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Relation between quantum statistics of phonons and scattered light
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The resonance model of the Raman process with the generation of a Stokes component is solved exactly. The asymptotic behav-
ior of the solution is discussed. Mandel’s Q-factor is calculated as a function of time both for the Stokes and the Rayleigh compo-
nents for their dependence on the quantum statistical properties of the vibration mode (phonons). A qualitative difference be-
tween the cases of uncorrelated and correlated phonons is found which may have interesting experimental implications.

1. Introduction

During the last years quantum statistical proper-
ties of scattered light in the Raman process have at-
tracted considerable interest [1,2]. In particular, the
anticorrelation between the Stokes and Rayleigh lines
in the resonance scattering have been examined
[3,4], and the generation of squeezed light has been
considered [5-7]. At the same time, strong quan-
tum fluctuations of energy have been observed ex-
perimentally [8,9].

It is known that Raman scattering is an example
of an optical parametric process in which one of the
interacting waves is a medium vibration mode of bo-
son type (phonons) [10]. In the case of condensed
matter such a mode is usually in thermal equilibrium
with a given temperature. The state of that mode is
determined by different mechanisms of microscopic
interactions in the medium and in some cases can
lead to a strong number fluctuation [11]. An ex-
ample is provided by a polariton-type system in
which the equilibrium state is a squeezed one [12].
Undoubtedly, the statistical properties of the vibra-
tion mode must have influence on the statistics of
the scattered light.

In the present paper we consider the quantum
properties of scattered light and its dependence on
the type of statistical distribution function of the vi-

bration mode in Raman scattering. For simplicity,
we suppose the resonance steady state process with
the generation of an inelastic Stokes component only.
The initial state of the Rayleigh mode is assumed to
be a number state, while the vibration mode can be
initially in a number state or in a squeezed vacuum
state. The Stokes field is initially in the vacuum state.
The simplest model of three bounded oscillators is
used for the description of the process under con-
sideration [13]. Using the representation of the
Schrédinger equation in terms of new orthogonal
polynomials [14,15], we examine the dynamics of
Mandel’s factor of scattered light, and show the qual-
itative difference between the two choices of the ini-
tial states of the vibration mode.

The rest of this paper is organized as follows. We
first introduce the model Hamiltonian for which we
calculate the dynamical properties. The evaluation
of the eigenvalues and eigenfunctions, and a discus-
sion of how to construct the time-dependent Mandel
factor is given in the next section. We then present
our results and conclude with an emphasis on the ex-
perimental implications.

2. Model and its eigenvalue spectrum

The aim of this study is the calculation of the time-
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dependent Mandel factor defined by the following
expression,

Vt(c; Cg)— (C; Ceds
CPEPT )

Here ¢/ and c, are the Bose operators, V,(c; ¢;) is
the time-dependent number variance, and { ), de-
notes a time-dependent expectation value. It is pos-
itive in the case of super-Poisson statistics and neg-
ative for a sub-Poisson number distribution. The zero
value corresponds to the coherent state (Poisson
distribution).

The time dependence of the functions on the right
hand side of eq. (1) is given by the dynamics of our
model Hamiltonian,

H=Y w,cfc+y(ctcfe.+he), (2)
g

Q(g)= (1)

where the index g=v, s or r denotes the vibration,
Stokes, or Rayleigh modes, respectively. We will as-
sume the resonance condition

W, =0+, (3

in the subsequent considerations. Because of the
conservation law [13] [N, H] =0, where

N=cfe+i(cdes+ede),

an exact eigenstate of the Hamiltonian of eq. (2) can
be chosen as

I, my= 3 23 =iyt 4)
Jj=

where | ), is the number state of the gth mode. The
coefficients ™™ in eq. (4) are determined by the re-
cursion relation [15]

A=)+ 1) (m+j+1)]'/2
=xPAPT AP [(n=j+ D)j(m+)]12, (5)

together with the normalization condition
n

Y ojARm2=1.

j=0

Here x""= (E™"—wn—w,m)/y, and E™™ is an ei-
genvalue of Hamiltonian (2) corresponding to the
eigenstate given in eq. (4). The above relation (5)
can also be represented by the equivalent expression

() =XxP}™ (x) =g PR (X) (6)
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defining some orthogonal polynomials [14]
Pp™(x). Here

g =(n—j+1)j(m+j) .

