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The explicit form of the Schlesinger transformations for the second, third, fourth, and fifth

Painlevé equations is given.

I. INTRODUCTION

A powerful method for studying the initial value
problem for certain nonlinear ODE’s was introduced in
Refs. 1 and 2. This method, which is the extension of the
inverse spectral method to ODE’s, is called the inverse
monodromic (or isomonodromic) method. It can be
thought of as a nonlinear analogous of the Laplace’s
method.

The six Painlevé transcendents, PI-PV], are the most
well-known nonlinear ODE'’s that can be studied using
the inverse monodromy method. A rigorous investigation
of PII-PV using this method has been recently carried
out in Refs. 3 and 4. In particular, in these papers, it is
shown that certain Riemann-Hilbert problems, occurring
in the process of implementing the inverse monodromy
method, can be rigorously investigated. This implies that
the Cauchy problems of PII-PV admit, in general, global
meromorphic in ¢ solutions. Furthermore, for special re-
lations among the monodromy data, and for certain re-
strictions of the constant parameters appearing in PII-
PV, these solutions have no poles. This provides the
motivation for studying how the solutions of a Painlevé
equation depend on their associated constant parameters.

Here, we present a systematic investigation of the
Schlesinger transformations associated with PII-PV.
These transformations imply the relations among the so-
lutions of a given Painlevé equation when its parameters
are shifted by an integer.

Let p(t) be a solution of a Painlevé equation corre-
sponding to the parameter 8 (for PIL, y, = 2y° + ty + 9).
This equation is associated with the monodromy problem
Y,= AY, where z plays the role of the spectral parame-
ter. The implementation of the isomonodromy method
necessitates the investigation of the analytic properties of
Y(z). It turns out that there exists a sectionally mero-
morphic function Y(z), with certain jumps across the
certain contours of the complex z plane; these jumps are
specified by the so-called monodromy data, denoted by
MD. We denote by ' and by Y’, y and Y when 6-6'. It
turns out that it is possible to find an appropriate trans-
formation of 6 (namely, 8 =80-+n or &' =0+ n/2,
neZ) such that the MD are invariant. Then Y'(z)
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= R(z) Y(z), and the Schlesinger transformation matrix
R(z), can be found in closed form, by solving a certain
simple Riemann-Hilbert problem [since the MD of ¥ and
Y’ are the same, R(z) has very simple jumps in the com-
plex z plane].

Il. THE SECOND PAINLEVE EQUATION

The second Painlevé equation,

2
'y
F=2y3+ty+a, 2.1)

can be obtained as the compatibility condition of the fol-
lowing linear system of equations:

Y,(z) =A(2)Y(2), (2.2a)
Y(z) = B(2)Y(2), (2.2b)
where
0
A 10 2 2v ’
u
t
vty *uyt
+
2 — u+—> ’
— (6 +yv) ( 2
u
i /1 0 if ° ) “ 23
(Z)_E(O _1>z+§ _2; ol (2.3)
The equation Y,, = Y,, implies
dv du dy t
P —2yv— 6, = W E=v+y2+-2—. (2.4)

Thus p satisfies the second Painlevé equation (2.1), with
the parameter
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a=3—0. (2.5)

B

A. Solution about z=

The formal solution ¥, (z) = (¥ (z), ¥®(2)) of
equation in (2.2a) in the neighborhood of the irregular
singular point z = o« has the expansion

(2 )

- 1\?
YS)(Z) = (; 9@

1 7]
(—) ADFD (2),
z
u
7o, =(;) . ()+(—§)§+...
K
1
where
1, t P
K=35v +(y+5)v+9y, 9(z2) =5+ 3z

Let Y,(2), k = 1,...,6 be solutions of (2.2), such that
det Y (z) =1 and Y, (2) ~Y _(2) as |z| » o in the sec-
tor S}, where the sectors S are given by

s T T s T T s T S5
1= g< argz<—6—, 2.g< argz<5, 3.5< argz<?,
S 517 T Se 1w Kl
46 argz<6, 5t 6<argZ<2,
37 117
S¢: <argz<T (2.7)
Cy
Yy Sy S, (&%
_>;4
// -
C's s Se bl
('6
Diagram 1.

