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It has long been recognized that the bending losses in weakly guiding optical fibres are 
independent of the polarization for large bend radius. Here, we show this fact using 
the volume equivalent current method. The procedure is then applied to a helically 
bent fibre and it is shown that the radiation from the helical fibre is also independent of 
the polarization as long as the fibre is weakly guiding. 

1. I n t r o d u c t i o n  
It is well understood that a bent fibre radiates energy. It has been assumed that this 
radiation is independent of  the polarization for large bend radius [1, 2]. This fact can be 
illustrated by the equivalent current method of Snyder and Love [2] as described in 
Section 3. 

In the case of  a helical fibre, the radiation is due to bending loss and helical loss [3]. If  a 
multimode fibre is bent into a helix, the radiation acts as an effective cutoff for modes [4]. 
In the previous analyses, the polarization is assumed to stay parallel to a rectangular 
coordinate axis which is invariant with respect to the helical path. However, in reality, it is 
well known that the polarization slips back owing to the torsion of the helix [5]. Thus, one 
needs to include this rotation of polarization in the radiation calculations. We have 
performed this analysis and observed that the total radiation is independent of  the 
polarization slip. 

2. Analysis for a circularly bent fibre 
The circularly bent fibre is shown in Fig. l. The fibre has a core radius p, core refractive 
index nco and cladding index no1. The fibre and index parameters are denoted by V, and A 

2 2 2 )/2n2o, where k = 27r/Ao and Ao is the free-space as V = kp(n2o - ncl) 1/2, A =(nco - ncl 
wavelength. R c is the radius of  curvature of  the bend and it is assumed to be large 
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Figure 1 Circularly bent fibre. 
compared to p to satisfy the slowness criteria (equation 19-17 of  [2]): 

Rc>> 47r V 
P V ~  W2 (1) 

where W p(fl2 2 2 1/2 = - k  ncl ) and /3 is the phase constant of the mode. As a typical 
example, for the following parameters: 

nco = 1.560 

nc] = 1.557 

V = 3.574 

A = 0.006 

the slowness criterion gives 

Ao = 850 nm 

p = 5#m 

U = 1.857 

W = 3.055 

Rc/p>>43.929 (2) 

which is satisfied for the bend radius in the range of a few millimetres. 
The equivalent current method follows from Maxwell's equations. The core region of 

the bent fibre is replaced by an equivalent volume current of  strength 

J = ik(eO~ 1/2 \#0./ (no2~ - no2 ) E (3) 

where E is the field in the core. If  E is known or approximated then the radiation from the 
fibre is calculated by antenna theory. The easiest approximation, which is known to be 
valid when the slowness criteria is satisfied [2], is to take E as the mode in the core without 
any modifications. The radiation loss obtained by this method has been shown to agree 
with previous results [4]. 

106 



Effect of polarization on the radiation losses of bent optical fibres 

In previous calculations, the core field is assumed to be linearly polarized in the 
direction perpendicular to the plane of the bend. Henceforth, this will be referred to as the 
'perpendicular polarization' case. Here in this paper, we will be analysing the 'parallel 
polarization' case in which the core field is linearly polarized in the direction parallel to the 
plane of the bend (Fig. 1). The equivalent current in this parallel polarization case is given 
by 

(e~ ~l/2k(n2 - no2) E~c (4) 
J = i \~00/ 

where ~i c is the unit vector along the radial direction away from the centre of curvature of 
the bend. For the single mode fibre, the electric field strength E is given by 

e = ei~ZFo(R) (5) 

Jo(UR)/Jo(U) core 
Fo(R) = [, Ko(WR)/Ko(W) cladding 

with 

where J0, K0 are Bessel functions of order 0, z is the distance along the fibre, R = r/p, and 
the parameter U is given by 

U -- p ((knco) 2 - 3 2 )1/2 

Accordingly, the vector potential (equation 21-20 of [2]) is given as follows: 

M = IcR~ exp {iRe [r - kd sin 0 cos (4 - 4' )]} 

x [a0 cos 0 cos (q~ - q~') + ~i~ sin (4~ - q~')] d4~' (6) 

where Ic =27rp2fl#RdR, and # =  [J[, k~l =kncl and z is approximated by Rcq~'. In 
Equation 6, only the transverse part which contributes to radiation is included. A careful 
examination of the above integral shows that the integrand oscillates quite rapidly except 
at stationary phase points which are given by 

3+kc l  sin 0 sin(~b- 4 ' )  = 0 (7) 

which yields 

sin (4 - ~b') - fl 
kcl sin O (8) 