These polynomials may also be defined through the
differential equation
d%F

daF
3—-——_ 2 — —_ —_—
t FYe [1+t*(n—m=2)] Ey

+[x—tn(m+1)]F=0

for the following generating function,
F(x,t)y=Y P}™(x) 5
j=0 J:
Let us represent the polynomials P> (x) in the form
j
Ppm(x)= 3 ()

Then for the coefficients £ in the above equation we
get

é]r"’—”ésﬁ-l (.]) =0 s

G == 3 aEE e (k=1). (M

Because of this relation it is not difficult to express
these coefficients ¢ in terms of the Bernoulli poly-
nomials [15].

Using the polynomials P}*™(x) we can represent
the equation for the eigenvalues in the form

Prii(x)=0. (8)

Taking into account the relations given in eq. (7),
one can observe that (i) for any fixed » and m eq.
(8) has exactly n+1 real solutions; (ii) the set of
solutions {x7™} is ordered symmetrically with re-
spect to the zero value x™” =0, (iii) the value x»"=0
for which E,, ,, =+ w,m is the root of eq. (8) for
even n only; and (iv) between any two neighboring
roots x™ and x4 is situated only one root of eq.
(8). We note that the above expression (8) deter-
mines the eigenvalues of some Jacobi matrix. For a
special case the problem of diagonalization of the
corresponding matrix was solved numerically by
Walls and Barakat [16].

With the aid of egs. (5) and (6) the coefficients
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of the eigenstate given by eq. (4) are represented in
the form

APM(x)=AG" PP (X))

O G R

where x,=x/" is any solution of eq. (8). The coef-
ficient 5™ is determined by the normalization con-
dition. For example, the eigenstate corresponding to
the solution x™™ =0 for even n is described by the
following set of coefficients,

nm__1nm ég,m(z) {8,"1(4) 63’_"1(”)}
Anm= " {1,0, : ,0, F7™ s oo 0, Fom
where

(m+2p-1)1

and

Frm =[[ (2p)! ]3( n )<m+2p)]—1/2
2p ! 2p 2p .

We stress that the same polynomials and polynomial
equations arise in the more general case of nonlinear
interaction of any order p>2 of the type

P P
+
{5 [0+ [ a2

(decay of one boson into p bosons). The only change
here is the parameter ¢/* in eq. (6). For instance,
in the case when all k&th modes are initially in the
vacuum state, one gets g™ =j?(n—j+1).

3. Asymptotics of eigenvalues

The representation of the eigenvalue problem in
terms of the polynomials P(x) allows us to estimate
the asymptotic behavior of the eigenvalues E™™ for
large n and m. Apart from providing us with useful
information on the numerical calculations, the in-
vestigation of the asymptotic behavior leads also to
some interesting properties of the model which we
discuss below.

From the results of the previous section it follows
that
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nlxpxl*> ¥ (x> X 7"
j=0 j=0
=L5n(n+1)[n?2+n(3+2m)+4m+2], (10)

where x.,,, is the maximum root of eq. (8) at given
n and m. Because of the above established symmetry
of the solutions of eq. (8) we obtain

EXZ<w.n+o.m

L S 1) [nP+n(2m+3)+4m+2],

23

which leads to the asymptotic behavior

Eri<on+o,m— 5%,/M+2n2m (11)

for large n and m. A similar estimation of the lowest
eigenvalue for the special case m=0 was given pre-
viously [11,14]. It follows from the inequality of eq.
(10) that starting from some numbers 1, and n1,, we
have at least one branch of collective excitations with
negative energy, while the energy of the vacuum state
E®°=(. Moreover, E&" —+ —co when n—oo. Thus,
the spectrum of eigenvalues of the problem under
consideration becomes unstable with increasing 7.
The inequality of eq. (10) gives us an estimate as
an upper bound to E%™. Using the Frobenius theo-
rem [17] one can also construct a lower bound,

x,':;Z?ISmfx(\/q;'é’:"l +./qFm) < ;‘?,/nuznzm,

which leads to
W, +w,m— %,/n3+2n2m<Eg;;§
Swrn+wvm—ﬁ§./n3+2n2m (12)

for large n and m. Because of these estimates from
above and below, we have the exact asymptotic be-
havior for the minimum eigenvalue at fixed n and m.
Due to the symmetry of the roots of eq. (8) similar
asymptotics can also be derived for the maximum
eigenvalue. We summarize the asymptotic behavior
of the minimum and maximum eigenvalues below.
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Epm~—yn®? n-oo, mfixed, St =0 »
Erm ~yn32  posoo, mfixed , 1
max 'Y = \/n'_ (V/zﬂ)"/sz(O)
Err ~w,m—y0O(m'/?), m-oo,nfixed, H

Ert ~w,m+y0(m'/?), m-ooo, nfixed .