The solutions Y, (z) are related by the Stokes matrices
G

Y,,.(2) =Y(2)Gy, j=1,..5,

Y1(2) = Yg(2e*™) Gye?™0%, (2.8)

where

1 0
O3 = (0 _ 1), (29)

and a, b, ¢, d, e, f are constants with respect to z. The
monodromy data, MD = {a,b,c,d,e,f}, satisfy the consis-
tency condition

6
Il gemos=1. (2.10)
j=1

B. Schilesinger transformations

Let Y’'(z) correspond to &. We consider the trans-
formation

Y'(z) =R(2)Y(2), (2.11)
and we demand that Y’ has the same monodromy data as
Y. Since Eq. (2.10) is invariant if @ is shifted by an
integer, we let 8’ = 6 + n, neZ. Let R(z) = R;(z) when z
in S}; then the definition of the Stokes matrices (2.8)
implies that the transformation matrix R(z) satisfies the
RH problem along the contour C, k = 1,...,6, indicated
in Diagram 1:

Rj+1(2) =RJ(Z) on C}-’-l’ j= 1,...,5,

R(z) = R¢(ze¥™) on C, (2.12)

with the boundary condition

Ri(2) ~ ¥ (2)(1/2)"3F¥ 2 1(2), as z— 0, z in S
(2.13)

Equation (2.12) implies that the transformation matrix
R(z) is analytic everywhere in z plane and can be deter-
mined explicitly by using the boundary conditions (2.13).
It is enough to consider the particular cases 6’ = 6 4 1
and @' = 0 — 1. Solving the above RH problem for these
two cases we find
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9=6+1:
u
R(2) 0 0) E
(e _(0 )7+ v 6 ’
u —u 7
u
, e a1 0 Y2
=0—1: (2)(2)—<0 O)Z+ 2
—— 0
u
(2.14)

Successive applications of the transformation matri-
ces Ry(z), i=12, map 6 to 0 =0+n, neZ. If,
yu'w,8 =60+1 are the transformed quantities of
» u, v, 8 under the transformation given by R,(2), i.e.,

Y'(z;t,y’,u',v',e’) = R(I)(Z;t,y,u,v,e) Y(Z;t,}’,u,v,e),
(2.15)

and if p",u”,v",8" = 8 — 1 are the transformed quantities
of y', #’, v', 6’ under the transformation given by R 5,(z),
ie.,

Y (z,ty",u" 0",0")

= Ry(zyu' v, 0) Y (z,ty'u'v',0'), (2.16)
then

R85y (u,w,0),.. )Ry (zty,u0,0) =1.  (2.17)

Also,
Rty (3u,0,0),.. )R 1) (z:t,0,u,0,0) = R 3)(2),

R(z)(z;f,}"()’,u,v,e)w-)R(z)(Z;t:y,u,v,e) = R(4)(Z), (218)

where R(;,(z) and R4,(z) shift the exponent 00" =6
+ 2 and 86 = 0 — 2, respectively.

The linear equation (2.2a) under the Schlesinger
transformation given by Eq. (2.11) is transformed as fol-
lows:

Y (z) =4'(2)Y),
A'(z) = [R(2)4(2) + R,(2) IR~ '(2). (2.19)

For the particular case of R,), the quantities y, u, v, 6 are
transformed by

0'

O=0-1 y=—y—p s

u' =Ry, v=—v-—2p—t (2.20)
That is, if p(¢) solves the second Painlevé equation with a
parameter a =1 — 6, then y'(¢) solves the second Pain-
levé equation with parameter ¢’ =« + 1. From Eq.
(2.20), the well-known Bécklund transformation for the
second Painlevé equation can be obtained:

200 + 1

y=‘“J’+2 +2yt+t’ a=a+1-

1ll. THE THIRD PAINLEVE EQUATION

(2.21)

The third Painlevé equation,

dy 1(dy\* ldy 1 , 6

EF;(EE) —i Gt @B S, |
(3.1

is the compatibility condition of the linear systems of
equations

Yz(z) =A(Z) Y(Z), (3.23.)
Y(z) = B(2)Y(z), (3.2b)
where
-0, y
1 0 2 1
e =3(o _1)* 6. |2
7
t
S—-2' - ws 1
+ N2
—(s—1) — (s—i)
0 1/0 u
Bm:i(o 1)2 t(v o)
t
1 S——2‘ — ws 1
-7 nlz (3.3)

1
E(s——t) —(s—i)

The equation Y,, = Y,, implies

du 0, )
F7 B

dv 0,

2
= 7t =9,
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ds
I(E) = —4ys* + (4pt — 20, + 1)s

+ (60 + 6,,)1, (3.4)

dw IG o 2 0
tz—w[s( b+ 60,) — 2ty + m],

d
FJ:=4sy2—2ty2+ (26, — )y + 21,

where y = — u/sw and

6y s—t 0. s 6. 35
2= —7(“— zw)ﬂ(“’”?)- (3.3)

Thus y satisfies the third Painlevé equation (3.1) with the
parameters

a=46, B=4(1-6,), v=4 6= —4. (3.6)
A. Solution about z= «

_ The two linearly independent formal solution
Y=l (z) = (¥{3'(2), Yi55'(2)) of Eq. (3.2a) in the
neighborhood of the irregular singular point z= « has
the form

Y5 (2)