Using these values, the integral in Equation 6 is well approximated by 

( ~ ( 3 )  2 -f l  )27rRclc'lJ~(kclRcsinO)l (9) M = a0 cos 19 1 - kcl sin 0 + as kcl sin 0 

where u =flRc >> 1. The total radiated power in the far zone is given by 

Prad IMoI 2 + IM, I 2] sin 0d0d~b (10) 
J0 30 

where a = (k2nel/327r 2) (#0/e0) V2. Substituting Equation 9 into Equation 10 and setting 
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nco ~ ncl, we obtain 

Brad = 8 ~ -  \ ~ o /  - -  - -  

where 

v ~ I~ g 
j2 (kRcncl 

g/co m J0 
sin O)(f2(O) + f~(O))dO (I1) 

f l ( 0 ) = c o s 0  1 -  ~:clsin0 

/3 
f2(0) - kcl sin 0 

If we use Debye's approximate value for the Bessel function in the integrand, we get 

1 Rc (#~ V2/c2 I2 sin OQ(O) 
Prad ---- g ~ \s nco A (/32 2 k ~  ~ 0)1/2 es(~ dO 

where 

and 

2kcl c ;2 
S(O) - 3 sin---5 0 kc] - sin: 0 

(12) 

(13) 

Q(O) = f2(O) + fff(O) (14) 

Now, we can search for a stationary phase point of the above integral. 

os(o) 
o0  - 0 (15) 

=~ ~c]-s in2 0 - ~ s i n  2 0-k--~l-sin2 0 = 0  (16) 

/ 3 2  
=* sin 2 0 = k~ = 1 (17) 

Therefore the stationary phase point is very close to zr/2, so that 0 = 7r/2 can be 
substituted into the coefficient function of the Bessel function in the integrand. Then we 
get 

exp ( (18) 
"rad = -'-~12 (Rc~ 1/2 (~0~ 1/2 V2 Hco 4 R c AW3~ 

32"c \ P /  \-%0/ W3/2 A 3 p V 2 ] 

which is the same result as in the perpendicular polarization case [2]. It is also noted that, 
in the asymptotic evaluation of Equation 11, the contribution from 114o is zero (since 
fl  (0) = 0 at 0 = ~r/2). For the perpendicular polarization case the contribution from M e 
is zero. The radiated fields of both polarizations are orthogonal, so the power loss is 
additive for the parallel and perpendicular components of an arbitrarily polarized field. 
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Figure 2 Hehcally bent fibre 

3. Helically bent single-mode fibre 
A helical fibre is shown in Fig. 2. The helix has a pitch p and offset Q. The helix angle Op is 
defined by cos Op = p / ( p 2 +  (27rQ)2)V2. The helix axis coincides with the z'-axis and 0 
and q~ are the spherical angles as shown in Fig. 2. 

It has been shown that the direction of  polarization of  the field rotates along the helical 
path due to the torsion of the helix [5]. Let c~ denote the speed of  this rotation, then the 
equivalent current is given by 

Jeq = [fix cos a~  t -1- fly sin a~b']# (19) 

in the core region, with # being the magnitude in Equation 1. The vector potential 
becomes 

M = ,LMx + .yM~, (20) 

where 

To get the 
Substituting 
we obtain 

L 
M ~ = # I _ L e x p l - J ( c ~ s o p - k c l c ~  [2~, ] 

- j k c l Q s i n O c ~  cos ~ a ~ - z  ) dz' (21) 

sin ( a - ~ z ' )  

radiation from a helix of infinite length, L must be taken to infinity. 
M~ = - M  x sin q~ + My cos ~ and M o = M,: cos ~ cos O + My sin ~b sin O, 

U f27r 
Prad ~-crJ0 J0 [IM~12(sin2 q~+ c~ ~c~  0) 

+ IMyl2(cos2 4~ + cos 2 0 sin 2 q~) 

+ rMxllMy I sin 4~ cos 4~(cos 2 0 -  1)] sin 0d0d~ (22) 

It is also noted that the last term in the integrand vanishes after the ~b-integration. Using 
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the following decompositions, 

cos f 27r ,'~ 1 ~ a p Z ) = ~ [ e x p ( j a ~ z ' ) + e x p ( - j a ~ z ' ) ]  

f 27r ,'~ 1 f .  27r ,'~ s i n ~ a p Z ) : ~ [ e x p ~ - f f z ) - e x p ( - j a ~ z ' ) ]  

Equation 21 can be written as 

Mx =Mxa+Mx~ 

M y  = M y  a - M y  b 

where 

and 

,i ~ [~.(~ ~;)] = exp - kcl cos 0 :~ a z t Mxab "2 -L cos Op 

• exp [-jkclQ Sin O cos ( $ - ~ z ' ) l  d f  

.~  ~ cos0~o~)z] M y ~ = ~ ) f _ L e x p [ - J ( ~ - k c l  

x exp [-jkclQ sin O cos ( ~ - ~ z ' )  l dz' 