From the above asymptotic behavior one readily ob-
serves that only # is a critical parameter for stability
of the spectrum of elementary excitations in the
present model. In this connection, we remark that
increasing n means an increase in the number of
photons in the Rayleigh mode. But at high intensity
of the Rayleigh mode at t=0, it is necessary to take
into account the generation of anti-Stokes phonons.
It is then reasonable to suppose that the inclusion of
the anti-Stokes process into the model Hamiltonian
would stabilize the spectrum of collective excitations.

4. Time dependent Mandel factor

Using the results of previous sections we can now
express the exact time dependent wave function of
Hamiltonian (2) in the form

w(ty= 3 expl—i(nw, +mw)i]

nm=0

n+1

X ¥ Cpmexp(—iyxp™t)
=1

XZOA,'»"'"(x;"m)|n—j>,|j>s|m+j>v. (13)
j=

Here we have enumerated the roots x?” of eq. (8)
starting from the maximum value. The coefficients
C»™ are determined by the initial conditions so that

n+1

S CPmm ) =pafms i£/=0,

=0, otherwise . (14)

According to the setting of the problem given in sec-
tion 1 we must put here

Dn =5nn'

for the initial state of the Rayleigh mode, and
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for the number and squeezed vacuum initial states
of the vibration mode, respectively. Here 1 and » are
the squeezing parameters and H(x) is the Hermite
polynomial [18].

Now all time dependent terms in the Mandel fac-
tor given in eq. (1) must be calculated as the cor-
responding expectation values with the time depen-
dent wave function (eqs. (13), (14)).

The results of our calculations are presented in figs.
1 and 2 for Mandel’ Q-factors of the Rayleigh and
Stokes modes, respectively. In fig. 1a we show the
Rayleigh mode Mandel factor Q.(¢) for the initial
number state of the vibration mode (m=2), and
different values of the initial number of photons n=2
(solid line) and n=20 (dotted line) in the Rayleigh
mode. One can see that the increase of » in this case
leads to a periodical change of statistics of elastic
scattered photons from the sub-Poissonian to the
super-Poissonian statistics.

A qualitatively different behavior is observed when
the vibration mode is initially in a squeezed vacuum
state (fig. 1b). In that case as n increases for a fixed
mean number of quanta in the vibration mode | »|?,
the statistics of scattered light becomes completely
super-Poissonian without any change of sign of
Mandel’s Q-factor. Figure 2 shows Mandel’s Q-fac-
tor for the Stokes mode. Qualitatively the same be-
havior is observed also for the Stokes mode as dis-
cussed before.

5. Conclusion

We have obtained a qualitative difference in the
quantum statistical properties of scattered light de-
pending on the statistics of the vibration mode. Our
choice of the initial state of the vibration mode can
be considered as simulating the harmonic (uncor-
related) and strongly correlated vibrations in a me-
dium. Hence, the experimental investigation of the
quantum statistical properties of scattered light in
the Raman correlation spectroscopy with a number
state (or a strong sub-Poissonian) incident light may
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Fig. 1. (a) Time dependent Mandel factor Q,(¢) for the Rayleigh
mode when the vibration mode is initially in the number state
(m=2), and the initial number of photons n=2 (solid line) and
n=20 (dotted line) for the Rayleigh mode. (b) Time dependent
Mandel factor Q,(¢) for the Rayleigh mode when the vibration
mode is initially in the squeezed state |¥|2=2.0, and the initial
number of photons n=2 (solid line) and n=20 (dotted line) for
the Rayleigh mode.

yield important information on the correlations in
the medium as well as in the molecules.

It is not difficult to see from figs. 1 and 2 that the
collapse-revival phenomenon occurs in the system
for sufficiently large n. Since an increase in n implies
an increase in the number of terms in the sum of eq.
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Fig. 2. (a) Time dependent Mandel factor Q,(¢) for the Stokes
mode when the vibration mode is initially in the number state
{(m=2), and the initial number of photons n=2 (solid line) and
n=20 (dotted line) for the Rayleigh mode. (b) Time dependent
Mandel factor @, (¢) for the Stokes mode when the vibration mode
is initially in the squeezed state | ¥|2=2.0, and the initial number
of photons n=2 (solid line) and n=20 (dotted line) for the
Rayleigh mode.

(10), it is not surprising to observe the collapse-
rivival patterns as in the case of the Jaynes—
Cummings model [19,20]. It should be noted that
a similar behavior was obtained in the numerical cal-
culations of Drobny and Jex [21], for the case of the
initial coherent state of the Rayleigh mode. In this
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connection we emphasize that the collapse-revival
phenomenon is a general property of the model de-
scribed by Hamiltonian (2) irrespective of the ini-
tial state of the Rayleigh mode. Some other cases are
also considered in ref. [15].
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