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The explicit form of the Schlesinger transformations for the second, third, fourth, and fifth 
Painleve equations is given. 

I. INTRODUCTION 

A powerful method for studying the initial value 
problem for certain nonlinear ODE’s was introduced in 
Refs. 1 and 2. This method, which is the extension of the 
inverse spectral method to ODE’s, is called the inverse 
monodromic (or isomonodromic) method. It can be 
thought of as a nonlinear analogous of the Laplace’s 
method. 

The six Painlevk transcendents, PI-PVI, are the most 
well-known nonlinear ODE’s that can be studied using 
the inverse monodromy method. A rigorous investigation 
of PII-PV using this method has been recently carried 
out in Refs. 3 and 4. In particular, in these papers, it is 
shown that certain Riemann-Hilbert problems, occurring 
in the process of implementing the inverse monodromy 
method, can be rigorously investigated. This implies that 
the Cauchy problems of PII-PV admit, in general, global 
meromorphic in t solutions. Furthermore, for special re- 
lations among the monodromy data, and for certain re- 
strictions of the constant parameters appearing in PII- 
PV, these solutions have no poles. This provides the 
motivation for studying how the solutions of a Painleve 
equation depend on their associated constant parameters. 

Here, we present a systematic investigation of the 
Schlesinger transformations associated with PII-PV. 
These transformations imply the relations among the so- 
lutions of a given Painlevi equation when its parameters 
are shifted by an integer. 

Let y(t) be a solution of a Painleve equation corre- 
sponding to the parameter 8 (for PII, ytt = 2y3 + ty + 0). 
This equation is associated with the monodromy problem 
Y, = A Y, where z plays the role of the spectral parame- 
ter. The implementation of the isomonodromy method 
necessitates the investigation of the analytic properties of 
Y(z). It turns out that there exists a sectionally mero- 
morphic function Y(z), with certain jumps across the 
certain contours of the complex z plane; these jumps are 
specified by the so-called monodromy data, denoted by 
MD. We denote by y’ and by Y’, y and Y when 8+8’. It 
turns out that it is possible to find an appropriate trans- 
formation of 8 (namely, 8’ = 8 + n or 8’ = 8 + n/2, 
n&) such that the MD are invariant. Then Y’(z) 

= R (z) Y (.a), and the Schlesinger transformation matrix 
R (z), can be found in closed form, by solving a certain 
simple Riemann-Hilbert problem [since the MD of Y and 
Y’ are the same, R(z) has very simple jumps in the com- 
plex z plane]. 

II. THE SECOND PAINLEVk EQUATION 

The second Painleve equation, 

d2y 
;iiz = 2y3 + ty + a, (2.1) 

can be obtained as the compatibility condition of the fol- 
lowing linear system of equations: 

Y,(z) = A (z) Y(z), (2.2a) 

Y,(z) = B(z) Y(z), (2.2b) 

where 

A(z)= (:, :,)t?+ ( 1; Jz 

i 

t 
v+Ij - UY 

+ 

( )I 

t , 
-$e+yv) - ‘+T 

W=;(; “,)z+;( y2; ;). (2.3) 

The equation Yzt = Yt, implies 

dv du dy 
-= 
dt -@V-6, z= -UJ$ ;i;=Vi+$ (2.4) 

Thus y satisfies the second Painlevi equation (2.1), with 
the parameter 
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Y, (z) = Y6( ze2’“) G6e2’rea3, 

where 

G,=(f, ($3 Gz=(; ;), G3=(: ;), 

G=(; ;), Gs=(: ;)s Gs= (; ;), 

a=%-& (2.5) 

A. Solution about z= CO 

The formal solution Y,(z) = (3(,“(z), YE’(z)) of 
equation in (2.2a) in the neighborhood of the irregular 
singular point z = 00 has the expansion 

Y(,1)(z) = (qeq@)[ (A) + (-$+ . ..I 
1 e 

0 eqcz)9,1)(z), ( 1 0 
= - f73= 

Z 
0 -1 1 9 

S:‘(Z) = (~)~e~~~~z)( (y) + (iz)i+ . . . ,I 
1 

0 
-e 

= - e 
Z 

-m 9;) (z), (2.6) 

where 

and a, 6, c, d, e, f are constants with respect to z. The 
monodromy data, MD = {a,b,c,d,e,f ), satisfy the consis- 
tency condition 

If Gpm = 1. (2.10) 
j=l 

K=$~+ y+i v+ey, q(z)=T+zz. 
( ) 

2 t 

Let Yk(z), k = 1 ,..., 6 be_solutions of (2.2)) such that 
det Yk(z) = 1 and Yk(z) - Y,(z) as IzI + 03 in the sec- 
tor Sk where the sectors Sk are given by 

Sl: - G< arg z < t, S,:i< arg z < T, 
7-r 5a 

S3:5< arg z < T 

S,:$< arg z < :, S,:g<arg z < :, 

S$Carg z < 7. 