16”/2 A
st =(3) 7 eipe,
Y5 (2)

u
1\ ~ %72 0 Tt 1
N —zt/2 -
) e e
S

(3.7)

where

()
Kiy

~ | =

v t uy 1
7(1+6) +U(§—S—7) +E(S—f)],

—

(o) t w
K{P) == u(l—Bw)+ws—u(s—-§+T)]- (3.8)

-

Let Y}‘”’(z), Jj=1,2, be the solution of Eq. (3.2), such
that det ¥{*)(z) =1 and

Y{)(2)~Y(=)(2) as |z| >, in SI°, j=12,
(3.9)

where the sectors Sj(-°°) are indicated in Diagram 2 and
given by

(o) T T (w)’IT 3
Si :—E<argz<5, S :—2-<argz<T, |2} >z,

(3.10)

where z; is a constant and 0<Zzy< . The solutions
Y}‘”’(z) are related by the Stokes matrices GJ(-°°). For
t> 0 this relation is given by

P = ¥ 6,

Ygao)(z) — Ygeo)(zeZiﬂ)Ggw)eiﬂew@, (3.11)
where
1 0 1 b,
G§°°>=(a 1), G§°°’=(O 1). (3.12)

For ¢t <0 the Stokes matrices are the transpose of those
for the case £>0.

B. Solution about z=0

The formal solution f’(o)(z) = (f’f?g(z),f’gg;(z)) of
(3.2) in the neighborhood of the irregular singular point
z =0 has the form

J. Math. Phys., Vol. 33, No. 6, June 1992
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wk
Yfl)(Z) = 7007251722 ( X )

t uv v
—wk[s(l—z—s)+7 —i7
+ z
t uv vis—t
—"[S(l—z—s)+7 —’;(“w‘;)
4 =z"0’2e’/2z)'>§?;(z),

!
(0) — — —_
() (z) =z~ 0212 (15 ’)

ws

sz? sl t )
r s( _£)+ t
+ z+ ve
k_ ls—t : t )
ferh(-2)F
=z~ /%= 120 (1), (3.13)
where
3 s—1\?
u=12[(—) u—-u——(s—t)],
ws
U=k (0 w— u+ wh), (3.14)
and k, / satisfy the following conditions:
t 1 (s—t\ sw[ [s—t')\*
ni= [ () -7
ws
9°° ' d/
—'Es_(s_t)’] r,
e 1 1/s—t
lnk=f 7{wv—-t-( )(wO —u—wv)]dt
ki= —s/t. (3.15)

Let Y( )(z), Jj=12, be a solution of (3.2) such
that det Y(z) =1 and YO~ ¥9(z) as z-0 in 5{,
where the sectors S(o) are given by

T T 3w
S — —<argz< . S(O).—<arg Z<—H

2 2’ 2 7 lZl<=
(3.16)
%y
s 5l
e
5o
s
/ QN
Cu b Cr
3 o
Diagram 2.

The solutions Y(O)(z) are related by the Stokes matrices
G(O) this relatlon is given by

r%(2) = Y{* ()G,
YgO)(Z) — YgO)(ZeZt'w)Ggme—ifreoa@, (3.17)
where
1 0 1 b
G§°>=(a0 1), G§°’=(o 1"). (3.18)

The solutions Y §°>(z) and Y §°°)(z) are related by the
connection matrix E:

Y(=)(z) = YO()E, E= (’g ;) det E=1,
(3.19)
Y{®)(z)
= ¥9(2)
[G‘O)] 'EG{>), if Imz>0,
G(O) —1#9003E[G(oo) inf,, =] —1 if Imz<O.
(3.20)

The monodromy data MD = {ay,by,a.,,b
isfy the consistency condition

w,,u,v,g,n} sat-

Gg © )Géw )ei‘rrewa_o, =E~ 1G§O)G§O)e - i”0°03E. (3.21)
In particular,

2cos 0, + a b e s =2 cos O, + aghee™™.
(3.22)
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C. Schlesinger transformations

Since the consistency condition of the monodromy
data (3.21) [or (3.22)] is invariant if 6, and O are
shifted by integers, we let Gy=6,+n, 6, =0_
-+ m, n, meZ. If Y’ corresponds to 63 and 6!, we let
Y'(z) = R(z) Y(z), where

[-%4

R(z) = R{*%(z), when z in §{>, j=1,2.
(3.23)

Then the definition of the Stokes matrices (3.11) and
(3.17), and of the connection matrix (3.19) and (3.20),
imply that the transformation matrix R(z) satisfies the
RH problem

R{®)(2) = R{®)(z) on CP,

R{®)(z) = (— 1)"R{®)(2¢*™) on CP,

R (z) =R{¥(z) on &,

RO(z) = (— 1)"R{®(2¢*™) on C5, (3.24)

R{*)(2) = R{”(2) on Cy,

R{™(2) = RO (2) ffnl )C,:f; " on G, ﬁizg
(3.25)

where the contours C;, Cp, C?, C7, j = 1,2, are indicated
in Diagram 2. The continuity of the RH problem along
the contour C; implies that n + m = 2k, ke€Z. Hence,

(6,0, =(8y+m—n,06,+m-+n), mmnei.

