
Object-oriented query language
facilitating construction of new objects

R Aihajj and M E Arkun

systems were developed 5. A more advanced step towards
In object-oriented database systems, messages can be used to satisfying emerging applications requirements is the
manipulate the database; however, a query language is still a combination of object-oriented concepts 6'7'3s with the
required component of any kind of database system. In the paper, database technology in developing object-oriented data-
we describe a query language for object-oriented databases base systems 8-13. But, there is still no agreement on
where both objects as well as behaviour defined in them are standardization within the realm of object-orientation.
handled. Not only existing objects are manipulated; the introduc-
tion of new relationships and new objects constructed out of Neither the boundaries for the query model have been
existing ones is also facilitated. The operations supported in the set up nor an object-oriented query language has been
described query language subsumes those of the relational alge- well defined yet. This is one of the common criticisms
bra aiming at a more powerful query language than the relational against object-oriented databases ~4. However, it is
algebra. Among the additional operators, there is an operator agreed that object-oriented database systems are more
that handles the application of an aggregate function on objects powerful than conventional databases at both the rood-
in an operand while still having the result possessing the charac- elling and the manipulation phases. They are more
teristics o f an operand. The result of a query as well as the powerful at the modelling phase due to the features of
operands are considered to have a pair of sets, a set of objects inheritance, encapsulation, identity and complex objects.
and a set of message expressions; where a message expression is They are more powerful at the manipulation phase due
a sequence of messages. A message expression handles both to messages that handle both stored and derived values
stored andderivedvalues and hence provides a full computational which result in full computational power. We argue that
power without having an embedded query language with

this superiority should also be maintained at the query impedance mismatch. Therefore the closure property is main-
tained by having the result o f a query possessing the character- language level. This paper focuses in the direction where
istics o f an operand. Furthermore, we define a set of objects and the shortages of the already proposed object-oriented
derive a set of message expressions for every class; hence any query languages have been identified in order to try to
class can be an operand. Moreover, the result of a query has the overcome them in the query language presented.
characteristics of a class and its superclass /subclass relationships A general powerful characteristic of object-oriented
with the operands are established to make it persistent, query languages is that messages substitute most queries

of conventional databases. For instance, the message
database systems, object-oriented database systems, query name() when sent to an instance in the student class, the
language, object algebra, message expression name of the particular student is returned. Although a

single message is sufficient for such an operation in the
object-oriented context, a selection followed by a projec-

Database systems in their conventional sense proved to tion is necessary to get the same result in the relational
be non-appropriate for and fell short in meeting the model. An additional join should precede in case that
requirements of engineering and information based ap- name is not a column in the student relation. Another
plications including AI, CAD/CAM and OIS. Conse- example can be seen in sending the message courses0 to
quently, it was recognized that the relational model a student and the message grade0 to the obtained result.
which could efficiently handle conventional business Although it is handled due to the implicit join 15 present
applications should undergo certain improvements to be in object-oriented data models, this corresponds to an
adapted to new applications. Thus, set-valued attributes explicit join in the relational model. The two messages
were allowed after relaxing the first normal form restric- courses0 and grade0 form what we call a message
tion. A more advanced extension is based on complex expression. In general, a message expression is defined to
objects where sets and tuples are arbitrarily nested with be a valid sequence of messages ml mn, with n i> 1.
the relational algebra and calculus being extended to However, messages alone do not completely satisfy
facilitate the manipulation of the database ~-4 the query language requirements. Rather it is widely

To satisfy object sharing within complex objects, accepted that a query language must be a part of any
object identity was introduced and extended database database system. Thus, an object-oriented query

language is still required for more complex situations

Biikent University, Faculty of Engineering, Department of Computer and to support associative access. In other words,
Engineering and Information Sciences, Bilkent 06533, Ankara-Turkey although the modelling power of an object-oriented

Vol 35 No 9 September 1993 0950-5849/93/090519-11 © 1993 Butterworth-Heinemann Ltd 519

Object-oriented query language facilitating construction of new objects

database system presents implicit joins 16 by allowing of message expressions. Furthermore, it is possible to
instances in a class to form the domain for an instance derive the class characteristics from any pair of objects
variable in another class, an explicit join is still necessary and of message expressions. Such a possibility helps in
to introduce new relationships into the model; otherwise making the output from a query persistent when re-
the manipulation power of the model will be restricted, quired.
Allowing an explicit join raises the closure property The rest of the paper is organized as follows. The
problem 17. Therefore, it is necessary to have a query second section summarizes the related work. In the third
language that handles the introduction of new relation- section we introduce the basic features of the data model
ships and maintains the closure property. The relational on which the query language is based. The query
model satisfies the closure property with respect to the language itself is described in the fourth section via
relational algebra operations and the result of any illustrative examples, and the fifth section contains the
operation is a relation. Concerning object-oriented conclusions.
models, for the closure property to be satisfied, it should
be possible to use the result of a query operation as an R E L A T E D W O R K
operand. This property is enforced in this paper by
having the operands as well as the result of a query Several query languages are described in the literature
possess the same characteristics, for particular object-oriented database systems. The

