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Quantum-statistical properties of a Raman-type model
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A model describing three boson fields with the decay of Rayleigh mode into the Stokes and vibra-
tion (phonon) modes is examined. The problem of exact eigenvalues and eigenstates is reduced to
the calculation of zeros of new orthogonal polynomials defined in terms of di8'erence and difFerential
equations. The instability of the spectrum of eigenvalues is established. The quantum-statistical
properties are investigated for various initial conditions. The possibility of using the correlation Ra-
man spectroscopy to measure the quantum-statistical properties of the vibration mode is discussed.

PACS number(s): 42.50.—p, 42.65.—k, 32.80.Bx

I. INTRODUCTION

Raman scattering is known as an important method of
spectroscopy of rnolecules and solids [1]. The standard
measurements of frequency and angular distribution of
scattered light give us very important information about
the linear properties of vibration (phonon) modes. A
more detailed picture would arise from the measurement
of quantum distribution function or of higher-order cor-
relation functions of phonons. It should be emphasized
that this distribution can dier markedly from the Bose-
Einstein distribution for bosons even at equilibrium with
a given temperature T[2]. An essential physical quan-
tity that may be measured by the methods of correlation
spectroscopy [3] is the degree of coherence of second-order
for the scattered light. However, it is necessary to know
how the statistical properties of scattered light are re-
lated to the statistical properties of the vibration mode.

The recent progress in quantum optics permits us to
discuss the possibility of using the nonclassical states of
light as the pumping field in a Raman scattering pro-
cess. It is interesting to compare the changes in statisti-
cal properties of scattered light with the changes in the
pumping field at a given state of the vibration mode.

To solve these problems it is necessary to examine a full
quantum model of the Raman scattering. The simplest
model of such type is described by the Hamiltonian [4]

H = era" a + wsasas + wi, btb + p(b asa + a asb),t t t

where at and a+~ are the creation operators for the
Rayleigh and Stokes modes, respectively, with the cor-
responding frequencies w and ug, bt is the creation oper-
ator for the vibration mode with frequency up, and p is
the coupling constant. We restrict our consideration to
the Stokes process only because we will examine the case
of low intensity initial Geld. We note that the same form
of the Hamiltonian is usually employed in the theory of
parametric optical processes [5—8].

*Permanent address: Bogolubov Laboratory of Theoretical
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The change of operators at and a by e numbers, cor-
responding to the classical amplitudes of an intense laser
field, [9] leads to an eB'ective bilinear boson Hamiltonian.
In this case the problem can be solved exactly [10] with
the aid of Bogolubov canonical transformation 11 . But
of course, it is impossible to speak about the quantum-
statistical properties of the Rayleigh field in such an ap-
proach.

Another type of effective Hamiltonian is connected
with an analogy in mathematical formulation of Raman
scattering process and of the interaction of a set of two-
or three-level atoms with the resonant radiation Gelds

[12—15]. This problem is also solved exactly in the single
atom case [16]. The model systems associated with the
Hamiltonian of Eq. (1) have been examined using various
techniques, such as numerical solution [17, 18], operator
linearization method [19],and the short-time approxima-
tion [20]. The Heisenberg dynamical equations have been
solved exactly [21] by applying some iterative procedure.
The existence of simple conservation laws can also be
used to construct the exact solution in the Schrodinger
picture [2, 22, 23]. The exact eigenvalues of Eq. (1) can be
expressed in terms of new orthogonal polynomials [2, 22]
which are reduced to the Hermite polynomials in some
special case.

In the present paper we use the exact solution of
the problem with the Hamiltonian of Eq. (1) in the
Schrodinger representation [2, 22] in order to examine
the quantum-statistical properties of scattered light and
its dependence on the properties of Rayleigh Geld and
phonons.

The organization of this paper is as follows. In Sec. II
we present the details of our exact solution of the trilin-
ear boson Hamiltonian for the Raman-type model. We
discuss the structure of the eigenvalue spectrum and the
corresponding eigenstates, and their asymptotic behav-
ior. We then describe in Sec. III the dynamics of the
Raman-type model considered for di8'erent preparations
of the photon and phonon initial state. In Sec. IV we ex-
hibit our numerical results of the dynamical problem for
various initial photon and phonon distributions. Discus-
sion of our results in connection with other approaches
and experiments is given. Finally, we conclude with a
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brief summary stressing the physical significance of our
calculations.