, (‘3 

‘I .% 

;h 

s 1 (; 

C’% s5 i 

,,y -y 

.% i-, 

Ice 
Diagram 1. 

The solutions Yk(z) are related by the Stokes matrices 
Gkl 

(2.7) 

Yj+ l(Z) = Y’(z)Gp J = 1,...,5, 
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(2.8) 

(2.9) 

8. Schlesinger transformations 

Let Y’(z) correspond to 8’. We consider the trans- 
formation 

Y’(z) = R(z) Y(z), (2.11) 

and we demand that Y’ has the same monodromy data as 
Y. Since Eq. (2.10) is invariant if 0 is shifted by an 
integer, we let 8’ = 8 + n, n&. Let R(z) = Rk(z) when z 
in S,; then the definition of the Stokes matrices (2.8) 
implies that the transformation matrix R(z) satisfies the 
RH problem along the contour C,, k = 1,...,6, indicated 
in Diagram 1: 

Rj+ l(z) = Rj(z> on Cj+ 1, j= 1,...,5, 

R,(z) = R6(zezir) on C 17 

with the boundary condition 

(2.12) 

R~(z)-~~(z)(~/z)~~~~~‘(z), as z-+00, z in Sk. 
(2.13) 

Equation (2.12) implies that the transformation matrix 
R(z) is analytic everywhere in z plane and can be deter- 
mined explicitly by using the boundary conditions (2.13). 
It is enough to consider the particular cases 8’ = 8 + 1 
and 8’ = 8 - 1. Solving the above RH problem for these 
two cases we find 
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6’=8+ 1: 

R(l)(Z) = (i Jz+ (; -;y 
IL 

8’= e- 1: Q)(Z) = 

(2.14) 

Successive applications of the transformation matri- 
ces Rti)(z), i= 1,2, map 8 to 8’ = 8 + n, n&. If, 
y’,u’,u’,W = 0 + 1 are the transformed quantities of 
y, U, u, 8 under the transformation given by R(t)(z), i.e., 

YI(z;f,Y’,u’P’,e’) = R, 1) k4Y,W,~) w;4Y,w,~), 
(2.15) 

and ify”,u”,v”,8” = 8’ - 1 are the transformed quantities 
ofy’, 10, u’, 6’ under the transformation given by R,,,(z), 
i.e., 

= R(2)(Z,t;Y’,U’,U’,e’) Y(Z,fJ’,u’,U’,e’), (2.16) 

then 

R(Z)(Z,~;Y’(Y,u,U,e),...)R(I)(Z;t,Y,U,U,e) = 1. (2.17) 

Also, 

R(l,(z;t,Y’(Y,u,u,e),...)R(1)(z;r,Y,u,v,e) = Q)(Z), 

R(z)(z;~,Y’(Y,u,u,e),...)R(2)(Z;~,Y,u,U,e) = R(,)(Z), (2.18) 

where Rts)(z) and R C4)(z) shift the exponent 8-t@ = 8 
+ 2 and 8-8’ = 8 - 2, respectively. 

The linear equation (2.2a) under the Schlesinger 
transformation given by Eq. (2.11) is transformed as fol- 
lows: 

Y;(z) = A’(z) Y’, 

A’(z) = [R(z)A(z) + R,(z)]R-‘(z). (2.19) 

For the particular case of RcZJ, the quantities y, u, U, 8 are 
transformed by 

8’=8- 1, y’= -y-&&, 

u’ = (u/2)v’, v’= -v-23-t. (2.20) 

That is, if y( t) solves the second PainlevC equation with a 
parameter a = i - 8, then y’(t) solves the second Pain- 
IevC equation with parameter CY’ = LX + 1. From Eq. 
(2.20)) the well-known Backlund transformation for the 
second PainlevC equation can be obtained: 

Y’= -,+$g, a’ = a + 1. (2.21) 

Ill. THE THIRD PAINLEVii EQUATION 

The third PainlevC equation, 

(3.1) 

is the compatibility condition of the linear systems of 
equations 

Y,(z) = A (z) Y(z), 

Y,(z) = B(z) Y(z), 

where 

fl 0 
Nz)=~ o -1 + ( ) 

i 

t 
S-- 2 

+ 1. 