We now describe a query language for object-oriented pros and cons of those languages are summarized in this
databases ~8-2~. An operand has a pair of sets, a set of section to justifying the motivation for the development
objects and a set of message expressions defined on of the query language described in this paper. From
elements of the first set. Message expressions preserve among such query languages, those of Gemstone n,
encapsulation and information hiding, in addition to 021°'23, EXODUS 24'25, IRIS 11, O R I O N 16'26, OSAM *17,
providing full computational power to the user via Postgres 5, PDM 13':7, ENCORE 2s and the formal calculi
handling both derived and stored values without any and algebra developed by Straube and t~zsu 29 in addition
need to have an embedded query language with to those described in 3°-34 are emphasized in this section.
impedance mismatch. Also, the output of any operation These languages are based on different paradigms. The
has a similar characterizing pair where the constituting query languages of ~3'27 are based on the functional
sets are defined and derived from the sets in the paradigm, while the query languages of 16'26 are based on
operand(s). By doing this, none of the object-oriented the message-passing paradigm. Other languages are
features is violated while maintaining the closure prop- based on extensions to the relational paradigm: such as
erty. The operations of the query language subsume extensions of QUEL 5'2a and extensions of SQL 23. The
those of the relational algebra aiming at a more powerful query language of IRIS n is based on both the functional
query language than the relational algebra. In addition and the relational paradigms where functions are used in
to the relational operators, we define other operators, an object-oriented SQL, OSQL, constructs. OSQL is
e.g., Nest, One-Level-Project and Apply. The Nest oper- embedded inside common LISP via macro extensions,
ation introduces a required relationship into the model; hence does not overcome impedance mismatch.
it is an explicit join that substitutes a missing implicit These languages can be identified as either only pre-
join; it is equivalent to the Cross-Product operation serving objects in the database 12,17,24,26,29 or providing
under certain conditions. The One-Level-Project oper- operators for the creation of new objects 13'16'23'27'28'33.
ation outputs the result of the evaluation of a set of Such a distinction is due to the disagreement on whether
message expressions against objects of an operand; its all required relationships are definable at the modelling
aim is to reduce the depth of nesting. The relational phase. We and others, e.g., 28'33, argue that the definition
algebra-like operation does not evaluate any message of new relationships and hence the creation of new
expressions but only drops some of them to limit the objects, should be facilitated by the query model. But it
values accessible inside objects of the operand. The is necessary to resolve problems that arise due to the
inverse of the Project operation is to add some message creation of objects; otherwise there will be inconsisten-
expressions to those applicable to a given set of objects; ties. One such problem is to maintain the closure
this operation is defined in terms of others as indicated property 17. In other words, the output of a query should
later in the fourth section. The Apply operation handles be allowed as an operand in further operations in the
the application of an aggregate function on objects in an model.
operand. By using the operators of the language de- A major drawback of languages such as those de-
scribed in this paper, we will be able to manipulate scribed in 12'26'29 is that they do not maintain the closure
existing objects and introduce new relationships among property. Others introduce non-object-oriented con-
objects, structs in maintaining the closure property. Although

We define the set of total instances for a class c, operands in such languages have object-oriented proper-
denoted T~t~ce,(c), to be the union of its instances with ties, the output of an operation is a relation which does
all the instances of its subclasses. Also a set of message not have the same structural and behavioural properties
expressions for a class c, denoted Mr(c) can be derived as the original objects. Consequently, the result of a
starting with the set of messages used to invoke its query cannot be further processed by the same set of
methods. Therefore, a class has a set of objects and a set language operators without violating encapsulation. For

520 Information and Software Technology

R ALHAJJ AND M E ARKUN

instance, in O2 t°'23 the value concept was introduced. O: model of ORION 16 the result of a query operation is a
has an object algebra which handles values as well as class, but the improper placement of resulting classes in
objects and this leads to a kind of mismatch in having the lattice leads to duplication of class contents; hence
some operands violating encapsulation while others do ORION violates the reusability feature of object-
not enforce it. The query languages of 5"24'31 use nested oriented systems. However, we argue that it is an
relations as their logical view of object-oriented data- overhead to have a class as the output of a temporary
bases. A nested relation is allowed as an operand in query, as ORION does. In this paper we describe the
addition to other operands with object-oriented features, output of a query by the minimum requirements of an
Although operators in these languages operate on and operand and from such characteristics we can derive the
produce nested relations, we argue that nested relations characteristics of a class when persistency of the result
do not form a proper logical representation of object is desired 1s'22. In O S A M * operands in a query are the
associations. In order to use nested relations to represent database itself and all subdatabases derived from the
objects, a large amount of data has to be replicated in original database by query operations; the result of a
the representation, query is a subdatabase.

The query language of Gemstone is a calculus sublan- Siegelmann and Badrinath 37 describe an algebra where
guage embedded inside OPAL, the object-oriented pro- query results are presented as implicit answers (ex-
gramming language of Gemstone. Furthermore, queries pressions), and where a class name replaces an explicit
in Gemstone violate encapsulation because they are enumeration of all its instances in a step towards allow-
formed over the instance variables of an object. Postgres ing information exchange at higher levels of abstraction:
stores QUEL and C procedures as attribute values, this is a useful capability in decision support systems. A

The algebra described in 25 has an equivalent expressive subset of instances from a class are explicitly enumerated
power to the EXCESS query language of the EXTRA only in case that there is no class that includes all of them
data model described in24; it assumes a data model in and no other instances. However, the data model on
which several general type constructors are provided and which their algebra is based supports only simple inher-
data structures are built through free composition of itance and atomic domains, i.e., no complex objects.
those constructors. The Daplex functional data model 35 Also, they do not describe any method for making an
illustrates an integration of functions, relations and implicit answer explicit.
object-oriented features; its basic constructs are entities

and functions. The Daplex query language has a set of B A S I C F E A T U R E S O F T H E D A T A MODEL
iterators that apply a predicate to a set of values. The
algebra of PDM 13'27 is based on an extension of the In this section we briefly describe the required features
Daplex functional data model35; it modifies the relational in a data model for the sake of the query language. It is
algebra to handle functions, i.e., the operators and the required to have objects, classes and methods. An object
result are functions. A major restriction in PDM is that has a state and behaviour where the state is reachable via

the behaviour. To maintain the object-oriented features, object identity is not supported and only union compat-
it is important for the query language to equally handle ible items are allowed as operands to set-based oper-

ators. The algebra of ENCORE 2s is based on a data both the state and the behaviour of objects. Further-
model 36 that has all types as abstract data types whose more, an object has an identity and a value. Identity
implementations are hidden from the algebra. It corn- distinguishes one object in the database from other
prises a set of built-in functions to collection objects. The existing objects and provides for object sharing 7. A value
output of a query is of the tuple type which is essentially may be either a single value or a set of values drawn from
the nested relational representation, since it allows the a domain. A domain is either atomic or non-atomic; an
nestings of tuples. ENCORE views everything as an atomic domain may be any of the conventional domains
object with an identity, including integers, characters, etc. On the other hand, a

