>. 1, it is well known that the classical Hertz-Knudsen
droplet growth law for free molecular flows, which, for
steady one-dimensional flow, assumes the form

dr' T') p it'sS )
pc,, dirt'

can be used. In Eq. (25) all primed variables denote actual
variables, and a ( T') is the condensation coefficient (some-
times known as the accommodation coefficient), defined as
the ratio of molecules sticking to the drop or crystal to
those impinging on it. A detailed derivation of Eq. (25)

(25)
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from the kinetic theory of gases, together with the conven-
tional assumptions made and the continuum droplet
growth law, which will not be discussed herein, can be
found in the informative studies of Hill,6 Gyarmathy,8 and
their extensive references.

With the above discussed nucleation and droplet
growth theories on hand, the identification of the normal-
ized thermodynamic functions such as B, I, etc., and of
the parameters A and K still requires some knowledge of
the thermodynamic properties, such as the latent heat L',
the surface tension a', the density of the condensed phase
pcon, the condensation coefficient a, and the planar satu-
ration pressure pS,, in the operational range of nozzle flows
to be considered. In order to be able to obtain information
on these thermodynamic properties, we restrict our discus-
sion to transonic moist air expansions under atmospheric
supply conditions. In this case the surface tension a' can be
taken to be independent of droplet size so that it can be set
equal to its planar value a. and Pcon can be approximated
by its average value Pcn (=920-1000 kg/m ) over the
operational temperature range of the nozzle. The required
thermodynamic properties can then be determined from
the following two models of the condensed phase.

(a) Liquid Model (LM). In this model we assume the
condensed phase to consist purely of water droplets. For
atmospheric supply conditions the planar saturation pres-
sure can be evaluated from the expression given in Sonntag
and Heinze2 7 as

P2 .(T't)=T'texp (vi+v 2T'+v3T'2+ #4 ) (N/m2),

where vo=2.4576, vl=21.125, v2 = -2.7246X 10-2,
v3 =1.6853XI0-5 , v4 =-6.095X 103, and where T' is
measured in K. The expression for the latent heat can then
be found by the Clausius-Clapeyron equation in the form

L'(T') =R,(v2 T'2 +2v 3 T'3 +voT'-v 4 ) (kJ/kg).

The planar surface tension in this model is calculated from
the empirical relation,

[76.1+0.155(273.15 - T')] X 10-3 (N/m),

for T'>249.4 K,
[1.131 -3.709x 10-3T'] T'4 X 10-10 (N/m),

for T'<249.4 K,

suggested by Schnerr and Dohrmann,28 fitted to the exper-
imental data of Peters and Paikert, 2 9 and the condensation
coefficient is taken from the empirical relation of Peters
and Paikert29 as

[0.5, for T'>270 K,

1-(0.0125(T'-230)

for 230 K<T'<270 K,

1, for T' < 230 K.

(b) Ice Model (IM). In this model the latent heat of
condensation L' is taken from Sonntag and Heinze2 7 as

I2501 (kJ/kg), for T'>273.15 K,

2839 (kJ/kg), for T'<273.15 K.

The expression for the planar saturation pressure (e.g., see
Sonntag and Heinze), in turn, can be evaluated from

p,' = 61 [ RVp L(27 1 _ T' ) ] ( N/2) -

The planar surface tension in this model is extrapolated
from Grigull 30 as

[75.75+0.151(273.15-T')] X0-3 (N/m),

for T'>273.15 K,
a'(T')=~ [96.0 -0.29(273.15 -T')]X10-3 (N/m),

for T'<273.15 K.

Due to lack of reliable data, in this model the condensation
coefficient will be treated as a curve fitting parameter rang-
ing between 0.1 and 1.0.