- ws 
\ 1 

t 2' 

\ 
w's - t1 

( iI 

- s-- 
2 

(3.2a) 

(3.2b) 

B(z) =$ “l)z+f(; ;) 

- i[ ,,t, _ pJ 5. 
(3.3) 

The equation Y,, = Ytz implies 

du 0, dv 8, 2 
-=74ws, -= 
dt dt - TV + ;‘f - s), 
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+ ceo + fut9 (3.4) 

-w+e, , 1 
dv 
z=4sy2-2t$+ (2e,- i)y+2t, 

where y = - U/SW and 

;= -f++,) +;(wu++J). (3.5) 

Thus y satisfies the third PainlevC equation (3.1) with the 
parameters 

a = 4eo, p=4(i-em), y=4, s= -4. (3.6) 
A. Solution about z= o3 

The two linearly independent formal solution 
s’“)(z) =(4;‘(z), Y&)(z)) of Eq. (3.2a) in the 
neighborhood of the irregular singular point z = CO has 
the form 

<1”,‘(z) 

= (:)“.2&2~(:) + (f--g;+ ($))f 

I 
1 *,/2 + . . . = _ 0 Z 

e”/2P&‘(z), 
@y)(z) 
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@ ;)=$i+e,) +t(f-s-y) +-&-t)], 

~~~)=f[u(l-8,)+ws--u(r--S+~)]. (3.8) 

Let gWm)(z), j= 1,2, be the solution of Eq. (3.2), such 
that det q”‘(z) = 1 and 

Yj”‘(z)-Fcm)(z) as 121 --+ CO, in sjrn), j= 1,2, 
(3.9) 

where the sectors St”” are indicated in Diagram 2 and J 
given by 

$m): = -pargzci, S$m):t<argz<3, 37r IzI>zo, 
(3.10) 

where z. is a constant and 0 <z. < co. The solutions 
q m ) (z) are related by the Stokes matrices Gj m). For 
t > 0 this relation is given by 

Gm)(z) = fi-‘)(z)Gi-‘), 

g”)(z) = Y(2m)(Ze2i?r)G~m)eine,u3, (3.11) 

where 

U = l -em’2 0 t 1 - 0 e- rt/2 
Z I 0 1+ 

-(;I- ) 
uu ; 

+t i 

+ ($T’) +;...~=(!-eJ2e-zt~2ibl(z), 

(3.7) 

where 

($d = (ay ;), G:-‘)= (:, ‘;)* (3.12) 

For t ~0 the Stokes matrices are the transpose of those 
for the case t > 0. 

B. Solution about z=O 

The formal solution 9”(z) = (?# (z), @!] (z)) of 
(3.2) in the neighborhood of the irregular singular point 
z = 0 has the form 
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5:; (z) = zed2et/2z 
I 
i 1 Tk 

+ , ... =z ed2et’2zFj~~ (z), 

) * 
e;!(z) = z-ed2e-f/2E’ 

l-1 
]S! t 

WS 

, 

+ 

1 k~+,[,(l-;)+y] \ 

z+ *-* 

\“+zJs( 1 -a) +!!I/ 

=z - e@12e - t/2’~~;;(z), (3.13) 

where 

s-t 2 
u=p ~ 

Ii ) 
6, 

ws u-u--&s-t), 1 
u= h+e,w - u + w~v), 

and k, I satisfy the following conditions: 

6, - u - -$s - t’) dt’, 

(3.14) 

Ink= Jt S[wu-;r+)(wB,--u-IUIu)]dt’, 

kl= -s/t. (3.15) 

Let q”(z), j= 1,2, be a s@ution of (3.2) such 
that det q’)(z) = 1 and 9’) - Y(‘)(z) as z-+0 in Sj”), 
where the sectors $‘) are given by 

(3.16) , 5-p C,o sp s(O) -- - - -- i-r / $’ CP ) CL CR 
Diagram 2. 

The solutions Yj”’ (z) are related by the Stokes matrices 
G(O)* this relation is given by 3 ’ 

e’(z) = G')(z)G;'), 

(3.17) 

where 

Gj”‘= (i. ;), G$"= (; 7). (3.18) 

The solutions Yi”’ (z) and Y\ m, (z) are related by the 
connection matrix E: 

Y;“‘(z) = Y;“(z)E , det E= 1, 
(3.19) 

Y:"'(z) 

= Y$O'(z) 

if Imz>O, 
if Im z < 0. 

(3.20) 

The monodromy data MD = {a0,b0,am,bm,p,v,~,71) sat- 
isfy the consistency condition 

G~m)G~m)eid,oj = E- +$~),$),-i7re,~,~~ (3.21) 

In particular, 

2 cam rem + a,b,e - ivem = 2 cos &I0 + a&oeiTeo. 
(3.22) 
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C. Schlesinger transformations 

Since the consistency condition of the monodromy 