Straube and Ozsu developed a set-based object- non-atomic domain contains the set of objects of a class
oriented query algebra and a corresponding calculus, but represented by their identities. The following are objects
their algebra does not handle the closure property. Also, where oi represents identity:

they studied the problem of type unions in some detail, ol ("Jack", 21,"M", dp)
However, although their algebra has a formal basis, it is 02 ("Mary", 48,"F", {ol, 03})
less expressive compared to others described in the 03 ("Michel", 25,"M", 0, 5, {o4, o7}, os)
literature. Osborn's object algebra 33 was developed for a 04 ("John", 52,"M", {ol, 03 }, 42K, o s)
general-oriented data model defined on the three generic 05 ("Susan", 28,"F", 0, 5, {06, o7}, 08, 15K, os)

o 6 ("CS578","Parallel Machines", 4)
classes of atomic, aggregate and set objects. A major 07 CCS565","Database Theory", 3)
drawback of Osborn's algebra is that it does not support o8 ("Computer Science", o4)
encapsulation and the closure property is not main-
tained; set operations do not accept atomic and aggre- We use value(o) and identity(o) to denote the value and
gate objects produced by other operations, the identity of object o, respectively. To avoid confusion,

The first version of the query model of ORION 26 does the identity function will be dropped and o will be used
not support the creation of new objects. However, the to represent identity(o). Based on the notions of identity
second version provides this property. In the query and value we define equality of objects.

Vol 35 No 9 September 1993 521

Object-oriented query language facilitating construction o f new objects

Definition 1: Equality of objects In other words, every method T is invoked via a
Two objects o~ and 02 are: corresponding message and implements a predefined

function
--identical (Ol = 02) if and only i f identity (01) = identity (02)
--shallow-equal(01-02) i f and only i f value(ol) =value(02) f : dl × d2 x . . . × dn ~ d , ,
--deep-equal (01 ---" 02) i f and only if by recursively replacing

every object identity o~ in value(ol) and value(02) by
value(o~), equal values are obtained, where dl is the domain of the receiver, d2, d3 dn are

the domains of the arguments o f f and d, is the domain
(01 = 02) =- (01 -'02) =, (01-02) of the result of the application of f on objects of dj, i.e.,

identical =, shallow-equal =- deep-equal d, is the range o f f . Given objects o~ •di , where i = 1 to
n and r,

Objects that have the same state structure are collected f(o~, 02 0~) = 0,.
in one class. For instance, looking at the previous
objects, it seems that o~ and 02 should be in the same The message that invokes the method T should have
class. Inheritance is supported to overcome duplication (n - 1) arguments drawn from the domains d2 to dn,
and allow for reusability. Inheritance covers state struc- respectively. We use messages(c) to denote the set of
ture and behaviour. Next are the state structures of the messages of class c. Among the methods found in a class
classes related to the previous objects: there exists a method corresponding to each of the

instance variables of the class. For instance, the method
person (6, name : string, age : integer, sex : {"M","F"}, invoked by the message name() implements the function

children : {person })
student ({person }, year : integer, courses : {course },

student-in :department ~ f l : Ti (person) ~ string.
staff ({person }, salary : integer, works-in: department)
research-assistant ({student , staff}) Function f~ does not expect any arguments because
course ((~, code : string, name : string, credit : integer) corresponding domains are not specified. The message
department (O, name :string, head:s ta f f) increase-sa lary(i) invokes the method implementing the

function
where any pair iv:d represents an instance variable
defined such that iv is the instance variable name and d f2: Tins (staff) x integer---,integer,
is its underlying domain. For example, the domain of the
sex instance variable is the set { " M " , " F " } . A domain where given 0 • Ti~stan,s(staff),f2(o, i) = (o s a l a r y O) + i.
specified between braces indicates that always a set is The domain of the receiver off2 is T,~, (s ta f f) and
expected as the value of that instance variable; even a f2 expects a single argument from the domain that is the
single element is represented by a singleton set. For set of integers. Also, the result of f2 is from the set of
example, courses:{course} specifies a set of objects (rep- integers, i.e., range of f2 is the set of integers. For
resented by their identities) from the course class as the instance,
courses registered by a student.

The first argument in a class definition is a set with f 2 (o 4 , 2 K) = o4salary 0 + 2K = 42K + 2K = 44K.

elements being classes from which inheritance is
achieved. We say that person is a superclass of s tudent Therefore, methods are used not only to deal with
and staff, while each of s tudent and s ta f f is a subclass of properties of objects but also to manipulate either stored

values or in deriving new values in terms of properties person. Any instance in s tudent or s ta f f is actually an
instance in person but the reverse is not true. This is and existing values of objects. Some other examples on
because in general, a subclass may include additional methods which return existing stored values are,

instance variables and behaviour definition. Classes are ol ageO returns 20,
arranged in a lattice with the general class OBJECT at o5 coursesO returns {06, 07}
the root, i.e., a direct or indirect superclass of all other o5 coursesO codeO returns {"CS565", "CS578"}.
classes. We use Tt,~t (c~) to denote the set of total
instances of class c~ which contains objects in c; and all Looking at the previous examples, it is obvious that
objects in its direct and indirect subclasses: age() • messages(person) , c o u r s e s () • messages (s tuden t)

and code() • messages (course) , while there does not exist
Tj~ (person) = {ol, 02, 03, 04, 05 } any class c such that courses() code() • messages (c) . It is
Ti~, (s tudent)={o3, os} recognized that c o u r s e s O c o d e O is an element of a
T~, (course) = {06, o~ }
T~,~e,(s taf f) = {04, 05 } superset of the set messages (s tuden t) . Such a superclass
T~, (research-assistant) = {05} is called the set of message expressions of the s tudent
T~,, (department)= {os} class. The set of message expressions of a class c is

defined to include any combination of messages which
A class has a set of methods. A method implements when applied to an object of the class c causes the

a function and is invoked using a corresponding mess- execution of the underlying methods and in the same
age. A method also has a number of arguments n I> 0. sequence as if they all together were a single method

522 Information and Software Technology

R ALHAJJ AND M E ARKUN

invoked by the message expression to return a desired message expressions. Since a class has a defined set of
value. Formally, a message expression is defined next. objects and a derived set of message expressions, a class

can be an operand. The result of any query operation is
Definition 2: Message expressions also a pair of sets and can be made persistent in the
Starting from the set of messages of a class c, the set of lattice because it is possible to derive the state structure
possible message expressions of class c can be deter- and behaviour definition of the result of a query from
mined by: those of the operand(s); hence it is a class 18"22.