A'+'i Kn —j)(j+1)(m+ j+ 1)l"

II. EIGENVALUES AND EIGENSTATES

In this section we investigate the eigenvalue spectrum
and eigenstates of the Hamiltonian of Eq. (1) with the
assumption of the exact resonance condition

(2)

It follows from the boson commutation relations that the
Hamiltonian depicted in Eq. (1) has the following inte-
grals of motion:

ata + a&as ——const, ata + b~b = const,

which express the Manley-Rowe relations in nonlinear op-
tics [1]. From these two conservation laws we construct
the following operator:

N = ata+ (a~+ay + btb)/2 such that [N, H] = 0, (4)

which describes the number of collective excitations in
the system. Thus, we can consider the eigenfunctions of
N

~(y(n)) ~@(n))

as the eigenstates of Hamiltonian given by Eq. (1) corre-
sponding to the nth excited state

H~y(n)) @(n) ~@(n))

with the eigenvalue E( ~. It follows from the definition
of Eq. (4) that ~g( )) should be chosen in the following
form:

~@" ) = ) A(")
~n —j,j,m+ j) for all n

j=O

with

j=O

where
~
k, I, p) is the direct product of corresponding num-

ber states for Rayleigh, Stokes, and vibration modes.
Then, for any n the eigenvalues E( ~ are determined by
the equation

=*'"'A,'"'-A,'"'
K -j+1)j( +j)l" (»)

This recursion relation will be represented by the equiv-
alent expression

(i2)

defining the new orthogonal polynomials P (x), which
have been previously introduced [22, 23] for m = 0. Here

(("), = ((") [(n —j )j (m +j + 1)]'~',

q
") = (n —j + 1)j(m+ j) .

Then instead of Eq. (8), we obtain

P()( ) 0

which is the equation for the eigenvalues of Hamiltonian
given in Eq. (1). For any fixed n this equation has n+ 1
real roots.

In addition to the difFerence equation given in Eq. (12),
the orthogonal polynomials P~ can be defined also by the
diB'erential equation [23]

OF O O'l
~F'(2:, t) = +t

~

n(m+1) ——t,
~

(tF),
Ot Ot Ot2)

where the generating function has the form

pic
F(x, t) = ) Pk(x) —,.

The polynomials P~ (z) in turn can be expressed in terms
of the Bernoulli polynomials B&+ (n) in the following
way:

2P(n)) (n, )

L=O

where
detX("~ = O,

where X( ) is the real symmetric (n+1) x (n+1) matrix
with elements and

V (,",+i = 4'+'(n)%'+'(n)

A p
= & [(n —n+ 1)n(m+ n)]'i

, 0

In the above expression we have

x(") = (Z(") ~n ~bm)/p

ifP=o. +1
otherwise.

(io)

With the help of the above relations, we obtain for the
coeflicients of the eigenfunctions given in Eq. (7)

The recursion relation between the coefficients of wave
function of Eq. (7) has the form,

(i4)
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where x; is any solution of Eq. (8) [or of the equivalent
Eq. (13)] and

E;„nw+m~b p—x „nur+mwb —p[n +nn m]

(15)

The coefficient AI) (x,) is deterinined from the normal-
ization condition

) lA. (x;)l = 1 for all x;, i = 1, 2, . . . , n+1.
j=O

For small n, the coefficients given by Eq. (14) as well as
the eigenvalues E{ ~ can be calculated analytically. We
list a few of those in Table I.

One can observe from Eq. (13) that the roots (x. )(~)

are ordered symmetrically with respect to zero (we have
enumerated the roots starting from the maximum value).
The value x(") = 0 is the root of Eq. (13) for even n only.
It means that for n = 2k, in the spectrum of eigenenergies
E{ ~ there exists a central line with energy Ek+~ ——2k'+{2k)

mug, while for n = 2k + 1 such a line is absent in the
spectrum.

Using the Hadainard criterion [24], it is not difficult to
show that the maximum root has the following asymp-
totic behavior

n'~', n-+ c, m && n
m ~ n, m —+oo, n(&m

It follows &om the symmetry of roots that x;„=—x
Thus, the minimum eigenvalue has the asymptotic behav-
ior

From Eq. (15) we observe that for any fixed w, wb, and
p it is possible to find no such that for any n ) no,
the value of E;„becomes negative. In other words, we
have instability of eigenvalues of the Hamiltonian given
in eq. (1) with respect to the number of photons in the
Rayleigh mode, whereas they are stable relative to the
number of excitations in the vibration mode.

It is not surprising to find such an instability for the
system with a cubic nonlinearity. Similar results occur
for the system describing the decay of a mode of Bose
fields into p modes with p ) 2 [2, 22]. The possible phys-
ical reasons for such an instability have been discussed in
detail in Ref. [22].

III. DYNAMICAL BEHAVIOR

If we know the set of eigenvalues and eigenfunctions
for any n and m, the time dependent wave function is
represented by

n, m. =O l=].

where the index I enumerates the roots of Eq. (8) and
coeKcients C& are determined by the initial conditions.
We have suppressed the dependence on m of the eigen-
values E& and the coe%cients A-& in the expansion of

) determined by the relations of Eqs. (13) and (14).