data (3.21) [or (3.22)] is invariant if 6, and 8, are 
shifted by integers, we let 6; = 6, + n, 6; = 6, 
+ m, n, m&. If Y’ corresponds to 66 and 6:, we let 
Y’(z) = R(z) Y(z), where 

1 f(m-n)q 
R(z)-$0)(z)]’ ; 0 [ ?‘o’(z)] -1 

as Iz~--*Q), 

as z-0, (3.29) 

R(Z) = R!“vo)(z), when z in A’!““‘, j= l,2. I J 
(3.23) 

Then the definition of the Stokes matrices (3.11) and 
(3.17), and of the connection matrix (3.19) and (3.20), 
imply that the transformation matrix R(z) satisfies the 
RH problem 

R;“)(z) = R i”‘(z) on CT, 

R!“‘(z) = ( - l)mR$m)(ze2irr) on Ci”, 

where R + (z) and R - (z) are sectionally analytic func- 
tions in sectors S$“‘Us[m) and S~“‘US$“’ respectively. 
The solution of the RH problem (3.28) is given as 

R(z) =z-l/‘&z), (3.30) 

where i(z) is bounded at z = 0. The explicit form of the 
transformation matrices R(z) are obtained from Eq. 
(3.29) and are 

/l -x\ 

R;“(z) = RI”(z) on C$, 

R!“(z) = ( - l)“R:‘)(~e~‘~) on c, 

R!“)(z) = R:‘)(z) on CR, 

(3.24) 

R(,)tz) = (; qz1/2+ 1 -u u ;-* lz-‘/2, (3.31) 
-- \ * --I *s-t 

R(,)(z) = (; ;)z”~ + ( iy $)z- ‘12, (3.32) 

R:“)W =R:“‘(4 

I on CL, Imz>O, 
(_ l)m+nI on  cL, Imz<O, 

(3.25) 

where the contours CL, C,, q, C,?, j = 1,2, are indicated 
in Diagram 2. The continuity of the RH problem along 
the contour CL implies that n + m = 2k, k&f. Hence, 

(e,‘,e,‘) = (6, + m - n,6, + m + n), m,nd. 
(3.26) 

tws t 
Z s-t - 1’2, (3.33) 

-- 1 
ws 

(3.34) 

It is enough to consider the following four cases: 

(1):(2;,le;;; 1 (4 ~;t=Y=~,‘: 1’ 

(3.27) 

The transformation matrices R~i,(z), i = 1,...,4, gen- 
erate all possible transformation matrices. If 

For all four cases the RH problem (3.24) and (3.25) can 
be written as 

= R(,,m3k..,60) m,t3...,600) (3.35) 

and 

= ~~~)(z,ty,..., e,y(~,tg,..., e,‘), 

R+(z) =R-(z) on e+C’T, 

R + (z) = - R - (ze2’*) on c + CT, (3.28) 

with the boundary conditions then 

1 &?l+n)q 

R(z)-[+)(z)]’ - 0 Z 
[W(z)] -’ 
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IV. THE FOURTH PAINLEVk EQUATION 

The fourth Painleve equation, 

2 3 
+Zy3+4tJ+2c?-a~y+$ (4.1) 

is the compatibility condition of the linear problem 

1 em 
+ . . . = - I (1 e@)?~)(z), 

~~yz)q!-eme-:~,(;)+(il,~+... 

Y,(z) = A(z) Y(z), 

Y,(z) = B(z) Y(z), 

where 

t 
0 

-1 z+ 
' ( 

++3,) 

! 
e,-u -7 

\ 
2$(u-2eo) -(80--u) 

?A 
-t 1 

1 1 
z, 

u 

i 
0 * 

The equation Y,, = YIz implies that 

du -=- 
dt u(y + 2t), 

-4v+yz+2ty+4eo. 

(4.2a) 

(4.2b) 

(4.3) 

(4.4) 

Thus y satisfies the fourth Painleve equation (4.1) with 
the parameters 

a=28,-1, p= -S@. 

A. Solution about z= Q) 

(4.5) 

The formal solution of the Eq. (4.2a) in the _neigh- 
borh_ood of th_e irregular singular point z = 00, Y, (z) 
= (Y’,‘)(z), Y’:‘(z)) has the form 

i?:‘(z) = (3emeqfz)( (i) + (t,~o~e~~)~ 

1 0 - em 
= - e Z 

- s(r) p’,“(z), 

where 

(4.6) 

K=3+28,) - (0-eO-em) t+f , ( ) 

2 
q(z) = y + tz. 

Let Yj(z) be the solution of (4.2) defined by 
Yj(z)-Y,(z) as Iz( + co, z in the sector Sj, i = 1,2,3,4, 
where the sectors Sj are given by 

S,: - i<arg z < :, S2$arg z < F, 

3n 5rr 7n 
Ss:q<arg z < 7 S,:$qarg z < T (4.7) 