Starting from a set of objects and a corresponding set
• messages(c) is subset from the set of message ex- of message expressions, it is possible to derive class

pressions of class c characteristics 18'22. To remember, a class has a set of
• if the domain of the result of an element xi of the set objects, a set of instance variables, a set of methods with

of message expressions of class c is T~t (ci) for some corresponding messages in a one to one relationship, and
class ci, then the concatenation of xi with every a set of superclass. A set of objects is given in the pair.
element of messages(c~) is an element of message So, finding a set of messages is equivalent to finding a
expressions of class c, i.e., if m e messages(ce), then set of methods and since an instance variable has a
(x, m) = x~t is an element of the set of message ex- corresponding method, and hence a message, the set of
pressions of class c instance variables is constructed by collecting those

instance variables having a message in the calculated set
We use Me(c) to denote the set of message expressions of messages. The set of messages of a class is determined
of class c. The two steps of definition 2.2 are used in by including every message that appears as the first
deciding whether a given message expression is an message in a sequence of messages that constitute an
element of Me(c) for a given class c. For instance, the element of the set of message expressions of that class.
set of message expressions of the person class is given Finally, the set of superclasses is determined according
next~ Me(person)=messages(person)uchildrenO + mess- to the applied operation as indicated next in this section
ages (person)t = children O'messages (person). and detailed in lsa2.

Due to the facility provided by message expressions In the rest of this section, the different operations of
for providing the value of a relationship in terms of the query language are introduced together with illustra-
existing ones, not all required relationships need to be tive examples. In these examples, we differentiate be-
stored within the realm of object-oriented databases, tween temporary and persistent evaluation of a query.
Thus, derivable relationships are also possible. For An assignment free query is always evaluated on a
instance, it is possible to have brother-of, sister-of, temporary basis and we use = and ..= to differentiate
wife-of and husband-of as derived values depending on between temporary and persistent evaluations, respect-
the sex and the stored-valued children relationship be- ively. While a temporary evaluation of a query ends by
tween persons. Each of brother-of, sister-of, wi fe-of and finding the pair of sets in the result, a persistent evalu-
husband-of is handled as a message with an underlying ation continues with the finding of class characteristics
method implementing the desired relationship. In gen- of the determined pair. We manipulate objects depend-
eral. a derived value is determined after executing a ing on their being identical, shallow-equal or deep-equal
sequence of one (or more) method(s) underlying the according to definition 1. The classes introduced in the
message(s) constituting a corresponding message ex- previous section will be used in all the examples pre-
pression. Such a facility saves both space and time sented in this section. In defining the operators, A and
required in storing and maintaining related values in a B are assumed to be either pairs, i.e., (T~n,,ances(A),
consistent state. Me (A)) and (Tinst (B), M e (B)) , or query expressions.

A query expression is a sequence of one or more query

THE QUERY LANGUAGE operators applied to some operands to produce a pair of
sets.

In this section, we describe a query language which
maintains the closure property in a natural way without
violating the object-oriented features. Although most of S e l e c t i o n

the existing query languages are devoted to the manipu- The Selection operation presents a restriction on objects
lation of existing objects without creating new ones, we of the operand. The Selection has a single operand and
and others 28,33 recognize the need for a more powerful produces an output consisting of a pair, where the
query language that allows the creation of new objects included objects are those satisfying a given predicate
in addition to the manipulation of existing ones. This expression, defined next. The set of message expressions
adds the flexibility of introducing new relationships into of the resulting pair is the same as that of the operand.
the model making the manipulation more powerful. An The Selection operation has the following form:
operand has a pair of sets, a set of objects and a set of

Select(A, p) = ({o [o ~ Tt~st (A)^p(o)} , Me(A))

tNotic¢ that a* is used to indicate zero or more concatenations of a
with itself, i.e., e, a, aa , while a ÷ indicates one or more concate- where p is a predicate expression built using object
nations of a with itself, i.e., a, aa, aaa variables, message expressions and constants; also

Vol 35 No 9 September 1993 523

Object-oriented query language facilitating construction of new objects

quantifiers may be present in a predicate. One object pressions by the Project operation hides some values
variable is bound by T~t (A) and other object vari- from the accessible objects. The Project operation is
ables are bound by other queries. An object variable defined as follows:
followed by a message expression returns either a stored
or a derived value. A returned value can be compared Project(A, Ml)= (T~ (A), MI)
with another value or constant using conventional com-
parison operators in addition to c_, 6 , ~ and ~ added where MIC_Me(A), i.e., an element Of Ml could be any
to support set-based comparisons and = , - and "-- for message expression satisfying definition 2. Only message
identical, shallow-equal and deep-equal comparisons of expressions in M~ can be applied to objects in the pair
objects, respectively. Given an object o, we use p(o) to resulting from the Project operation. On the other hand,
denote the evaluation of predicate expression p by the inverse of the Project operation is to add new
substituting o for an object variable in p. To illustrate elements to the set of message expressions of a pair and
this, consider the following examples on predicate ex- it is defined at the end of this section, after introducing
pressions. Let s~ and s2 be object variables ranging over the other operations in terms of which it is represented.
instances of the student class:

"CS565" • Sl courses() code() is a predicate to check students Example 2 Assume that the staff class is not present in
attending the course "CS565"; the lattice and the research-assistant class is defined as:

3c • s~ courses() A C • s2 courses() A Sl ~ S2 is a predicate to
check whether two given students have at least one course research-assistant((student}, salary :integer,
in common; works-in :department)

Vc e st courses()^c ¢s2 courses() is another example of a
predicate to check whether two given students do not have Assuming that it is not necessary for a student to work for
any courses in common; the department he attends, we write:
3c ~-st courses() A c C_s2 coursesO is an example of a predi-
cate to check whether two given students have some courses staff,=Project(research-assistant, {name(), age(),
in common, sex(), children(), salary(), works-inO })

Example 1 Find brothers of 'Adams'. From the messages of the research-assistant class,