A. Identification of thermodynamic functions and
parameters

From the above discussion of condensation kinetics we
are now in a position to identify the thermodynamic func-
tions and parameters entering the asymptotic theory. Uti-
lizing Eqs. (22)-(24), together with Eq. (5), the normal-
ization of Sec. II and the information furnished above in
the liquid and ice models, the nucleation rate equation can
now be written in the form convenient for the asymptotic
expressions given in the appendices, as

' =g'J=g'I(p,Tg)exp[ -K-B(p,T,g) ],

where

' )(M, -320o,2~~,=r,2' (IT T~~0P~~~~0 ,~ Acon

(26)

(27)

and where the thermodynamic functions B and X and the
nucleation parameter K are identified by

(28)
B~pT~g=_f(T) 3[~ Lff S 2p ~)]-f( )T )p I 92

Y,(p, Tg) =v77- OWi0 (H-g)) 

and

3.OX 1015 -2 9
K= ~~~Pcon)(10

with

S(P'T'g) = sought ig

XTBI exp(AO±AiT±A2 T 2 ±BOIT) '

(29)

(30)

(31)

In Eqs. (28), (29), and (31) the function f (T) and the
coefficients AO, Al, A2, Bo, and B1 are to be evaluated from
(a) in the liquid model (LM),
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(100/Ts)(100/T6)3[76.1+0.155(273.15-TsT)]T-1, for T-249.4 K/T,

f(T)(T?/T6 )3[11.34-0.037 09T;T]T3, for T<249.4 K/Ts, (32)

andA 0 =21.125, Al=-2.7246X lO- 2 T, -42 =1.6853X l0 5 Ts2, BO=-6.095X 10 3 /Ts, and B1 =2.4576; and (b) in the

ice model (IM),

(100/TS)(100/TO) 3 [75.75+0.151(273.15-T'T)]T-', for T>273.15 K/Ts,

f(T)|(100I/Tt)(100/TO)3[96.0-0.29(273.15-TsT)]T-', for T<273.15 K/T,(

and AO=6.415 + [L'/(273.15 R,)], Al =A2 = B1 =0.0, and BO= - L'/(RT,), where L' takes on one of its constant values

in this model.
In normalizing the droplet growth equation (25), i.e., in identifying the functions fl and A of Eq. (14), we first define

the normalization radius rd of a droplet [which follows directly from the construction of the condensation rate equation

(16), where the normalized radius is defined as r_ r'/rj] by

3xji pu' 1/3
1/3~jtlo~y*¢'pc~n) (34)

Utilizing the normalization of Sec. II, together with Eqs. (3) and (15) and the above liquid and ice models of the

condensed phase, the droplet growth rate equation (25) can be cast into the form of Eq. (14) by identifying fQ and A as

)lo2(B11 )T (B1 0 .5-) exp(AO+AT+A2T 
2 + BoIT) 1

2cpO(l -T)+2L (T)g+ u"
[S(p,T,g) -1]

(36)A=( T; )IBI-1) Y* V21~~~'i

depends on the nozzle geometry, on the carrier gas, and on
the nature of the condensed phase (liquid or crystalline
phase).

V. PREDICTIONS OF ASYMPTOTIC THEORY

where S(p,Tg) is given by Eq. (31) and where a(T), In this section we discuss the predictions of the asymp-

together with the coefficients A0, Al, A2, Bo, and B1 are to totic theory for transonic moist air expansions under at-

be evaluated from the appropriate model (LM) or (IM), mospheric supply conditions. We first present an algorithm

employed for the condensed phase. In a similar fashion, for computing the flow field of condensing moist air expan-

introducing the normalized critical radius by r*-r'*/rd, sions in nozzles by the asymptotic theory, bringing to-

the Thomson-Gibbs equation (24) yields gether the results of Secs. III and IV. This algorithm nat-

3 urally begins with the computation of the classical frozen
2m' To' f(T) solution for condensate-free expansion of the air-steam

r (p, Tg) l05r= t0k 100) LnS(p,T,g)' (37) mixture, from which the condensate-free frozen Mach

number distribution Mf(x) can be determined. Using this

where f( T) once again is to be evaluated from the appro- solution one identifies the saturation point x, as the point

priate model (LM or IM) of the condensed phase. where the relative humidity qpo (or the supersaturation S)

Thus we have determined the thermodynamic func- reaches unity during the expansion. All the flow variables

tions B, Z, Ql, and r* [given by Eqs. (28), (29), (35), and can then be normalized appropriately in reference to the

(37), respectively], and the parameters K and A [given by saturation conditions, as discussed in Sec. II. Moreover,