Diagram 3. 

The solutions Yj(z) are related by the Stokes matrices Gj 
via 

Yk+ I(Z) = Y&)Gk, k = 1,2,3, 

Ye = Y4(ze2ir)G4e2iTem”3 9 

G=(; ($3 G=(; ;), 

G3=(: ;), GJ= (; ;). 

(4.8) 

(4.9) 
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y’1)(z) =zeoe-a(t) ((A) +&(?)z+ --) 
C. Schlesinger transformations 

The consistency condition of the monodromy data 

= zeo~ol)(z,, 
(4.14) is invariant if 0, and 8, are shifted as 

2n + 1 

(i UY e,’ = e, + n 
e,‘=e,+, 

y’Oz’(z) = z- 
V 

eoem 1 _ - 

( 1 

2(2eo - V) 

i 

a: e,f=e, +,,,, b: I 
200 I 

2m+l’ 
e,‘=e, +2 

1 (4.16) 

1 (W\ 
If Y’ corresponds to 8 6 and 8 ‘,, we let Y’(z) 
= R(z)Y(z), where R(z) = Rj(z) when z in Si, j 
= 1,2,3,4. Then Eq. (4.8) implies a RH problem for 

R(z): 

=z -eo?02’(z,, (4.10) a’ R,(z) =R4(zfP> on Cl, I 
&+1(z) =&(z) on ckfl, k= 1,2,3 

where 

$:i= --y(~-eo-e,b--vt 

+ (1 +2eo-w+2vy), 

b’ Rl(z) = -R4(ze2”) on Cl, I 
Rk+ l(z) = Rk(Z) on Ck+ l, k = 1,2,3 

(4.17) 

with the boundary conditions 

y 
2eo-v 

Y )I , (4.11) 
R(z) - ~oo’(z)p”+ 1)/*)a3po- l(Z) 

s t 2v a(t) = 
u dt’- 

b:[ R(z)l~~(z)(f)((im+1)~*)~3~a(z, :: ;;L, 

(4.18) 

2038 U. Mugan and A. S. Fokas: Schlesinger transformations of Painlevb II-V 

B. Solution about z=O 

The solution Y,(z) = (y’,“(z), y’*‘(z)) of Eqs. 
(4.2) in the neighborhood of the regular singular point 
z = 0 for Bo#n2, EZ has the form 

in particular, 

(1 + bc)e2’&m + [ad+ (1 +cd)(l +ab)]e-2iqem 

= 2 cos 2Teo. (4.15) 

The monodromy matrix about z = 0 is given as 

Yo(zP”) = Yo(z)e2idOo3, (4.12) 

and the relation between Y1 (z) and Y,(z) is given by 
connection matrix E, 

where the contours C’ j = 1,2,3,4, are indicated in Dia- 
gram 3. 

For the case a, there exists a function R(z) which is 
analytic everywhere and 

R(z) =R,(z) = R,(Z) = R3(Z) = R.&Z). (4.19) 

Yl(z) = Y,(z)E, E= 1 i , det E= 1. 
( ) 

(4.13) The boundary conditions (4.18) specify R (z) as a ratio- 
nal function of z. For the case b, there exists a function 

The monodromy data MD = {a,b,c,d,p,v,&q} satisfy the 
consistency condition 

R(z) which is analytic everywhere except along the con- 
tour Ct. The solution of the RH problem (4.17b) is given 
as 

i Gf2i7d,U3 = E - 1, - 2ido03E; (4.14) 
j=l R(z) = z- 1’2R^(z), (4.20) 
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where g(z) is bounded at z = 0. By using the boundary 
conditions for R(z), the function g(z) can be deter- 
mined. 

All possible Schlesinger transformations admitted by 
the linear problem (4.2) can be generated by the follow- 
ing transformation matrices Rj(Z), j = 1,2,3,4, 

I eo’=eo-$ 

e,'=e, +;' 

1 

v-e,-e, - - 
u 

I 

e,’ = e, + ; 
l O l/2 

0, l=e, -4’ R(~)(Z) = o o z + 

(’ 

, 

e,r=e,-t-i 
e,‘=e, +;’ 

1 

v-e,-e, - - 
U 

e,'=e,-; 

e,l=e, -;' 

v-2eo u 

Y z 

-&- 2eo) 1 

If y’,d,d,eo’ = e, - 4, 8,’ = 8, + f are the trans- 
formed quantities of y,u,v,00,t3, under the transformation 
given by R,,,, i.e., 

= R(l,(z,w4U,eo,e,) ym;Y,u,4eo0,e,), (4.25) 

and ifyc,~“,vs,6; = eo’ + f, 0: = f3 ‘, - 4 are the trans- 
formed quantities of y’, u’, v’, e,‘, 8,’ under the transfor- 