{year(), courses()} are the messages that the created staff
Select (person % Pl, Pl sex () = "M" A 3p2 e T~t class does not respond as they are hidden by the Project
(person) A P2 name() = "Adams" A 3p3 ~ T~t,nc,s(person) operation. In this query it is also possible to use the set
A {Pl ,P:} ~P3 children()) messages(person) to replace the explicit enumeration of

its elements, i.e., {nameO, ageO, sexO, childrenO}. In gen-
where % indicates that the variable Pl is bound to and eral, when possible, it is also permitted to replace an
ranges over the objects of the operand, here the person explicit enumeration of elements of Me(c) for some pair
class. More than one variable may independently range (T~t (C), Me(C)) by Me(c) itself, to have the ex-
over objects of an operand. For example, person %Pl %P2 pression in an implicit form providing for more readability.
indicates that Pl and P2 range over objects of the person The derived staff class will be a direct superclass of
class, the research-assistant class and T~t (staff) =

Although Straube claims that his multiple operand T~t (research-assistant)just after this query. Not pre-
Selection is more powerful 29, we will insist on supporting sented in this paper, we derive algorithms to maximize
a single operand Selection. Because Straube does not reusability so that the derived staffclass will be recognized
support the closure property in his algebra, he has the as a subclass of the person class and naturally placed in
Cross-Product operation embedded into the Selection. the lattice ~8"~2.
We argue that on comparing two algebras, the power of While the Project operation does not evaluate any of
the whole algebra must be considered, not particular the provided message expressions, on the other hand, the
operations. A language that supports the creation of new One-Level-Project operation computes a new set of
objects is necessary and considered more powerful than objects and a corresponding set of message expressions.
any other language devoted only to the manipulation of A given subset of the message expressions of the operand
existing objects, is evaluated against objects of the operand forming new

objects and a set of message expressions is derived to

Project and One-Level-Project facilitate accessing the values encapsulated within the
derived objects. More explicitly, the one level project

The Project operation hides some of the message ex- operation is handled as follows.
pressions of the operand without the set of objects A subset M~ of the message expressions in M,(A) is
being affected. Although the set of objects in a pair is in applied to every object in T~n,, (A) for A being an
general heterogeneous, the only values accessed in each operand. The obtained values are collected to form the
object are those specified by the set of message ex- value of an object in the result of the one level project
pressions of the pair. So, dropping some message ex- operation.

524 Information and Software Technology

R ALHAJJ AND M E ARKUN

Message expressions applicable to the resulting objects When required to be made persistent in the lattice, the
are obtained by: result of the Project operation is a superclass of the

operand, while the result of the One-Level-Project oper-
• Let xt be a message expression in M I and let m be the ation is in general a direct subclass of the OBJECT class

last simple message ofx~ which serves to map an object which is the root.
identifier to the value of the object.

• Find a message expression x3 in Me(A) such that it is

prefixed by x t , i . e . , x3 = x2mx4 and x~ = x2m. Cross-Product and Nest
• Thus, the set of message expressions applicable to

objects in the result of the one level project operation Although many relationships between objects are rep-
are all message expressions x such that x = rex4. resented by the objects themselves, an explicit operation

is required to handle cases when a relationship is not
The purpose is to collect together in a class all objects present in the model. Both the Cross-Product and the
constructed by collecting the values reachable by Nest operations are defined to introduce such relation-
the message expressions in M~ applied to objects in ships. While the Cross-Product operation is defined to be
Tins, (.4) . Consequently, the One-Level-Project has the associative, the Nest operation is not. However, the two
following form: operations are equivalent under certain conditions 19.

Associativity of the Cross-Product operation is useful in
OLproject(A, M1) = ({0 1 301 ~ Tin (A) ^ value(o) query optimization 19'2z, although not discussed in this

= (Ol Ml)}, {x I 3Xl e M~, xl = (x2m) ^ len(x~) paper. A query expression is optimized after representing
= l e n (x 2) + l A 3 x 3 ~ M e (A) A x ~ = (x 2 x) A x = (m x 4) }) it by a binary tree with leaf nodes being operands as

pairs and non-leaf nodes are operators of the query
where MI~_Me(A) . The One-Level-Project operation language.
corresponds to a sequence of unnest operations followed The Cross-Product operation has four different forms
by a projection in the nested relational model ~'3'4. For depending on the domains of the instance variables of
instance, OLproject(A, (messages(A) - {ml })u(ml mes- the operands. These four forms, given next, are needed
sages(B))), unnests A and B where ml ~ messages(A) and to make the Cross-Product operation associative; a
domain of ml is Ti~, (B). The depth of nesting de- property useful in query optimization ~9'22.
creases as the length of the longest message expression By assuming two messages mt and m2 with domains
in M~ increases, b e i n g Zinst (A) and T~,,, (B), respectively, the four

cases are:

E x a m p l e 3 Find the student names and course codes o f First case: if objects in each of T~,st (A) and Ti, st (B)
students attending at least one course: have all included values drawn from non-atomic under-

lying domains:
O Lproject(Select(student %s, s coursesO # dp),

{ name(), coursesO codeO})
Cproduct(A, B) = ({o I 3ol ~ Tins (A)3o2 ~ Ti, (B)

Notice the use o f the message expression, coursesO code(), ^ value(o) = value(ol).value(oz)},
which is a concatenation o f two messages, one f rom each
o f student and course classes. The result o f this operation Me(A)U Me(B))
is the pair which corresponds to a class whose instances are
constructed by collecting the name and course codes for all

Second case: if only objects in Ti,,ta,ces(A) include at least students attending one or more courses and whose message
expressions are {name(), code()}, one atomic underlying domain:

Cproduct(A, B) = ({o [3ol e Ti,~ (A)3o: E T i n (B)

Example 4 Let net-salary(t) be a method defined in the ^ value(o) = identity(oj).value(oD},
staff class to return the net salary o f a staff member after (m~ Me (A)) w Me (B))
deducting taxes at the rate t. To get the names and net
salaries o f s taf f members, assuming t = 0.1, we write:

OLproject(staff, {nameO, net-salary(O.l)}) Third case: if only objects in T~,,t (B) include at least
one atomic underlying domain:

The One-Level-Project operation does the function of

Project and Image operations described in ~8, the Apply Cproduct(A, B) = ({o [301 ~ T~ (A)3o2 ~ T~t (B)
of 33 and the Map operation described in 29, but we
maintain the closure property without additional ^value(o)=value(o~).identity(o2)},

constructs. Me (A)u(m2 Me(B)))

Vol 35 No 9 September 1993 525

Object -oriented query language facilitating construction of new objects

Fourth case: if objects in each of T,.~, (A) and Example 6 Find students attending the department
T,~t (B) include at least one atomic underlying whose head is "Adams".
domain:

Select (student %s, s student -inO head() name 0 = "Adams")

Cproduct(A, B)= ({o] 3o I • T~ (A)3o2 • T~ns, (B) The same query can also be coded as:

A value (o) = identity (ol).iden tity (02)}, Select (Nest (student %s t , staff%s2),

(ml M,(A))u(m2 Me (B))) sl student-inO head() = s2 A S~ name() = "Adams")

By considering these four cases, the Cross-Product oper- Example 7 Find students attending the department in
ation becomes associative 19. which "Adams" is working.

When persistency in the lattice of the result is desired,
Select (Nest (student % sl, staff%s~),

the result of the Cross-Product operation is made a
subclass of the operand that has all underlying domains st student-inO = s2 works-inO A s~ name()= "Adams")

being non-atomic and a direct subclass of the root
otherwise. Example 8 Find students attending the same courses

The Nest operation takes two operands; it adds a Cproduct (student %sl , Select (student %s~ ,
value to each object in the first operand, the underlying
domain of the added value is the objects in the second s~ coursesO = s2 courses()^ sl name()(s2 name()))

operand, i.e., T~, (B), It is defined as follows:
Notice that the result of the query of example 8 will be a
direct subclass of the root because the student class has

Nest(A, B) = ({o 13ol • T~, (A)3o2 • T~ta,ce~(B) some instance variables with atomic domains. However,
A value(o) = value(ol).identity(o2)}, using Nest instead of Cross-Product forces the result as

a subclass of the student class. The difference is due to the
Me(A)u(mMe(B))) fact that while the Nest operation will append to every

student a set of identities of related students, the Cross-

where the domain of m is objects in Tot (B). The Product operation on the other hand forms, according to
the definition of Cross-Product operation, new values each result of Nest(A, B), when required to be persistent is a

subclass of A, i.e., the first operand. Notice the similarity consisting of the identity of a student together with the set
between the Nest operation and the second and third of identities of related students 19"22.
cases of the Cproduct operation. On the other hand, to drop a present relationship, we

When combined with the Selection operation, both of project on all message expressions of the operand except
those related with the pair of the relationship to be the Cross-Product and the Nest operations result in a

join operation. Although the join due to the Nest is an dropped as follows:

outer-join, the join due to the Cross-Product is an Unnest(A,B)=Project(A,M,(A)-(mMe(B)))
inner-join.

where m ~ messages(A) has domain as T ~ , (B) .

Example 5 Find the department whose head is "Adams".

Set operations
Select(department %d, d head() name() = "Adams")

As mentioned before, the query language described in
this paper handles and produces a pair of sets, a set of

The same query can be coded in two other forms as: objects and a set of message expressions to handle the
objects. So because we deal with sets, two basic set

Select(Nest(department%d, staff%s), operations, Union and Difference, are supported in the
dheadO = s AS name()= "Adams") query language; intersection is defined in terms of the

difference operation, while the symmetric difference op-
and eration is defined in terms of the union, the difference

and the intersection operations.
Nest(Select(staff%s, s nameO = "Adams", The Union operation returns a pair where the set of

Select(department %d, d headO = s)) objects is in general heterogeneous and the set of mess-
age expressions is calculated as the intersection of the
sets of message expressions of the operands. The hetero-

Notice that, the second and third query expressions given geneous set of objects is the union of the sets of objects
in this example explicitly show the benefit of maintaining of the operands. The Union operation is defined as
the closure property by having the output from any query follows:
operation to be a pair usable as input to another query
operation. Union(A, B) = (T~ (A) w T~ (B), M e (A) c~ Me (B))

526 Information and Software Technology

R ALHAJJ AND M E ARKUN

When required to be persistent in the lattice, the result- The symmetric difference operation is defined as follows:

ing pair has the characteristics of a class which is a
superclass of both operands. SymDif(A, B) = Difference(Union(A, B), Intersection(A, B))

Example 9 Assume that the person class is not present Other operations
in the lattice with student and staff classes defined as
follows: To have a more powerful query language, it is necessary

to have the result of the application of an aggregate
student(O, name :string, age : integer, sex : {"M","F"}, function used as an operand. The following operator is

defined for that purpose. Given XC_Me(A) and
children : student, year : integer, courses : course,
~tudent-in:department) x i e Me (A), the application of an aggregate function f is

defined as:
staff(O, name : string, age : integer, sex : "M","F"},

children : student, salary : in teger, works-in.'departmen t) Apply (f , A, X, X i) = ({ 0 [(0 m I) ~ Tin (A) ̂ (o m 3)

=f({(Ol xi) l ol e Ti (A) A VO 2 E (O m 1),

The person class is derived as: (o2X) = (ol X)})}, (m I M e (A)) w { m 3 })

person ,= Union(student, staff)
where T~, (A) is the domain of the result of message

The derived person class is a superclass of both operands mr, and the domain of the result o f f is the domain of
and includes the union of their objects, but the intersection the result of message m 3 .
of their message expressions as stated in the definition of The aggregation function is applied on A by evaluat-

ing the func t ion fon the result of the message expression
the Union operation, x~ for all objects that return the same values for elements

Concerning the Difference operation, under the con-
dition that M e (A) - M e (B) ~ dp, the Difference oper- of the set of message expressions X. In other words,

objects in T~,~, (A) are partitioned into equivalence
ation has the following form: classest based on the result of the evaluation of message

Difference(A,B)=({oloeTj, (A) expressions in X against those objects. Then, the
aggregate function f is applied to objects in each of

A O ¢ Tm (B)}, Me(A)-Me(B)) the equivalence classes by considering the value re-
turned by the message expression xi applied to each such

However, if it occurs that M e (A) - M e (B) = ¢, then object.
M A A) - Me(B) is replaced by Me(A) in the definition to

get: Example 11 Find staff members earning more than the

Difference(A, B) = ({o I o e T~ (A) average salary in their department.