(3.26)
It is enough to consider the following four cases:
60’=60—1 00“90-{-1
Milg’ o 1 @ig_g 4
Gp—1 =0+ 1
(3): =9° _p l AR ¢ ¥ )

For all four cases the RH problem (3.24) and (3.25) can
be written as
R*¥(z)=R~(z) on O3+ C5,

R*(z) = — R~ (z¢¥™) on C*+ CP, (3.28)

with the boundary conditions

~ 1 3 (m+n)oy N
RO~F0I(;) PO

as |z| - o0,

A 1\2(m—mas
R(z)~[¥<°>(z)1'(;) [YOz)] !

as z—0, (3.29)

where R™* (z) and R~ (z) are sectionally analytic func-
tions in sectors S{PUS{*) and S US{™), respectively.
The solution of the RH problem (3.28) is given as

R(z) =z~ ?R(2), (3.30)

where R (z) is bounded at z = 0. The explicit form of the
transformation matrices R(z) are obtained from Eq.
(3.29) and are

o o 1 _ ws
S—
_ 172 —1/2
Ro@=(g )7+ , (331
Tt ts—t
1 —w
00 1/2 —1/2
R(z)(z)=(0 Nevz | 0w oo a2
t t
us—1It u
1 0 Tt ws t
_ 172 — 172
Ro@=(y o7+| |, e e
- ws
u u
10 Tt
— 1/2 —-1/2
R(4)(Z)-——(O O)Z + 1 | V4 . (334)
Tw

The transformation matrices R,(z), i = 1,...,4, gen-
erate all possible transformation matrices. If

Y' (Zatiy”uI$U';E"Elaw'9sl’0w 1’60,)

= Ry (z,5:),...,60) Y (z,1;9,...,65) (3.35)
and
Y" (z’t;'y'l’uM’UII’EII,EII’wﬂ,SII’ewIl’eol‘l)

=Rp(z,ty',...,00" )Y (2,1;)',...,6p"), (3.36)
then

R(k)(z,t;y'(y,u,...,@o),...)R(l) (z,t;y,...,@o) = I, (337)

for k,/ = 2,3 and £,/ = 1,4.
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IV. THE FOURTH PAINLEVE EQUATION

The fourth Painlevé equation,

dy 1dy\: 3, B
Fr"":E(E) +3¥ +4ty2+2(t2—a)y+;, 4.1)
is the compatibility condition of the linear problem
Y.(z) =A(2)Y(2), (4.2a)
Y,(z) =B(2)Y(z), (4.2b)
where
t u
A(z) (1 0 ) +12
zZ)= F4
0 -1 —(v—6y—0,) -t
u
uy
6, — _=
o—V ) 1
+ )
(0260 —(B—v) ]
Zuy(v 26,) o
. 0 u
B(z) = 2 . 4.3
(@) (0 —1)” “(v—0,—0_) O (4.3)
u
The equation Y, = Y, implies that
du )
7= —ur+2),
dv 2, 46, o1 0
Z= 5 +(y —y)v—l-( o+ 00
dy )
(E) = —4v + y° + 2ty + 406,. (4.4)

Thus p satisfies the fourth Painlevé equation (4.1) with
the parameters

a=20_,—1, B= —86) (4.5)
A. Solution about z=

The formal solution of the Eq. (4.2a) in the neigh-
borhood of the irregular singular point z= «, Y _(2)
= (Y‘;)(z), Y(j)(z)) has the form

—K

1 1

(o)+ Lo—to—0.) 7
u 0 w©

P (z) = (l)eweq(z)

V4

- 1\ ~ %
P = (1) e

|

N -

-9, N
) e~ 1Y (z), (4.6)

where

v y
K=;(U—290) — (U—Go—ew)(t-l-E),

2
q(z) = ) + 1z.

Let Y;(z) be the solution of (4.2) defined by
Y(z)~Y,(z) as |z| > w, z in the sector S}, j = 1,2,3,4,
where the sectors S; are given by

s T T s T 3w
10— 4<argz<4, 2.4<argz< 3’

s 3 5T P 5T Tar 47
3.—1—<argz<—4—, 4.~4—<argz<T. 4.7)

Diagram 3.