Eqs. (30) and (36), respectively] for use in the asymptotic since only subcritical flows are considered in this paper (a

solution of transonic moist air expansions in nozzles under detailed treatment of supercritical flows is given in the

atmospheric supply conditions. For other working fluids companion paper), in Eq. (8), the condition A (gx) >0 for

(e.g., pure steam, nitrogen, etc.) and under different sup- all x is taken for granted, and for the sign in front of the

ply conditions (e.g., high supply pressures), the identifica- square root it is understood that the (-) sign is chosen in

tion of the above thermodynamic functions and parameters the subsonic and the ( + ) sign in the supersonic regions of

has to be reconsidered in a similar manner from the ap- the flow field.
propriate nucleation and droplet growth theories accom- For nearly frozen flows valid in the interval x,<x~xl,

panied by the relevant thermodynamic properties of the the frozen impulse function Rf(x) is to be evaluated ex-

working fluids. In such a case care should be taken in actly by Eq. (19), and the latent heat L is to be approxi-

identifying the parameters K and A, so that the thermody- mated by the local frozen temperature dependence, as

namic functions f(T) and fQ(p,T,g) remain of 0(1) nu- given by Eq. (18). In IGZ and FGZ the value of the

merically, and as in Eq. (30), K depends only on initial condensate mass fraction g is presumably to be solved from

reservoir conditions and, on the condensible component of Eqs. (Al)-(A3) of Appendix A using, respectively, Eqs.

the working fluid, whereas, as in Eq. (36), A, in addition, (28), (29), (35), and (37) for B, X, fQ, and r* and Eqs.
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(30) and (36) for the parameters K and /A. The derivatives
aB/ag and a9B/ax that enter Eq. (A3) of Appendix A are
to be evaluated by applying the chain rule for differentia-
tion to Eq. (28) and by simultaneously utilizing Eqs. (8)-
(12). The local solution g(x) is then determined from Eqs.
(Al)-(A3) of Appendix A, starting with the condensate-
free frozen solution or with the nearby upstream solution
by iteration. In these regions the solution for the local flow
field at any x is then exactly given by Eqs. (8)-(12) by
inserting the local solution g(x) and by utilizing Eqs. (18)
and (19), respectively, for L and R(gx). The same pro-
cedure applies in RGZ and OZ, where dB/dx, now eval-
uated from Eq. (A3) of Appendix A, diminishes to
O(K 1/2) asK.O. In this case Eqs. (Al)-(A3) of Appen-
dix A for IGZ and FGZ are to be replaced by Eqs. (Bl)-
(B10) of Appendix B. All of the first and second partial
derivatives of the thermodynamic functions of Eqs. (Bl)-
(B 10) of Appendix B should again be evaluated by appli-
cation of the chain rule to Eqs. (28), (29), (35), and (37)
that, respectively, identify B, 1, Q, and r* and by utilizing
the functional relations (11) and (12) for p and T. The
local flow field at any x in RGZ and OZ is similarly ob-
tained by inserting the local value g(x) of the condensate
mass fraction, obtained from the solution of Eqs. (Bl)-
(B10) of Appendix B, into the functional relations of Eqs.
(8)-(12). Finally, the relative onset point xl can be iden-
tified as the point where dB/dx-O and all of the flow
variables at this point can, in turn, be calculated.

In NZ and DGZ, where x>xl, the procedure some-
what differs since in these regions the nearly frozen approx-
imations of Eq. (18) for L and of Eq. (19) for R (gx) can
no longer be employed. In this case, for use in the func-
tional relations of Eqs. (8)-(12), R(gx) should be eval-
uated directly from the defining relation (5) by numerical
integration using the upstream pressure distribution. The
latent heat L(T) can first be approximated by its most
nearby upstream value at each location in these zones and
can then be corrected for iteratively if and when desired.
The system of Eqs. (Cl)-(C5) of Appendix C and the
functional relations (8)-(12) then yield an explicit solu-
tion for the local flow field at any x in NZ. In DGZ, where
the nucleation rate given by Eq. (26) has diminished for all
practical purposes, Eq. (D6) of Appendix D, together with
the solution of the relaxation rate equation (D7), of Ap-
pendix D, which can be achieved by simple quadrature
integration or by more sophisticated numerical methods
(e.g., the Runga-Kutta method with predictor corrector),
and the functional relations (8)-(12), yield the complete
explicit solution for the local flow field. In this zone a
saturated thermodynamic equilibrium state is finally
achieved by nature of the relaxation rate equation (D7) of
Appendix D.