mation given by R(,)(z), i.e., 

~*(~,ty,~-y,eI;,e:) 

= R~~,(z,P;Y~~~,v~,B~~,~~~ Y(Z,t;Yw,d,eo~,em’), 
(4.26) 

then 

Rt2)(z,t;y’(y,u ,...) ,... )Rcl,(z,t;y ,...) = I. (4.27) 

Similarly, 

RoJ(z,t;y’(y,u ,...) ,... )R,,,(z,t;v ,...) = I. (4.28) 

Also, 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

I 

R(&,W(y,u,...) ,... )R(~)(z,P;Y ,...I = Rc5), 

R(z)(zJY(Y,u ,... > ,... V+s)(z,t;y ,...I = R(6), (4.29) 

where R(,, and Rc6, are 

I 24 
0 

v-e,-e, \ + 

1 
v-e,-e, V(V - 2eo) 

- 
U -y(v-eo-e,) +t J 

q6)tz)=(; ;)+ y[; -lg)z-l 

t+i+&(v-e,-e,) , 1 (4.30) 
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and shift the exponents 0,’ = e,, 8,’ = 8, + 1 and 0,’ 
= 0, + 1, 8,’ = 8,, respectively. Hence, the successive 

application of the Schlesinger transformations defined by 
the transformation matrices RV,,j = 1,2,3,4, maps 00, 8, 
t0 e,l= e, + n/2, 8,’ = 8, + m/2, n,m&. 

v Sy(y+ 1) 
+t+ y-1 ’ 

is the compatibility condition of 

V. THE FIFTH PAINLEVi EQUATION 

The fifth Painleve equation, 

Y,=A(z)Y, 

Yt = B(z) Y, 

where 

11 
Bw=Z ( 0 

0 
-1 1 

1 
z+; .i +;;+-,I 

u[v+eo-y~w~‘)l 
6 I 

, w=v+l(eo+e j 
2 m . (5.3) 

2 
0 

(5.1) 

(5.2a) 

(5.2b) 

I 

The equation Yzt = Ytz implies 

- wo+f4+e,)i, 

,$=,[ -2t-eo+y(iu-$) +:(-+;)I. (5.4) 

Thus y satisfies the fifth PainlevC equation (5.1) with the 
parameters 

q:;(z) =zmed2emo0 I(;) + (;ik)z+ -*) 

=z - ed2Pg;(z), 

I (x=- 
2 

i 
, B=-5 ’ where 

y=i-eo-eI, s= -f. (5.5) 

A. Solution about z=O 

The solution YCoj(z) = (Y&,‘(z), Y#(z)) of Eq. 
(5.2) in the neighborhood of the regular singular point 
z = 0, for 1 z[ < 1 and for B,#integer, has the form 

fp’ = (0) &$+w)(1+%)-9 

(5.6) 
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Lg; = ye:[ (f+w)(l +S) -,,ul+Jo, 

x(w+8) -Y(w-;)], 

LIT; = 
1 + w - q/2 

1-q - 1 y(llu+:~;,2)(~+B,) 

co= S’(fi++z)] -#t* (5*7) a,(t) = J’ (+yw+5)] 2]&!. 
Y 2 (5.10) 

The monodromy matrix about the regular singular point 
z = 0 is defined as 

Yto) (ice29 = Yco) (z)eLoeou3, Iz( < 1. (5.8) 

B. Solution about I= 1 

The solution Ycl)(z) =(@ii(z), Y{:](z)) of (5.2) 
in the neighborhood of the regular singular point z = 1, 
for jz - 11 < 1 and B,#integer, has the form 

e,-2w 
q;;(z) = (z- l)e~~~e-O~ 28 

( 1 1 

x[ ($:dw) + ($])(“- 1) 
+ . . . I = (z- l)WQ(z), 

q:;(z) = (z - 1) -e1’2e-cl [(“.)+(~~;)(l-l) 

+ . . . I 
= (z- 1) -“r”q:;(z), (5.9) 

The monodromy matrix about the point z = 1 is defined 
as 

Y(l)(ze2”) = Ycl)(z)eiTelo3, Iz- 1 I < 1. (5.11) 

C. Solution about z= CO 

The formal solution Y,(z) =(Y’,‘)(z), Y’,~‘(z)) of 
Eq. (5.2a) in the neighborhood of the irregular singular 
point z = 00 has the form 

f?(z) = (~)‘“‘eqcz)[ (i) + ($[uviF+s,l)i 

1 9s 
+ . . . = - 

1 0 
Z 

e@)?(ml)(z), 

j3c’(z) = (i) -em’2e-q(.) (Y) 

I 

where 

where 

+ 
i 
r[~+~~-y(w-~)] t ;+ ... 

Km 1 I 
1 0 - 8-12 

= - e 
Z 

-mu, (5.12) 

q;; = l [ 
i w + e,/2 

1 + e1 ;;sZ w - e1/2 (v+eoo) -t(i+u+t$ 

x(w+;)(w1:;;2) +:(1+w+$], 

K,= -~[v-~(w+~)][v+eo+y(w-~)] --, 

q(z) = (zr/2). 

J. Math. Phys., Vol. 33, No. 6, June 1992 



2042 U. Mugan and A. S. Fokas: Schlesinger transformations of Painlevb II-V 