The solutions Yj(z) are related by the Stokes matrices G 1
via

Y :12) =Y (2)G,, k=123,

Y1(2) = Y4(26¥7™) G303, (4.8)
1 0 1 b

Gi=(a 1) @=(o 1)
1 0 1 d

G3=(c 1>, G, = (0 1). (4.9)
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B. Solution about z=0

The solution Y,(z) = (Y{"(z), Y{¥(z)) of Eqgs.
(4.2) in the neighborhood of the regular singular point
z =0 for Gy5n,, neZ has the form

1
1 (H
D,y — 0, — oli) 2 ) ..
Y((J (z) =z l(_—uy)+290+1(“')z+

= 003}(()1)(2)’
uy
v 2(28y — v)
2) — =g 1 __ 0
Y(()(z)—z 0O¢' (1 290)
1

2)
L (D
+26,—1 2

=z~ %FP (2), (4.10)
where
= —yv—6,—06,) —ut
+ (1426, — v) (2 + 2up),
uy 2(1—v) y
2) W .
Hf =5 |t+ 26, — o
t(1—v)
x(u—eo—ew— )] (4.11)
y
| J‘t 2v d
t) = —dt’.
o( 7
The monodromy matrix about z = 0 is given as
Yy(ze*™) = Yo(z)e* ™0, (4.12)

and the relation between Y,(z) and Yy(z) is given by
connection matrix E,

7}
4

The monodromy data MD = {a,b,c,d,u,v,t,m} satisfy the
consistency condition

Yi(z) = Y(2)E, E= ( :;), det E=1. (4.13)

4
H G]e2iﬂ0wo3 =E- le— 21'11'0003E; (414)
j=1

in particular,
(1+ bc)e*™e + [ad + (1 + cd) (1 + ab)Je~ %70

= 2 cos 270, (4.15)

C. Schlesinger transformations

The consistency condition of the monodromy data
(4.14) is invariant if 6, and 6, are shifted as

0/ =0 2n+1
60'=90+n . 0 0+ 2
Blg =0, +m ¥ 2m 41
6, =6_,+ >

(4.16)

If Y' corresponds to 6§ and 6/, we let Y'(2)
= R(z)Y(z), where R(z) =R;(z) when z in Sy J
= 1,2,3,4. Then Eq. (4.8) implies a RH problem for
R(z):

Ry 1(2) =Ri(2) on Cppy, k=123
R(z) = R4(z¢*") on C,

Rk+1(2) =Rk(2) on Ck+ 1s k= 1,2,3
Ri(z) = — Ry (z¢¥™ on C,,

(4.17)
with the boundary conditions
R(z)~Fy(2)2¥5 Y(z)  as z-0,
a: A 1\ ™9
R(2)~Y, (2) (;) Y (2) as |z| - o,
R(2)~ Ty (24P 025951 (z) a5 2.0
) R 1\ (@m+D/2os
' R(2)~Y;,(Z)(;) Y (z) as [z]- o,

(4.18)

where the contours C; j=1,2,3,4, are indicated in Dia-
gram 3.

For the case a, there exists a function R(z) which is
analytic everywhere and

R(z2)=R(2) = Ry} (Z) = R;(z) = R,(2). (4.19)
The boundary conditions (4.18) specify R(z) as a ratio-
nal function of z. For the case b, there exists a function
R(z) which is analytic everywhere except along the con-
tour C;. The solution of the RH problem (4.17b) is given
as

R(z) =z V2R(2), (4.20)
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where R (z) is bounded at z = 0. By using the boundary

conditions for R(z),
mined.

the function R(z) can be deter-

2039

All possible Schlesinger transformations admitted by

the linear problem (4.2) can be generated by the follow-
ing transformation matrices R;(z), j = 1,2,3,4,