The radiated power expression can be written as 

Prad = [ [ Mxa + M xb l 2 ( sin 2 (9 + cos 2 c) cos z O) 
j0 jo 

+ IMy= -Mybl2(cos2(9+cos 2 0 sin 2 ~b)] sin 0d0d~b 

Using the relation 

exp (-jz cos O) = Jo(z) + 2 ~ (j)mJm(z) COS (mO) 
m = l  

we have 

where 

Mx; = ~ Jo(kcxQ sin O)Foab + 2 (j)mJm(kcl Q sin O)Fm; 
m = l  

My. h = ~ Jo(kclQ sin O)Fo; + 2 (j)mJm(kcl Q sin O)Fm; 
m = l  

L /3 kcl 0 4- o~27r 2 7r ) [ (  ~os +7)] sin ~ Op p 

~=oxpjmO (~  ~cosO~~ 
/~ Cos 0~ p 
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L fl a27r 2 } 
sin[  (co--0-~-- - kcl cos 0 + - -  p~-)] 

Op p (33) 
+exp  - jmr  L (  /3 kcl COS O • a27r 2 

co; o, 7 t ,  

Each term has a (sinx)/x behaviour which has a maximum at those points where the 
denominator vanishes and it is essentially zero everywhere else, since we are interested in 
the limit L ---* ec. Therefore, the doubly infinite set of terms in IMx;[ a and IMy;12 simplify 
to the following: 

2 rsin E ;l? 
tMx~l 2 ~- [ Mk@ 2= ~ L2jo2(kclQ sin 0 ) L ~ J  

[sin2[B;] sin2[C;]- (34) 
q-lz2L2 ~--~ j2(kclQ sin O)[ [-~"b]2 [C~] 2 

where 

A~= (cosOp kdcos 

( 27r 2:,rr) 
= L fl kd cos 0 qz a ~ + (36) B; cos G P 

( 27r 2pTr) (37) L fl kcl cos 0 T a 
C~b = cOS Op p 

The cross terms in [Mx] 2 and IMyl 2 contain mxaMxb or MyaM~*,b, respectively (the 
superscript (*) denotes complex conjugation). These terms are equal in magnitude and 
their total contribution to the integral in Equation 29 is zero. Since the speed a is given by 

a = cos (Op) (38) 

for vanishingly small fibre thickness compared with the radius of the curvature, some of 
the (sin x)/x functions will have peaks at imaginary values of 0. The contribution of these 
peaks at imaginary values of 0 has to be discarded for the power loss calculation (as in 
array antennas), and I M~;I 2 is written as 

2 Isin2[A~] ] 
]Mx;] 2 = ~-t2~(kcla sin 0)[  [ - ~ ] 2  j 

m = mma x 
+ #2L2 Z 

m ~ m m m  

where m are values for which 

J2m(kclQ sin 0) 
-sin 2[B~] sin 2[C~]1 

(39) 

/3 a27r 2mTr 
- - -  (40) cos 0m kcl C O S  Op T Pkcl pkcl 

yields a value of 0m between 0 and 7r. The expression for [MyZ[ 2 is exactly the same, in 
other words, 

[Mx~] 2 = ]My~] 2 = ]M~I 2 (41) 
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Substituting these in Equation 29, and noting that I M~] 2 is independent of q~, we get 

Brad = 27rcr 2 + IMbl2)(1 + c o s  2 0) sin 0d0 (42) 

Defining 

( /3 0T~27r  2pTr) 
q:F = L c ~ s  Op - kcl cos P -- (43) 

dq~_ = Lkcl sin 0 dO (44) 

the integral in Equation 42 becomes 

1 
Brad = 27rcr#2L2 Z JZ(kclQ sin 0m)(1 + c o s  20m) Lkd 

m 

[jz+sin ,q+, l: sin',q, ] x :- q+2 dq+ + q----7_2 dq_ (45) 

where z + and z -  correspond to the values of q-L when m goes from mmm to mma x. If  we now 
increase L indefinitely, the integrals have value ~r, so 

Brad 47r2~ 2L 
-- kr ~ J~(kclQ sin 0m)(1 +COS 2 0m) (46) 

m 

This expression is exactly the same as found in previous analyses (equation A17 of [4]) 
which neglected the rotation of the direction of polarization. 

4. Conclusions 
We have demonstrated that the equivalent current method can be employed to predict the 
bend loss in an optical fibre for both orthogonal polarizations of  modal field. The same 
analysis is then carried out for a helically bent fibre and it is observed that rotation of 
polarization due to the torsion does not affect the radiation loss. 
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