The above algorithm for the asymptotic solution of
transonic moist air expansions under atmospheric supply
conditions is employed in two different nozzles whose geo-
metric specifications are shown in Table I (see also Fig. 2).
Nozzle 1 seems to fit better into the one-dimensional con-
sideration for which better agreement of the 1-D asymp-
totic solution is reached, whereas nozzle 2 is effectively two

TABLE I. Geometric specifications of the circular arc nozzles used in
Figs. 3-7.

Throat height Circular nozzle First
Nozzle 2 y* (mm) radius R* (mm) employed by

Nozzle 1 30 400 Schnerr (1986)
Nozzle 2 60 200 Barschdorff (1967).

dimensional and is used to exhibit the effect of wall curva-
ture on the flow field in various condensation zones. Along
the axis of nozzle 1, the 1-D and 2-D adiabatic pressure
distributions seem to agree well within an error, which can
be neglected for all practical purposes. Figures 3-5 show
the 1-D predictions of the asymptotic theory in the tran-
sonic expansion of moist air through nozzle 1 under spec-

R*= 400mm

2y* 30mm *1 U

(a)

t01og15
m-3 s-11301i g.,

25 -

20 -

15-

10 -

5-

0 

/g'1,0

1.0-,

0.5-

0.6-

0.4-

0.2-

O-
0 4 8

x' [cm]
12

Wb)

FIG. 3. (a) The Mach number (MA 1) contours from the numerical 2-D
simulation of Schnerr and Dohrmann (Ref. 28) in nozzle 1 under the
atmospheric supply conditions q =36.4%, wo=6.6 g/kg, and To=296.6
K (the increment between any two successive contours is AM=0.02).
(b) Distribution of the pressure, the nucleation rate, and the condensate
mass fraction along the axis of nozzle 1 under the atmospheric supply
conditions q2o=36.4%, c 0=6.6 g/kg, and To=296.6 K. *, static pressure
measurements in experiments conducted by Schnerr (Ref. 31); ---, nu-
merical 2-D finite volume simulation in the ice model with a=0.2 by
Schnerr and Dohrmann (Ref. 28) (Ts=277.7 K, Tk=226.4 K,
ATLd=Ts-Tk=51.4 K, Mk=1.245, Jm,=0.22X1025 m 3 sect1;

-, -D asymptotic solution in the ice model for a=0.2 (T' = 277.7 K,
TZ=215.2 K, ATd T,-TP=6l.1 K, Mk=i.36, Jta_=0.12X102 6

m-
3 sec 1 , K=0.893 X 10- 2, and A=412.17).
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FIG. 4. The pressure distribution along the axis of n
atmospheric supply conditions of Fig. 3. 0, experimen
by Schnerr (Ref. 31), , 1-D asymptotic solution b
densation coefficient a in the ice model.

ified atmospheric supply conditions, in coI
the 2-D numerical finite volume computatic
and Dohrmann 2 8 and the recent experiments
Schnerr.31 Figure 3(a) exhibits the Mach nu
(for M> 1) in nozzle 1 from the 2-D numeri
of Schnerr and Dohrmann, which shows tha

Log 10JY
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FIG. 5. Distribution of the pressure, the nucleation rate
sate mass fraction along the axis of nozzle 1 under the at
conditions q~o= 36 .4%, wo=6.6 g/kg, To=296.6 K. 4
measurements in experiments conducted by Schnerr (R
asymptotic solution in the liquid model, where a= I for
K, T'=222.16 K, AT T5-Tk=55.34 K, Mk=
X 10

2 M3 sec_ ', K=0.893x10-
2

, and A=5024.3).

vature effects are only important downstream of the con-
densation zones. Figure 3(b) shows the predictions of the
asymptotic theory in the ice model with a=0.2, in com-
parison with the 2-D numerical simulation of Schnerr and
Dohrmann and the experiments conducted by Schnerr. In