Let Yv)(z), j= 1,2, be the_solution of (5.2), such that 
det Yj(z) = 1 and YJz) -Y,(z), as jz[ -+ ~0 in the sec- 
tors Si, where the sectors Sj are given by 

Si: - $Zarg z < i, S2+arg z < $. (5.13) 

c2 
S2 

1 
s1 ---- --- 

1 

4 

Diagram 4. 

The solutions Yi(z) are related by the Stokes matrices Gj 
and the relation is 

y2(z) = Yl(z)G1, Y1 (z) = Y2(ze2ilr)G2eire,‘3, 
(5.14) 

G=(; ($9 G2=(; f). (5.15) 

The relation between the solutions Y(,)(z) and Y(,,(z) 
are given by the connection matrices Eo, E,, respectively, 

YI(z) = Y(o) (z)Eo, EO = 

, det El = 1. 
(5.16) 

Let Y;’ (z) and Yi- (z) be the limit values of Yi(z), as z 
approaches to contour C’s (see Diagram 5) from above 
and from below, respectively. Then they are related as 

Y;’ (z> = Yr (z)E, ‘eidlo3El for 0 <z< 1, 

Y,+ (z) = Y;’ (z) for z> 1. (5.17) 

The monodromy data MD = C~,~,CLO,VO,~‘~,~~O,~~,V,,~*,~,} 

satisfy the consistency condition 

G,G2eiqeem03 = Eoe ‘e - i”eo”3E&,- e 1 - idp3E 
1. (5.18) 

D. Schlesinger transformations 

The monodromy data or equivalently the consistency 
condition of the monodromy data (5.18) is invariant un- 
der the transformation 

e,’ = e, + n 
a: e,‘=el 

I 

e,f = e, 
, b: et’= 8, + n , 

e,‘=e, +m I 8,‘=8, +m 

I 

e,’ = e, + n 
C: el’=el +m, (5.19) 

e,‘= 8, 

where n and m are either even or odd integers. It is 
enough to consider the cases n,m = f 1. Let 

R(z) = R: (z) when z in SF, 

R(z) = R, (z) when z in ST, 

R(z) = R,(z) when z in S2, 

where the sectors SF are 

(5.20) 

S,+ :O<arg z < z, 

C2 

S2 s: 
---- 

I- 

1 

SF 

c-1 

Diagram 5. 

S,- : - S<arg z < 0. (5.21) 

s2 I s: 

c3 
I ----. ---_ 

1 

r 

s; 

c 

Diagram 6. 

If Y’ corresponds to (36, 0;, and ok, we let 

[Y~(z)]‘=Rf(z)Y~(z) when zin SF, 

Y;(z) = R2(z)Y2(z) when z in S,. (5.22) 

The definition of the Stokes matrices (5.14) and Eq. 
(5.17) imply that the transformation matrix R(z) satis- 
fies the following RH problem along the contours C,, 
k = 1,2,3, indicated in Diagram 5: 
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R2b) = R,+ (z) on C2, R~(z) = R,+ (z) on C2 
RT (z) = R[ (z) on C3, (5.23) 
RI- (z) = - R2(zeZiT) R,+(z) = R,- (z) 

I 
-I, O<z<l on C3 

on Ci, I z<l on C3 
(5.25) 

, 
R,- (z) = R2(zeZirr) on G, 

R,(z) = R: (z) on C2 

R,+ (z) = R, (z) (II” “,;z,<’ ;; 2 (5.24) b: 

RI- (z) = R2(zeZi”) on cl, 
with the following boundary conditions: 

i 

R,+ (z)- Y;o,(z)z*“3Y&(z) as Z-PO, z in S,+, 

a: Rit(z)-Y;,,(z)Y~l~(z) as z-9 1, z in St+ , 

R;tW--y;&Hlh) *03Y;m’j(z) as IzI -60, z in St+, 

i 

R ,+ (~1 - Y;,) (~1 Y(i; (~1 as z-+0, z in St+, 

b: R;t (z)J;,)(z)(z- 1) *03Y(l)l(~) as z--r 1, z in Si+, 

R;t W-Y;,)Mlh) ‘“Yg: (z) as IzI --+a, z in S,+, 

R,+ (z) - Y;o,(z)z*a3Y&z) as z+O, z in S,+, 
=: R,~(z)-Y~~,(z)(z-z*“3Y~~,‘(z)1)*03Y~~,,’(z) as z-+1, z in S,+, 

R,+ W-Y;,)W(~,:(4 as IzI -00, z in Si+ . 

(5.26) 

(5.27) 

(5.28) 

In the case a, there exists a function R,(z) which is an- 
alytic everywhere except along the contour C, on which it 
satisfies the jump condition, 

R,+ (z) = -R, (z). (5.29) 

The solution of the above RH problem is given as 