^o ~ T,.~ (S))}. Me(A))
Project (Select (Nest (staff%s I , Apply (average, staff,

Example 10 Find students who are not research assist- {works-inO}, salaryO))%s2, sl salaryO)s2 avsalaryO),
ants. {name()})

Difference(student, research-assistant) where avsalaryO is a message to return the calculated

average salary in the result of the aggregate function
Since Me(student) - Me(research-assistant) = ¢, because application; it is a concatenation of the first two letters of
Me(student)~Me(research-assistant), in the output pair the applied function, average, with the last message in the
Me (student) is returned, used message expression, here salaryO. We nest staff with

Remembering that Ti~t (research-assistant)~_ the result of the application of the aggregate function
T~ (student), the same query can be coded using the average on staff members grouped by works-inO. In other
select operation as follows: words, first the set Ti,~t (staff) is partitioned into equiv-

alence classes based on the result of the message works-
Select(student%s,s ¢ T~.~, (research-assistant)) inO by collecting in the same equivalence class staff

members working for the same department. The second
When persistency in the lattice is required, the result of step is the application of the message salaryO to every
the Difference operation becomes a superclass of the first object and the aggregate function average is applied to get
operand, the average salary fcr objects in every equivalence class,

In terms of the Difference operation, we define the

intersection operation as follows: tan equivalence class is a set of objects having common characteristics
such that every two equivalence classes are disjoint, i.e., given any two

Intersection(A, B) = Difference(A, Difference(A, B)) equivalence classes A~ and Bt, A~NB~ = ¢.

Vol 35 No 9 September 1993 527

Object -oriented query language facilitating construction of new objects

separately. Then those staff members satisfying the given as the state of objects. Behaviour is necessary in main-
predicate expression are selected and finally projection on taining the encapsulation feature of object-oriented data
nameO is performed, models.

Finally the inverse of the Project operation, Iproject, Using the operations of the query language, objects
is defined at this point, as stated before, in terms of other may be constructed out of existing ones and new re-
operations. To add a subset M of Me(B) to Me(A), we lationships may be introduced into the model. A new
first nest A and B then do a One-Level-Projection to relationship is an extension to either the state of objects
have all Me(B) and Me(A) together forming one set; or their behaviour. In other words, a new relationship
after that we project on M e (A) u M to get the target set has either a stored or a derived value. A stored value is
of message expressions in the resulting pair: due to the Nest operation which takes two operands and

extends each object in the first to include a value
Iproject(A, B:M)= Project(OLproject(Nest(A, B), referencing object(s) in the second operand, while a

messages(A)u(m messages(B))), derived value is due to the inverse of the Project oper-
Me(A)~M) ation (Iproject) which extends the behaviour of objects

in the operand without their states being affected. On the
other hand, the OLproject operation constructs new

where M ~_ Me(B) is the set of messages expressions to objects out of existing objects by collecting values found
be added to Me(A), and m is the message in the result at different levels of nestings. Also the fourth case in the
of Nest(A, B) with its domain being T~, (B). Notice definition of the Cproduct operation results in new
that the OLproject operation results in a pair which objects, while other cases introduce new relationships.
contains Me(A)uMe(B). So, we use the Project oper- Finally, the contributions of our work described in
ation to get the required message expressions in the this paper can be enumerated as follows:
result.

• Operands and the result of a query are defined in a way
Conclusions not to violate object-oriented constructs and to main-

tain the closure property.
We described a query language for object-oriented data- • Behaviour is also uniformly handled like objects;
base systems. A query expression is coded by applying creation of methods as well as objects in terms of other
operators on some operands. An operand should have a existing ones are facilitated.
pair of sets, a set of objects and a set of message • The addition of new classes is facilitated where we
expressions. Elements of the second set are used in the derive the characteristics of a class in terms of those
invocation of behaviour as well as behaviour construe- of existing classes.
tors because a message explession leads to the execution • Aggregation functions are supported in a consistent
of all the methods underlying constituting messages and way so that the result could be used as an operand.
in the same order as if all together form a single method. . Computational completeness is maintained without
Concerning the result of a query expression, it is again any need to have an embedded query language; an
a pair of sets, the same as those of the operands. So, the embedded query language leads to the impedance
output of one query expression can be a further operand mismatch problem.
without any problem. Hence the closure property is
maintained in a natural way. In producing the output
pair from a query expression, the two constituting sets All of these are satisfied without loss of generality in the
are derived by considering those of the operand(s), description. Concerning the current state of our re-
Therefore, the operators act on behaviour as well as on search, we are examining the completeness of the de-
objects. While doing this, heterogeneous sets are con- scribed query language to determine whether and how it
sidered and this adds much to the power of the described is possible to improve its power. For instance, the Apply
query language, operation that handles the application of an aggregate

Message expressions deal with both stored and de- function adds much to the power. Also equivalents of
rived values and hence provide a full computational different combinations of operators are being experimen-
power making the OLproject operation of the query tally tested, and how much that improves query optim-
language more powerful than the unnest operation of the ization is being considered.
nested relational model. This property is also valid for
the query language as a whole, where computed as well
as stored values may be manipulated. Therefore, the R E F E R E N C E S
object-oriented data model is not only more powerful 1 Abiteboul, S and Beeri, C 'On the power of languages for
than the relational data model, we also have a query the manipulation of complex objects' INRIA, Tech Rep No
language which is more powerful than the relational 846 (May 1988)

2 Date, C J An introduction to database systems (4th edn)
algebra. Furthermore, our query language is more pow- Vol 1 and 2, Addison-Wesley (1986)
erful than others described in the literature in supporting 3 Jaesehke, G and Sdmk, H J 'Remarks on the algebra of
object construction, behaviour construction via message non-first normal form relations' Proc. Syrup. Principles of
expressions, and deals equally with the behaviour as well Database Systems (March 1982) pp 127-138