:1.0 this case the predicted onset of condensation (defined by
the point where g£=0.2 g/kg, the subscript k referring to
onset conditions) in the asymptotic theory seems to be

=0.2 delayed within a few millimeters and the downstream pres-

sures after saturated equilibrium is reached appear a few
percent higher than the experimentally measured values. It

batch is clearly seen here that the predictions of the asymptotic
theory fit better to the experimental results when a is be-
tween 0.5 and 0.6, in contrast to the value a=0.2 in the
2-D numerical simulation of Schnerr and Dohrmann.

iQbatic However, as demonstrated in Fig. 5 when the liquid model
is employed for the predictions of the asymptotic theory,
better agreement with experimental results is achieved. In

12 this case the predicted pressure distribution downstream of
[cm] the condensation zones is again a few percent higher than

nozzle I under the the measured one.
ntal measurements Figures 6 and 7 show the predictions of the asymptotic
y varying the con- theory in moist air expansions under specified atmospheric

supply conditions through nozzle 2. The 2-D Mach num-
ber distribution of Fig. 6(a) from Schnerr and Dohrmann

imprison with demonstrates the importance of the 2-D effects arising
rnp by So with from the wall curvature of nozzle 2 during expansion. In
s cond cted b this case the adiabatic pressure distributions in one dimen-

conduc ed by sion and two dimensional along the nozzle axis differ con-
iber coIntors siderably. Figure 6(b) shows the pressure distribution of

icat simu at on the 1-D asymptotic theory in the ice model with different
values of a against that along the nozzle axis in the 2-D
numerical simulation of Schnerr and Dohrmann employ-
ing the ice model with a=0.2 and the experimental mea-
surements by Schnerr. In this case, rather than agreement
upstream of the condensation zones, downstream agree-
ment by the asymptotic theory is achieved (e.g., for
a=0.5), which clearly demonstrates the necessity of the
overall 2-D flow field computation. On the other hand, Fig.
7 shows the predictions of the asymptotic theory for moist
air expansions through nozzle 2 in the liquid model, which
seem to agree better than those in the ice model within the
limitations of the 1-D theory.

The above results demonstrate that the predictions of
the l-D asymptotic theory in the liquid model are quite

diabetic satisfactory when slender nozzles such as nozzle 1 are
.\ used, whereas the 1-D asymptotic theory needs to be mod-

ified to account for the wall curvature effects when effec-
tively 2-D nozzles such as nozzle 2 are employed. Such a

adiabatic modification is, in principle, available only for Prandtl-
Meyer flows, with nonequilibrium condensation from the

8 12 work of Delalet t and Clarke and Delale,32 but it has to be
x' [cm] reconsidered for the 2-D flow field computation in nozzles.

te, and the conden- VI. DISCUSSION
atmospheric supply
*, static pressure Transonic nozzle flows of moist air under atmospheric
tef. 3 1); 1-, ID supply conditions are investigated by the asymptotic solu-
rX>Xk (T,=277.5
=1.29, Jmax=0.47 tion of the condensation rate equation constructed from

the classical nucleation rate equation and the Hertz-
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FIG. 6. (a) The Mach number (M> 1) contours from the numeri
finite volume simulation of Schnerr and Dohrmann (Ref. 28) in I
under the atmospheric supply conditions q7p=36.6%, C0o=8.2
To=300.3 K (the increment between any two successive cone
AM=0.02). (b) Distribution of the pressure along the axis of t
under the atmospheric supply conditions q?0=36.6%, wo=8.3 g/
To=300.3 K. *, static pressure measurements in experiments co]
by Schnerr (Ref. 31), --- numerical 2-D finite volume simulation
ice model with a=0.2 by Schnerr and Dohrmann (Ref. 28) (Ts
K, T, =229.8 K, ATad-T-TT= 51.2 K, Mk=1.238, J,==0.1I
m 3 sec - 1). , I-D asymptotic solution in the ice model with c
values of a (in particular for a=0.2, T,=281.0 K, Tk=22
ATd=T,.-Tj=57.6 K, Mk=1.3 1 , J.,,.=0.97XI02" m-
K=0.7987X 10-2, A= 1190.4).