R (I (z) =z-“~,^ (z) a 9 (5.30) 

where &(z) is bounded at z = 0. For the case b, the RH 
problem (5.24) implies that there exists a function Rb(z) 
which is analytic everywhere except along the contour C 
indicated in Diagram 6 and the jump is given by 

Rb+ (z) = -RF (z). 

The solution of the RH problem is 

(5.31) 

I 

Rb(z) = (z - 1) - 1’2R^b(z), (5.32) 

where Rhb is bounded at z = 1. For the case c, Eq. (5.25) 
yields the following RH problem along the contour C, for 
O<Z<l, 

R,+ (z) = -R, (z), 

and its solution is given as 

(5.33) 

R,(z) =z-~‘~(z- l)“‘&(z), (5.34) 

R^,(z) is bounded at z = 0 and z = 1. 
It is enough to determine the transformation matrix 

R(z) for n,m = f 1. The explicit form of R(z) can be 
listed as follows: 
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I 

e;=e,+ 1, -~~u+Bo) 
e; = el, 
e:, = 8, + I, R(1)(z)= 6 az112+ ( +;(w+;), ~(v+eo)[v~;(w+~)] 

I 
z-‘/2, 

I 

e+e,- 1, 
e; = e,, 

1 o z1,2+ $+e0-$+2)] ++Ba-.+-t$] z-,,2, 

e; = 8, - 1, 
42,(z) = 0 1 

() l 
1 -- 
u 1 i 

I e; e;=e,+ = 8, - 1, 
e; = e,, 

1 o ,,2 
R(3)(Z) = 0 0 z + 

() i 

++eo-++]~ -++eo-.+-~)] 

1, V - 1 
24~ + eo) 

I 

e;=e,- I, 
0; = e,, 
e:, = 8, + I, R(4)(Z) = (ii Y)z’n+ ( +;(w+;)] +;[~+!?)])z-~~~9 

(5.35) 

(5.36) 

I ’ z-1/2 

(5.37) 

(5.38) 

I 

e;, = e,, 
0; = e1 + 1, 
e:, = 8, + I, 

R(,)(Z) = 0 1 ( ) 
O O (z- 1)‘/2+ 

t 
+;(w+;)] +gi)]& 

I 
(z- 1)-“27 

(5.39) 

I 

e;, = e,, 
0; = e1 - 1, 
e; = 8, - 1, 

R,,,= ; ; (z-l1)1’2+ 
( 1 

l 

-$+~o-+-~)] 

1 

-$J+~~-Y(w-~)] ( _1)-‘,2 

I 

z , 

-G 
1 

(5.40) 

I 

e; = e,, 
0; = e1 + 1, Rc7)(z) = 

(z- 1)l’2+ ++eo-Y(w-~)] -++eo-~(w-t$] ( 
Z 

_1)-‘,2 
t 

e: = 8, ( 

:, ; 

) - 1, 
1 

--WI 1 1 
UY i 

(5.41) 

I 

e; = e,, 
0; = 8, - 1, 
e:, = 8, + 1, 

48)cz) = 0 1 (” ‘)(z- l)‘“+ ( -+;(w+;)] jv j;+“$])Cz- l)-1’2, (5.42) 

where 
w + e,/2 

w1 = w - e,/2* 
(5.43) 

shifts the exponents t90,C31,0m to Oo’, Ol’,Om’ with any in- 
teger differences. If 

YI(Z,t;y’,~‘,v’,eol,e~‘,e~‘) 
The transformation matrices R(j)(z),j = 1,2,...,8, are suf- 
ficient to obtain the transformation matrix R(z) which = R(j) (z,o,...,e, > Y(z,w...,e, 1, (5.44) 
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for k =j + 1, j = 1,3,5,7. (5.46) 

= ~~~)(~,ty,...,e~‘) Y(z,t;y,...,e,‘). (5.45) Also, R(I,(z)R(,)(z) = Rpj(z) shifts the exponents 
as e+e,+ I, 8,’ = 8, + I, 8,’ = e,, and 

Then 

R(k)(z,t;Y’(Y,u,...,e, ),...)R(j)(z,f;v,...,e, 1 = 1, 

R(2) (z)R(,)(z) = R ( 1oJ (z) shifts the exponents as 0,’ = 
0, - 1, 8,’ = 8 1 - 1, 8, = 8,. The explicit form of R(,, 
and RcloJ are 

(5.47) 
I 

e+e,+ 1, 
e; = e1 + 1, R(~, cz) = z1/2(z - 1) - 1’2 -&1f11 1 

e:, = e,, -&lf21 z ’ )I 

e;=e,- 1, 
ei = 6 - 1, Rcloj(z) =Z-1’2(Z- 11”~ I+g22f,,Ig,2f,2 -&2f22 g12f12 1 

e: = e,, -g22f22 1-l 822f12 z- 1 ’ 
(5.48) 

where 

j-11 f12 

F = f21 f22 ( 1 

1 
,(v + eo)e-@) ue”OO(‘) 

V 
-e-oo(‘) 

, ueo 

eao( f) I , 

i 

2w - e' -o,(t) 

-T&--e 
uye"l Cr) 

= 
i 2w-el _ - ~ ,-olw 

( ) UYW, 26 
eol ( 0 

I3 

where a,, cl, w, and wl are given in (5.7), (5.10), (5.3), 
and (5.43)) respectively. 
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