5~ Information and Software Technology

R ALHAJJ AND M E ARKUN

4 Roth, M A, Korth, H F and Silberschatz A 'Extending 21 AIhajj (AI-Haii), R and Arkun, M E 'Queries in object-
algebra and calculus for nested relational databases' ACM oriented database systems' Proc. ISMM Int. Conf. Inf.
Trans. Database Systems Vol 13 No 4 (December 1988) pp Knowl. Manage. Maryland (November 1992)
389-417 22 Alhaii (AI-Haii), R and Arkun, M E 'A query model for

5 Rowe, L A and Stonebraker, M R 'The Postgres data model' object-oriented databases' Proc. 9th IEEE Int. Conf. Data
Proc. 13th Int. Conf. Very Large Databases Brighton (1987) Eng. Vienna (April 1993) (to appear)
pp 83-96 23 Cinet, S et al. 'Reloop, an algebra based query language for

6 Goldberg, A and Robson, D Smalltalk-80: the language and an object-oriented database system' Proc. 1st Int. Conf.
its implementation Addison-Wesley (1983) object-oriented and deductive databases (December 1989)

7 Khoshatian, S N and Copeland G P 'Object identity' Proc. 24 Carey, M J, DeWitt, D J and Vandenberg, S L 'A data
Int. Conf. Object-Oriented Programming Systems, model and a query language for EXODUS' Proc. ACM-
Languages and Applications Portland, OR (September SIGMOD Conf. Management of Data, Chicago (May 1988)
1986) pp 406-416 pp 413-423

8 Banerjee, J et al. 'Data model issues for object-oriented 25 Vandenberg, S L and DeWitt, D J 'Algebraic support for
applications' ACM Trans. Office Inf. Systems Vol 5 No 1 complex objects with arrays, identity and inheritance' Tech.
(1987) pp 3-26 Rep., CS-TR-987 University of Wisconsin-Madison

9 Carey, M J and I)ewitt D J 'The architecture of the (December 1990)
EXODUS extensible DBMS' Proc. IEEE Int. Workshop on 26 Banerjee, J, Kim, W and Kim, K C 'Queries in object-
Object-Oriented Database Systems, Pacific Grove, CA oriented databases' Proc. 4th Int. Conf. Data Eng. Los
(September 1986) pp 52-65 Angeles, CA (February 1988) pp 31-38

10 Deux, O e t al. 'The 02 system' Comm. ACM Vol 34 No 10 27 Dayal, U 'Queries and views in an object-oriented data
(1991) model' Proc. 2nd Int. Workshop on Database Programming

11 Fishraan, D H e t al. 'IRIS: an object-oriented database Languages (June 1989) pp 80-102
management system' ACM Trans. Office Inf. Systems Vol 28 Shaw, G and Zdonik, S 'A query algebra for object-oriented
5 No 1 (1987) pp 48-69 databases' Proc. 6th Int. Conf. Data Eng. Los Angeles, CA

12 Maier, D and Stein J 'Development and implementation of (1990) pp 154-162
an object-oriented DBMS' in Shriver, B and Wegner, P 29 Straube, D D and Ozsu, M T 'Queries and query processing
(eds) Research directions in object-oriented programming in object-oriented database systems' ACM Trans. Inf. Syst.
MIT Press, Cambridge (1987) Vol 8 No 4 (1990) pp 387-430

13 Manola, F and Dayal, U 'PDM: an object-oriented data 30 Albano, A, Cardelli, L and Orsini, R 'Gelileo: a strongly-
model' Proc. Int. Workshop on Object-Oriented Databases, typed interactive conceptual language' ACM transactions
Pacific Grove, CA (1986) pp 18-25 on database systems Vol 10 No 2 (1985) pp 230-260

14 Nenhoid, E and Stonebraker, M 'Future directions in 31 Bancilhon, F et al. 'FAD: a powerful and simple database
DBMS research' Technical Report 88-001 Int. Computer language' Proc. 13th Int. Conf. Very Large Databases,
Science Inst. Berkeley, CA (May 1988) Brighton (1987) pp 97-105

15 Kiln, W 'Object-oriented databases: definition and research 32 Kuper, G and Vardi, M 'A new approach to database logic'
directors' IEEE Trans. Knowl. and Data Eng. Vol 2 No 3 Proc. ACM PODS (1984)
(1990) pp 327-341 33 Osborn, S L 'Identity equality and query optimization'

16 Kim, W 'A model of queries for object-oriented databases' Proc. 2nd Int. Workshop on object-oriented database sys-
Proc. 15th Int. Conf. Very Large Databases, Amsterdam terns Ebernburg (September 1988) pp 346-351
(1989) pp 423-432 34 Zaniolo, C 'The database language GEM' Proc. ACM-

17 Alashqur A, Su, S and Lag, H 'OQL: a query language SIGMOD Conf. Management of Data San Jose, CA (May
for manipulating object-oriented databases' Proc. 15th Int. 1983) pp 207-218
Conf. Very Large Databases, Amsterdam (August 1989) 35 Shipman, D 'The functional data model and the data
pp 433-442 language daplex' ACM Trans. Database Systems Vol. 6 No

18 Alhaii (AI-Hajj), R and Arkun, M E 'A data model for 1 (1981)
object-oriented databases' Proc. 6th Int. Symp. Comp. Inf. 36 Hornick, M F and Zdonik, S B 'A shared segmented
Sciences, Antalya (October 1991) memory system for an object-oriented database' ACM

19 Alhaii (AI-Haii), R and Arkun, M E 'A formal data Trans. Office Inf. Systems Vol 5 No 1 (1987)pp 70-95
model and object algebra for object-oriented data- 37 Siegelmann, H T and Badrinath, B R 'Integrating implicit
bases' Applied Math. Comp. Science, Vol 2 No 1 (1992) answers with object-oriented queries' Proc. 17th Int. Conf.
pp 49-63 Very Large Databases Barcelona (September 1991) pp 15-24

20 Alhajj (AI-HaU), R and Arkun, M E 'A query language for 38 Stetik, M and Bobrow, D G 'Object-oriented programming:
object-oriented databases' Proc. 7th Int. Syrup. Comp. Inf. Themes and variations' AI Magazine (January 1986)
Sciences, Kemer (November 1992) pp 40-62

Vol 35 No 9 September 1993 529