TABLE I. List of the orthogonal polynomials P& (x), zeros of these polynomials, the eigenval-
ues E' ', and the coeKcients for eigenstates A& for n = 0, 1, and 2, and fixed I,.
n=0 P(o)( )

xj ——0
(o)

P,("(x) = *' —(m+»
xi = V'm + 1, x2 = —V'm + 1

Ei = cu + m~b + pV'm + 1(i)

Ao' (x, ) = ~, A,
' (xi) = —'(a) i (i)

E2 = (u + m(ub —yam + 1(1)

&. (* ) = ~ &i' (*z) = —~(1) 1 (1)

P,'"(*)=*' —*(4 +6)
xi ——v4m+6, x2 =0,

Ei = 2~ + m~b + pv 4m + 6

E2 = 2~+ mu)b

p(2)( ) (
~pi )~&2 p(2)( )

xs = —+4m+ 6

p(2)( ) (
~+2

)
it'2

p(2)( ) (
~+i )i&2

),(2)( ) (
~+2

)
~&2
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Taking into account of the explicit form of the eigenvalues

where (xI ) are the solutions of Eq. (13), symmetric rel-

ative to x~ ~ = 0, we obtain for the wave function

Let us now discuss the possible choice of initial condi-
tions. We shall consider the case when the Stokes mode
is initially in the vacuum state l0) g. Let the initial states
of Rayleigh lR) and vibration lV) modes be deffned by
the expansions

) —i(nw+m~g)t ) ~(~) i'm& —t l@(~))
n, m=O

(-4) = (&(t)l&l&(t)). (18)

We shall consider the first- and second-order correlation
functions for the Rayleigh and Stokes photons in the sys-
tem. For the mean number of Rayleigh photons we get

oo n+1

( t y ~ ~ -
( (~)*~(~) —ip(x'„"' —~I"')t

n, m=o k, l=1

Then the time dependent average of any dynamical vari-
able A of the system under consideration is determined
by

I&) = ) ~-lm)s.
m=o

n+1
~(n) p(n) Pn gm )

lm jl otherwise .
l=1

(23)

The distribution for the Rayleigh mode will be chosen by
the following cases: (a) a number state with a given n

(b) a coherent state with parameter n
n

exp (—l~l'/2)
nI

Then the coefficients ( I in Eq. (17) are determined by
the equations

atria, s t = a, ~a, o— (20)

For the mean squared intensities we obtain

(( t )2) ) - ) - ~(n)e~(n), ~(~I"I ~I"I)t

n, m=o k, l=l

Then, according to the Manley-Rowe relations (cf. Sec. I)
we have for the Stokes photons

and (c) a squeezed vacuum state with parameters p and

( )n/2
II-(0),

n!IM (2p)
where H (x) is the Hermite polynomial of order n. For
the vibrational mode, we shall examine the following pos-
sibilities: (a) a number state with a given m

gm' —~mm' )

x)
j=o

(( t )2) ) - ) -
( ( )*( (") —*'~( ',"'—,'"')t

(21)
and (b) a squeezed vacuum state with parameters pv and
&v

~-(0)
gm'pv (2ILtv)

n, m=o k, l=l

x jkm jim ~
j=o

(22)

for the Rayleigh and Stokes photons, respectively. It fol-
lows from the relations of Eqs. (19)—(22) that the expec-
tation values of number and square number of photons
in both modes are independent of the mode frequencies.
In other words, their dynamics is determined by the cou-
pling constant p. This is also the case for any expectation
value of the type

Relating to our choice of the initial states of the
Rayleigh and vibrational modes, we make the following
remarks. The coherent and squeezed states of photon
initial states correspond to the idea of application of a
nonclassical light in the Raman scattering process. It also
enables us to examine the dependence of statistical prop-
erties of scattered light both on the type of initial state
of photons and that of the vibrational mode (phonons).
Use of a squeezed vacuum state for the vibrational mode,
on the other hand, corresponds to the phonons of a po-
laritonlike system for which the number distribution is
given by a squeezed state at zero temperature [2].

((c'c)")t P 1 ) 2 ) ~ ~ ~

where c is defined to be the operator corresponding to
Rayleigh, Stokes, or phonon mode. Thus, the statistical
properties of scattered light are independent of the mode
frequencies. The real magnitudes of expectation values
are provided by the symmetry of solutions of Eq. (13).