Knudsen droplet growth law. Only atmospheric E

conditions with relatively low initial relative hur
(30%-40%) are considered to ensure subcritic
smooth flows. Two models, LM and IM, describing
state of the condensed phase, respectively, as water
or ice crystals are employed in identifying the ess
thermodynamic properties such as latent heat, surfac
sion, and condensation coefficient (in the ice mod
condensation coefficient is treated as a curve fitting p
eter due to lack of reliable data). Two circular arc no
one slender (nozzle 1) and the other effectively two d
sional (nozzle 2), are employed to exhibit the differ

10-

g/g'"Q.
1,0-I

0.8 -

0.6-
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0 4 8
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FIG. 7. Distribution of the pressure, the nucleation rate, and the conden-
sate mass fraction along the axis of nozzle 2 under the atmospheric supply
conditions qqo= 3 6 .6%, wo=8.3 g/kg; To=300.3 K. *, static pressure
measurements in experiments conducted by Schnerr (Ref. 31), , I-D
asymptotic solution in the liquid model where a= 1 for X>XA (T,=280.7
K, T,=224.9 K, ATad=T-Ti=55.8 K, Mkl=1.295, .max,=0.36X 1024
m-3 sec- 1, K=0.7987X 10-2, A= 14 880.8).

between the l-D and 2-D flow fields with condensation, in
_, particular, the effect of wall curvature on the l-D condens-
12 ing flow field.

The predictions of the l-D asymptotic theory pre-
sented herein for moist air expansions under atmospheric

ical 2-D supply conditions show good agreement with experimental
nozzle 2 data when the liquid model is employed in relatively slen-
t3ou~grig der nozzles. Although no certain knowledge of the state of
nozzle 2 the condensed phase (probably a mixture of water drops
/kg, and and ice crystals) is available in this case, the better agree-
nducted ment with experiments in the liquid model suggests that
n 1 the the dominant condensed phase most probably consists of
14X 10i5 water drops. Due to this nature of the condensed phase, no
different reliable estimate for the condensation coefficient of ice
23.4 K, crystals could be deduced (a reliable estimate for a may

sec perhaps be achieved in situations where the liquid model
yields poorer agreement with experimental results). The
predictions of the l-D asymptotic theory are not in good
agreement with the 2-D flow field structure of condensing
nozzle flows when nozzles with significant wall curvatures

supply are employed. In this case the improvement of the l-D
m odity asymptotic theory to account for 2-D effects arising from
Sal or wall curvature is essential.
ng the
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APPENDIX A: ASYMPTOTIC SOLUTION OF THE
RATE EQUATION (16) IN THE INITIAL GROWTH (IGZ)
AND FURTHER GROWTH (FGZ) ZONES

In both of these zones dB/dx=0(l), and the asymp-
totic expressions for g and dg/dx follow from the solution
of the rate equation by Laplace's method1 0 in the double
limit as K-AO and A, lO:

/dB) -4
g(x) 7+(x)A(x)K (TX) exp[-K-'B(x)]

XrAf1XAf2X /r*(x) (dB/dx)\

+3f /)r* (x) (dBldx) \2
+3A(X t K )

and

dg idB) -3
__ 1x)Ax)I I exp[-K-'B(x)]

dx- (dx]

X -Af3()_6A 2 l 2 (X) (r*(X) (dB/dx))

+3,1(1(x) (r*(x) (dB/dX)) 2

_ (r* (x) (dB/dX) 3]I

where

dB- aB dg -aB
(A3)

The above Eqs. (Al)-(A3) form a transcendental system
for g(x) and dg/dx and are solved iteratively, starting
from the frozen (gO) solution. In particular, the expres-
sions for g(x) and dg/dx in IGZ can be simplified9"0 from
Eqs. (Al) and (A2) in the limit as

B(x) - Bf(x) B(O,x),
(A4)

E(x) - Xf(X) -,(O,x), etc.