|
1 _Y
0y =6p—3 00 2(v — 26,)
- 172 0 172 4
L’w'=e,,+%’ Ro®=(o 4| a0, oo [ (421
- u 2(1) — 260)
v ou
8" = 6o+ 1 0 y 2
— 172 -1
[ew'=6w_%’ R(z)(z)—(o 0)2 + 2 1 z , (4.22)
uy
1 cd
6’ =60 +3 00\ ,, ez 172
, = Ve 4.
900’=eco +% R(s)(Z) (0 l)z + 0—60_900 y(v—eo—em) z ( 23)
o u o 2w
v— 26, u
00’ =60 —1 10 y 2
9 ' 0 1? R(4) (Z) = (o 0)21/2 + ) z- 1/2. (424)
w — Yo T2 iy 1
uy(v 26y)
f
If y'u'w'0y =60, — 3 6, =80, + 3 are the trans- Ro(z,60' Ghtdyen) s YR 3y (2,800) = Ris),
formed quantities of y,u,v,6,,6 , under the transformation W <) )
given by Ry, i.e,
R(2)(Z:t§y'(y,u,---),---)RM) (Z,t;y,...) = R(6)y (4.29)
Y'(z,5'u'v',64,0,,")
where R sy and R, are
= R(l)(z,ti}’»u»v»eo,ew) Y(Z’t;y,u;U’BOsew ), (4.25)
and ify",u",v",O" —_ 60' + %, BZ) =0 'w - %are the trans- R(S)(Z) - (0 (1))2
formed quantities of ', u’, v’, 6y’, 8., under the transfor- 0
mation given by R(,(z), ie, "
0
Y” (z,t;)’",u",v”,e(’)',ei) + v— 90 - 600
v—6,—6, v(v — 26)
= R(Z) (z,t;y',u’,v’,eo',em’) Y(z’tiy'9u"v1,60'79wl)’ - u - v—0,—0
(4.26) ¥ o —0,)
then : uy
' 1 0y 20,+1 =
R @ty ity YR 1y (2otin) = 1. 427)  Ry(2) = (0 1) L2 .
Similarly, uy 1
R(3)(z,t;y'(y,u,...),...)R(4) (Z,t;y,...) =], (4.28) v y
Also, N=2[t+;+5(v—90—9w)], (4.30)
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and shift the exponents 6, = 6y 0, =6, +1 and _90' w S+ 1)
=6,+1, 8" =0, respectively. Hence, the successive Tt (5.1)
application of the Schiesinger transformations defined by Y
the transformation matrices R Jpd= 1,2,3,4, maps 6, 0, . s .
t0 8y =6y +n/2, 0,' =0 + m/2, n,meL. is the compatibility condition of
V. THE FIFTH PAINLEVE EQUATION Y,=A(2)Y, (5.2a)
The fifth Painlevé equation,
Y,=B(2)Y, (5.2b)
dy (1 1 \(dy\* 1dy (y—1)* B
d7_(2y+y—l)(z> ~tat T 7 (ay—i—;) where
|
6o 6,
2 _ 6, . _ 1
11 0 vty Tul+6o) w “y(w 2) 1
A(z)zi(o —1)+ v o 12T 1 8, =1
— — — - — w
i (+3)) \-plee3)
6
0 _ _
11 0 1 4o+ y(w 2)] ;
B(Z)=§(O _1)Z+? 1 1 6, , w=v+3(6,+0,). (5.3)
2750+ 3)] °
|
The equation Y,, = Y, implies
Yé N(z) = 2%2% "“70__[( (v+9°))
ly 1 u6,
12—y~ 2(p— 12— =(y — D[ (6o — 6 + 6.,)y !
dt 2
— (36 + 0, + 6,1, +(K';'2))z+...
0)
dv 6, 1 0 6, ~
tdt—yv(w_ 2) _y(v+ 0)(w+ 2>’ =260/2YE(1);(Z)!
tdu 2t — By + ( 01)—;—1( +91)] (5.4)
—=u| =2t —~Og+ylw—— —lw+—=]]. .
dt 2 2 u
y YEO)(Z)=Z—90/2€—00[(1)+(LE(Z);>Z+...]
Thus y satisfies the fifth Painlevé equation (5.1) with the .
parameters z~ 60/2Y§(2,;(z), (5.6)

1/66— 6+ 6\ 1/6,—6,— 6,
““2( 2 ) B“z( 2

).

'y=l-‘-00—01, 6= ——%- (55)
A. Solution about z=0
The solution Y (q(z) = (Ygo) (2), (0)(2)) of Eq.

(5.2) in the neighborhood of the regular singular point
z=0, for |z| <1 and for 6,integer, has the form

J. Math. Phys., Vol.

where

U+60
vy

v—l

a2+ (55T -

] v g
X[ 3) (-3
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U+90
y(l+v)

u(1+v) ¢ v+90
L = (§+w)( v+1)—
61 91
X(w+?)“y(""7)]’
t (1 1 61 1 ,
o= Jlele=s(e )| -gl oo

The monodromy matrix about the regular singular point
z =0 is defined as

Y(o) (ZEZiﬂ) = Y(o) (Z)ei”9°a3, |Z‘ <1. (58)

B. Solution about z=1

The solution ¥;,(z) = (¥{}}(2), Y{}(2)) of (5.2)
in the neighborhood of the regular singular point z = 1,
for |z— 1] <1 and 0,5*integer, has the form

61—2w
YEii(z)=(z_1)9vze—vl( - )

+o = =DV @),
_ o (WY
e T
+]
= (z— 1)~ 9272 (2), (5.9)
where

X(w+%)(‘—fei‘i’z)+”(l+w+9)]

J. Math. Phys., Vol.

y(14+w—6/2)

90 142w
+”y(2+”+ )( T +w— 01/2”

tiy 1 91 1 ,
o= [ flr=3{0+3)] -3l

The monodromy matrix about the point z =1 is defined
as

1+w——61/2[

(5.10)

Yy (2e4™) = Y (1, (2)e™%, |z 1 <1.  (5.11)

C. Solution about z=«

The formal solution Y (z) = (Y (z), Y (z)) of
Eq. (5.2a) in the neighborhood of the irregular singular
point z = o« has the form

_ 1 6,72
YP(2) = (;) e??