IV. RESULTS AND DISCUSSION

The mean values for the number of photons and their
variances are normalized with respect to the initial num-
ber of Rayleigh mode photons at t = 0, (ata)o, viz.
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(ata)q —— (2[(m+ 1) cosO t+ (m+ 2)] + (m+ 1)(2m+ 3) sin 0
2m, +3 '

= 1+ cos (2p~mt), (24)

((ata) )t —— (4[(m + 1) cos 0 t + (m, + 2)] + (m, + 1)(2m + 3) sin zO
2m+ 3 1. 2—[cos (2p~mt) + 1] + —sin (2p~mt),

2
(25)

where 0 = p[2(2m + 3)] ~, so that

1
vq(ata) —(ata)q ———[1 + cos (2p~mt)]

2
(26)

a qualitative change in the behavior of statistics of scat-
tered light in comparison with the case of phonons in the
number state. This qualitative di6'erence can be used for
experimental observation of squeezing of the vibrational

Similar time dependent behavior for m )) n was also ob-
tained by Drobny and Jex [25]. Increasing n at fixed m
implies an increase in the number of terms with diR'erent
frequencies in the sums of Eqs. (19) arid (21). Therefore,
it is not surprising to observe the collapse-revival pat-
terns as in the Jaynes-Cummings model [26, 27]. We note
that in Ref. [25] such time dependent behavior was ex-
amined only for the coherent initial state of the Rayleigh
mode.

When the phonons are initially in the squeezed vac-
uum state [depicted in Fig. 1(b)] we also have change in
the type of number distribution in time, but in contrast
to the previous case the increase of n at fixed mean num-
ber of phonons (btb)o ——lvvl leads to the almost super-
Poissonian state for both the Rayleigh and Stokes pho-
tons. As lvvl becomes larger for fixed n, we also observe
a chiefly super-Poissonian state. In other words, we have
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FIG. 3. The time dependence of the (normalized) aver-

age number of photons (alas)t, (solid line) and the vari-

ance vz(asas) (dotted line) for the Stokes mode initially in
the coherent state characterized by n = 0.5 (upper) and
n = 2.0 (lower) photons and in the squeezed state phonons
with lvvl = 2.
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FIG. 4. Same as Fig. 1 for the Rayleigh mode initially in

the squeezed state characterized by (a) lvl = 0.5 (upper) and

~vl = 2 (lower) photons and m = 2 phonons; (b) lvl = 0.5
(upper) and lvl = 2 (lower) photons and in the squeezed

state phonons with lvvl = 2.
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mode.
It is possible to see from Fig. 1 the collapse-revival phe-

nomenon occurring for initially squeezed phonon states.
Qualitatively similar time dependent behavior is ob-
served for the Stokes mode averages. The number oscil-
lations for the Stokes photons have the mirror symmetry
relative to the Rayleigh mode because of the Manley-
Rowe law [given in Eq. (4)] while the oscillations of the
variance in number of photons strictly coincide with the
corresponding Rayleigh mode variance. Such a mirror
symmetry is a general property of a system independent
of the initial state.

The dynamics of the system in initial coherent state
of the Rayleigh mode is presented in Figs. 2 and 3 for
the Rayleigh and Stokes modes, respectively. When the
mean number of initial Rayleigh photons (ata)o ——]n]
is small enough the distribution remains Poissonian for
t ) 0, as the number of phonons in the vibrational mode
m increases. On the other hand, as ]n~ increases for
a fixed m, a super-Poissonian statistics for the Rayleigh
photons is observed. Similar conclusions may be drawn
for the Stokes photons, although the oscillations in the
variance do not coincide with those for Rayleigh pho-
tons, in this case. If the vibration mode is initially in
a squeezed state, the response of the system is qualita-
tively similar [see Fig. 2(b)]. In Fig. 3 we show only the
dynamics of the Stokes mode when the vibration mode
phonons are initially in the squeezed state, since the case
with phonons in the number state has a mirror symmetry
to the ones shown in Fig. 2, similar to the discussion of
Fig. 1.

Finally, we show the time dependence of the Rayleigh
mode fluctuations in Fig. 4, when the initial state of
Rayleigh photons is a squeezed state. The main result
we obtain &om these 6.gures is that the sub-Poissonian
distribution is absent here, in contrast to the previous
cases.

As for a brief summary, we list below some of the main
conclusions of this work.

(I) The collapse-revival phenomenon is the property of
the model under consideration, independent of the type
of the initial state used to prepare the system (for the
Rayleigh mode in the number state, it can be observed
for n ) 2).

(2) The sub-Poissonian statistics is seen to be obeyed
for the number and coherent initial state of the Rayleigh
mode, but not for the squeezed vacuum state.

(3) The behavior of the scattered light in the number
state di8'ers qualitatively depending on the initial state
of the vibration mode.

In connection with the last result, we note that the
number states of the vibration mode may be considered
as a state of harmonic phonons at zero temperature while
the squeezed vacuum state corresponds to the correlated
phonons due to some mechanism of interaction [2]. We
can assume the number of initial phonons (or mean num-

ber) to be given. Then, the change in initial intensity of
the Rayleigh mode and the observation of the correspond-
ing change in the Mandel's factor

vt(ctc) —(ctc),
(c c),

would allow us to find the type of phonon distribution
present in the system.
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