It should also be mentioned that in the limit as re* o Eqs.
(Al) (Al)-(A3) reduce to the solution of FGZ (and together

with the frozen limit to the solution of IGZ) given in
Clarke and Delale.10

APPENDIX B: ASYMPTOTIC SOLUTION OF THE RATE
EQUATION (16) IN THE RAPID GROWTH (RGZ)
AND ONSET (OZ) ZONES

In these zones dB/dx diminishes to 0(K"/2 ) as KX-O
by definition. From the solution of the rate equation (16)
by Laplace's method,'0 after cumbersome manipulations it

A2) can be shown that the asymptotic expressions for g, dg/dx,
and d2g/dx2 are of the form

g(X) _7(X)A(X) [213(X) ] 2 expti -K'-B(x) Iexp(Y') 6,1'Cl'(x) D- 4 ( x))

( 7(x) 1))~ 2/ -x
+[r*fl2(X) 2/3*(X) ]32,6-x D- 423(x )]'3nW[i x 2_lx '-2rx

~~~ ~~~~ j213~bfl-()(x2))(

(T,(x) {yx
dg -x) () 2,(X ]-3213(x)]D -K-1(x) +3epd? x)[6,*l(x) 21-3(x]D j21x x)

and

d2g 1 dfldg y 
2
,X) 6,13f3(~~''~

W'X Wx dx dx +7()~)[/()]-exp[ K-B(x)]exp (x)D)[ 21(x)) 

(B2)
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+ [r*(x) V2,/(x)Jex ( -8f(x) )

where

rPx -1K' (WX > 0,

with

dB aB dg aB

d2B laird a2h(dg)2+ a2 i dg a2jj

dr* ai* dg ai
dx ag ax 

dfl adr dg af2
dx - ag ax __

dl ai dg ai
dx ag dx-ax~

(EB4)

APPENDIX C: ASYMPTOTIC SOLUTION OF THE
RATE EQUATION (16) IN THE NUCLEATION ZONE
WITH GROWTH (NZ)

In this zone the asymptotic solution for g follows from
the solution of the rate equation (16), where the relative

(B5) onset point xl (defined by the condition y,=O) acts as an
interior minimum for Laplace's method.'0 Consequently,
we have

(116)

(B7)

(B8)

(B9)

(B10)

where D-n(x); n=1,2,3,4 denote Whittaker's parabolic
cylinder function. 33 '3 4 Equations (B1)-(B10) provide a
complete transcendental solution for g, dg/dx, and d2 g/dx2

in RGZ and OZ and are solved locally by an iterative
scheme, starting with a nearby upstream solution. In par-
ticular, the solutions for gi, (dg/dx)1 , and (d2g/dx 2 )I at
the "relative onset point" (herein by subscript 1 we mean
evaluated at x=x,), follow in the limit as

1 ( d 2
B

y-yr,=° 13-[3i=_jK - 1 1 , , etc., (B11)

where the parabolic cylinder functions take the following
values:

D- i (°) = Af2, D-2(0) = 1,

(B112)

D 3(0) = D- 4(0)7=.

Furthermore, when r* - 0 and the first term of Eq. (113) is
neglected on order of magnitude estimates, we recover the
solution for these zones given in Clarke and Delale.10

where

ai~,1A2,f 2 1/ 2

bi=-"I,Af3T"/2 exp(-K-'B1 ),

and

Frjo)= f 'ee2 dg, r=0,1,2,3.

It should be mentioned that the functions Fr(q), r=0,1,2,3
given by Eq. (C5) can be related to the elementary error
function. When 0=0, we precisely recover the expression
for g, obtained in the limit y v r,=o in Appendix B. On the
other hand, as 0q co, we have

g(o) _ ~Ibj3 [o3 ( a02+3 [2+ (<) ]0+ 

±rl) 11
corresponding to a cubic growth law. We should also men-
tion that in the limit as r7 -.0, we recover in NZ the same
asymptotic expression for g given in Clarke and Delale.10

APPENDIX D: ASYMPTOTIC SOLUTION OF THE
RATE EQUATION (16) IN THE DROPLET GROWTH
ZONE (DGZ)

The cubic growth law of Eq. (C6) cannot persist over
the total length of this zone, since thermodynamic equilib-
rium is reached in this zone. Using Laplace's method for
an interior minimum,1 0 the solution of the rate equation
(16) in this zone can be cast into the asymptotic form
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(1B3)

+ 3a~l(r7*+ aP) F2 () - ajF3(p) ], (Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

g(o) -bj[(rj*+aj0)'F0(0) -3aj(rj*+a,0)2Fj(0)
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