—6_n
YA (z) = (%) e 99 ((1))

1
+ . -+
z
K,
1 —-6,72
=(;) e~ 1Y () (5.12)

q(z) = (z1/2).
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Let Y;(z), j= 1,2, be the solution of (5.2), such that
det Y(z) =1 and Y;(z) ~Y ,(2), as |z| - o in the sec-
tors S, where the sectors S; are given by

T T T ir
S —5<argz<5, S2:5<argz<~2—. (5.13)
Cy
SZ Sl
- (- — -
o)}
Diagram 4.

The solutions Yj(z) are related by the Stokes matrices G;
and the relation is

Y,(2) = Yi(2)Gy, Y,(2) = Y,(26¥™)G,e/™0=,

(5.14)
10 1 b
oo 1) @=lo 1)

The relation between the solutions Y1y(z) and Y (4)(2)
are given by the connection matrices E,, E,, respectively,

(5.15)

N@ = Yok E=(f ) dE=1,
So Mo

Y,(2) = Y1, (2)E, E,=(“‘ V‘), det B, = 1.
W ’ &rom

(5.16)

Let Y{* (z) and Y| (z) be the limit values of ¥;(z), as z
approaches to contour C; (see Diagram 5) from above
and from below, respectively. Then they are related as

Y (z) = Y7 (2)E[ 'é™9E, for 0<z<]1,

Y (z) =Y (2) for z>1. (5.17)

The monodromy data MD = {a,b,uqvo:$0 Moot 15V1:5 11}
satisfy the consistency condition

Gleeifrewq — Eo—— 1e—- i11-90cr3E0E1— le— i1r910'3E1’ (5.18)

D. Schlesinger transformations

The monodromy data or equivalently the consistency
condition of the monodromy data (5.18) is invariant un-
der the transformation

90 =90+n 60 =90

a[91'=91 , b’91 =0,+n ,
0, =0_,+m 6, =6_,+m
00’=00+n

c:{91'=91+m, (5.19)
e, =0,

where n and m are either even or odd integers. It is
enough to consider the cases n,m = =1, Let

R(z) =R{*(z) when z in S|,

R(z) =R[ (z) when z in S|,

R(z) = R,(z) when z in S,, (5.20)
where the sectors S are
T T
S :O<argz<§, Sy —E<argz<0. (5.21)
02 |
I
|
S2 S,*‘ S i 5|+
—_— = — p————— (Y ——-——I 1————
3 1
E s s
$c, c
Diagram 5. Diagram 6.
If Y’ corresponds to 8, 61, and ', we let
[Y7(2)]'=R{*(2)Y{(2) when zin S,
Y;(z) = Ry(2)Y,(z) when z in S,. (5.22)

The definition of the Stokes matrices (5.14) and Eq.
(5.17) imply that the transformation matrix R(z) satis-
fies the following RH problem along the contours C,,
k = 1,2,3, indicated in Diagram 5:
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Ry(z) = R[" (2) on G, Ry(z) =R (z) on C,
a:{ R (z) =Ry (2) on Cs, (5.23) —1I, 0<z<l on C
. . - H 3
Rl_ (z) = —R2(282m) on Cj, c: R]+ (2) =R1 (z) I, z<1 on 03 (5.25)
R (2) = Ry(ze¥™) on Cy,
Ry(z) =RY(z) on C,
—1, O0<z<l on C;
b:{ R*(2) = R 5.24
RE@D =R " ,.1 ong O
R[ (z) = Ry(zé¥™) on C),
with the following boundary conditions:
|
R (2) ~ Yig)(2)2* Y 5) (2) as z—-0, z in S|,
a:{ R" (2) ~Y{;,(2) Y1) (2) as z-1, z in S|, (5.26)
R (2)~Y (@) (1/2)*3Y \(2) as |z] >, z in ST,
R} (2) ~Y{)(2) Y 5)(2) as z-0, z in S,
bi{ R (2) ~Y{}y(2)(z— 1)*5Y ) (2) as z—1, z in ST, (5.27)
R (@) ~Y{ () (1/D)*BY )\ (2) as |z|»w, z in ST,
R (2) ~ Yigy(2)23Y ) (2) as z-0, z in ST,
c{ RF (2)~ Y (2) (2 — 2593 5 (2)1)* Y ) (2) as z—1, z in S, (5.28)
R (2)~Y{ ()Y ) (2) as |z| >, zin SJF.
1
In the case a, there exists a function R,(z) which is an- Ryz)=(z—1)" 1/21’317(2)’ (5.32)

alytic everywhere except along the contour C; on which it
satisfies the jump condition,

R} (z2) = —R] (2). (5.29)

The solution of the above RH problem is given as

R(z) =z~ V2R, (2), (5.30)

where ﬁa(z) is bounded at z = 0. For the case b, the RH
problem (5.24) implies that there exists a function R,(z)
which is analytic everywhere except along the contour C
indicated in Diagram 6 and the jump is given by

R} (z) = — R; (2). (5.31)

The solution of the RH problem is

where 1/2\,, is bounded at z = 1. For the case ¢, Eq. (5.25)
yields the following RH problem along the contour C; for
O0<z<«l,

RY(z) = — R (2), (5.33)
and its solution is given as
R,(z) =z~ V2(z— 1)'2R,(2), (5.34)

Ia(z) is bounded at z=0and z= 1.

It is enough to determine the transformation matrix
R(z) for n,m = +1. The explicit form of R(z) can be
listed as follows:
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u
66:90—{—1, 00 1 _-l-)-(u+60)
le;=61, Riy(2) = (o l)z'/2+ : . 0 . ) p z7 12 (5.35)
0, =6, +1, S (O 2y = _ 2
wl5(ee2)] werwleslees)]
, 1 1 0 u e}
90=90_1, 1 0 ;[U+90—;(w—-2—1)] —7 v+00—y(w—71)
61 =06, Ry(2) = (0 l)z‘/2 + ) z= 12, (5.36)
0, =0,—1, -
u 1
, 1 0 61 v P 61
oot N £ oy | = A SR O 5 |
01 = 91, R(3)(Z) = (0 0)21/2 + z— 1/2’
0. =6,—1, . 1
u(v + 6y)
(5.37)
96=00— 1, 0 0 1 —u
[6{ =0, Riy(2) = (O 1)21/2 + 1 0, 1 1 ﬁ z= 12 (5.38)
0, =0,+1, Tt U_y(w+2 tu_yw 2
u
6 = 6o 1 _Z
’ 00 wh
01=91+1’ R(S)(Z)=(O 1)(2—‘1)1/2+ 1 1 6 1 0 1 (Z—l)_l/z,
0, =0, +1, o —{wae 2] o w2 |—
® tu y 2 t y 2 ] |uy
(5.39)
, P 1 P 91 u P 90
%= o 1o a+oso=3)] —ilres(o-3)]
0;=6,—1, R(6)=(0 0)(2-1)1/2+ ) (z—1)"172
6,.,=0,—1, _ 1
uy
(5.40)
, wy P 91 u P 61
oo [t an{ec)
6{:91—{—1, R(7)(Z)=(0 0)(2_1)1/2+ : (Z—l)—l/z,
6, =0,—1, — —w 1
uy
(5.41)
65 = 6Bq, 0 0 1 —uy
01=0i—1, R(2)= ( )(z— 24 1 1 0\] ¥ 1 ] |z=1)""2  (542)
01 N P hi o T hd | )
0 =0, +1, u|” y(w+2)} |’ y(w+2)
f
where shifts the exponents 6,,0,,0 to 6y, 8,',6,’ with any in-
w+ 6,/2 teger differences. If
Wi =w——61/2' (5.43)

Y,(Zyt;.y,9u,av,’90”01,aew ’)
The transformation matrices R M (2), 7= 1,2,...,8, are suf-
ficient to obtain the transformation matrix R(z) which = R(j(z,6:0,.-,0 ,) Y (z,6:,...,0 ), (5.44)
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and for k=j+1, j=1357  (546)

Y” (z,t;y",u”,v”,eo”,el’,Gw ’)

= Ry (2100, )V Y (213,000 .. (5.45) Also, R(y,(2)R7)(z) = R(9)(2) shifts the exponents
as Oy =6y+1, 6/=6,+1, 6. =60, and
Then R(5)(2)R(3)(2) = R(yq)(2) shifts the exponents as 6y’ =
6—1,6,/=06,~-1,60,=0_. The explicit form of R,
R(k)(z,t;y'(y,u,...,ew ),...)R(j) (z,t;y,...,@w) = I, and R(IO) are
}
96 = 60 + 19
1 &S —gn fu\!
0]=0,+1, Ry (z)=2"(z—1)""2|[4 ——— (52711 )—, .47
gi -0 (@) ( ) +821f11*g12f21 gufau —8&ufau)z (5.47)
Gp=6G—1,
1 —8nfn gnfi\ 1
01=0—1, Ruyp(z2)=z""2(z-1)"2] 4 ———— )—, 5.48
91 =01 10(2) ( ) +822f12—812f22 —8&nfn 8afin)z—1 ( )
I
where where oy, 0}, w, and w; are given in (5.7), (5.10), (5.3),
. and (5.43), respectively.
G—(U + Bp)e 90"y
(811 812) 0
G= = ,
&1 82 —U—e”"O(” £%0(0)
u90
Fe (?l ?2)
21 2 'H. Flaschka and A. Newell, Commun. Math. Phys. 76, 67 (1982).
2w — 0 2M. Jimbo, T. Miwa, and K. Ueno, Phys. D 2, 306 (1981); M. Jimbo
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