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Abstract: It would be difficult to efficiently implement a manufacturing system without solving its design
and operational problems. Based on this framework, a system configuration and tooling problem is
modeled. The model turns out to be a large mixed integer linear program, so that some alternative
optimal seeking and heuristic techniques are used to solve the model for constructing a flow line
structured Flexible Manufacturing System. As a result, it may be possible to construct flexible, efficient,
simple and easily controllable manufacturing systems.
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1. Introduction
1.1. What is a Flexible Manufacturing System?

After the midfifties, requirements for high precision in manufacturing led to the development of
numerically controlled machine tools. In the late seventies, manufacturing systems were designed and
developed using computer control of machine tools to produce mid-sized batches of several different
parts attempting to gain both the efficiency of automated mass production and the flexibility of a job
shop. These are called Flexible Manufacturing Systems if they have the following main components:

® Machine tool: requires insignificant set-up time between two operations utilizing different tools on

the same machine.

® Materials handling and storage system: this is an automated and flexible system giving alternative

material routing opportunuties between components of the system.

® Computer control system: supports either centralized or decentralized computer control over system

components.

® Resources to be shared by part types: these are mainly composed of tools, pallets, carriers, and

fixtures.

The FMS is a result of the evolution of the use of several NC machine tools working independently,
into an integrated system of CNC machine tools controlled by a central computer. As a consequence of
the automatic tool interchange, the machine set-up time and hence internal set-up costs are small for an
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FMS, which permits less work-in-process inventory than that of a conventional manufacturing system.
Generally, an FMS can process required part types to demand, in lot sizes as small as one.

1.2. Production planning problems of FMS

The design problems concern how to set up the FMS before production begins in order to make good
use of the system capabilities. The typical problems can be listed as follows [15]:

® part type selection problem;

® machine grouping problem,;

@ production ratio problem;

® resource allocation problem;

@ loading problem.

In this research, we are mostly interested in machine grouping and loading problems before going into
the operational problems to investigate different control strategies. The first problem is to partition the
machines into machine groups in such a way that each machine in a particular group is able to perform
the same set of operations. The second problem is to allocate the operations and required tools for part
types into the machine groups subject to the technological and capacity constraints of the system.

Recall that a solution to the loading problem is an allocation of the total amount of work for
processing parts among the machines. A solution to the grouping problem is a particular configuration of
the system.

2. Literature review

The loading and scheduling problems in practice are handled in various ways. At present, even for
some FMS, the loading function is performed manually with the aim of finding a feasible solution [15].
Caie and Maxwell [3] have noticed that “schedulers are usually more interested in generating a feasible
part-to-tool assignment that satisfies demand.... A scheduler’s main objective is to level the load
between identical machine tools so that no machine tool is overcapacitated and demand is satisfied”.

Stecke [15] noticed that “for systems that are simple to be able to utilize a more sophisticated loading
procedure, the usual practice in industry is to balance the assigned workload among the machines...”.
Software packages have been developed by several computer companies to help a shop manager perform
his planning and /or control functions.

A common complaint of industrial practitioners is that theoretical approaches to their problems fall
short in realism or are impractical. Academic approaches to workload assignment methods and loading
procedures will now be examined for their relevance to our research. The loading problem is defined as
the allocation of given part types (or operations) to machines with limited slots in each tool magazine to
minimize the number of machines required [15].

The loading problem could be viewed as a bin packing problem (Coffman et al. [5]). One version of
the problem has been found to be equivalent to the assembly line balancing problem (Greene [8];
Magazine and Wee [14]). These versions of the loading problem have been shown to be NP-complete [6].

There are many proposed procedures and algorithms which either attempt to balance or advocate
balancing the workload within the job-shop environment. In these studies, it is assumed that each
operation is assigned to one and only one machine.

The balancing problem in deterministic flow lines is known as the assembly line balancing problem
and is stated as: Given a production rate or cycle time, what is the minimum number of workstations
needed without violating the constraints of the problem [8]. Application of an assembly line balancing
algorithm results in a one-to-one assignment of operations to machines. The possibilities of pooling or
duplication of an operation assignment, or multiple manning be largely ignored. However, Wild and
Slack [20] examine the benefits from the merging of two equivalent single flow lines into a one double
line, with two servers at each station. They found that the double flow line reduces machine idle time.
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Kleinrock [11] shows that M pooled servers are more efficient than M individual parallel servers.
Conway, Maxwell and Miller [7] stated that multiple job routes and machine flexibility reduces the
machine congestion and queue lengths.

FMS loading problems have been brought to the attention of many researchers in the eighties. Stecke
and Solberg [16] presented five different loading policies for an existing FMS. An impact of these policies
on machine scheduling is discussed. Detailed non-linear integer programming formulations of this
problem are presented by Stecke [17]. These grouping and loading problems are solved through
linearization approaches [17] or heuristics by Stecke and Talbot [18]. A variety of objectives are
considered regarding workload, material movement, tool magazine utilization and operation priorities.
Those models include a set of constraints related to a limited space of a tool magazine. Kusiak [13]
introduced an additional set of tool life and part assignment constraints.

Ammons et al. [1] developed a loading model which minimizes a number of operation-to-machine
assignments while balancing the workload. The developed model is solved with three variants of the
objective function. Chakravarty and Shtub [4] linked the concept of grouping parts and machines with the
loading model. For one particular loading problem, Berrada and Stecke [2] developed a solution
procedure to solve the non-linear integer loading problem directly. Stecke [19] ties some previous results
together by suggesting a hierarchical approach to solve actual grouping and loading problems. The actual
problem of grouping of parts has been modelled using optimal k-decomposition and solved approxi-
mately as linear transportation problem by Kumar et al. [12]. Algorithms which are suitable for computer
implementation and large problems are developed. Bounds on algorithm performance are constructed to
give an estimate of the quality of the generated solution. Greene and Sadowski [9] solved loading and
scheduling problem with a mixed integer program. Several objective functions are considered. Also, there
is a discussion on the increasing number of variables and constraints necessary to solve the problem for a
real sized system.

Hwan et al. [10] propose a maximal network flow model with two side constraints for the part selection
problem in loading Flexible Manufacturing Systems with no tool transportation devices. The model could
be relaxed to either a maximal network flow problem or two independent 0—1 knapsack problems. An
alternative formulation of the operation allocation problem including refixturing and limited tool
availability is given in Wilson [21]. The objective of minimizing the distance to be traveled for refixturing
is used. The formulation of small sized problems could be solved by a branch and bound procedure.

3. Model development
3.1. Problem statement: System configuration and tooling

Consider a manufacturing system composed of M machines and N different part types to be
processed in that system. Suppose material handling, storage and computer control problems are solved.
These are the main components of the system. Tools are required to process parts on the machines. So,
one problem is to assign tools to machines. Then, we have to assign operations of parts to the machines
that possess the required tools. Therefore, we have three different sets of components to deal with. If we
bring all operations required to process all parts together, we obtain the set of operations. For a specific
part type, there may be alternative feasible sequences of operations for processing on machines. The
feasibility of operation sequences is supplied by priority relations between operations. These alternative
operation sequences increase the processing flexibility of the system. Then we have the set of machines
composed of all machines in the system. They may have different sets of manufacturing characteristics.
The last set is the set of tools. This set is the link between operations and machines for assignment,
because an operation cannot be assigned to a machine if the required tool is not available on that
machine.

The original problem is to find an acceptable assignment of operations and tools to machines so that
grouped or pooled machines construct tandem workstations. Parts can be processed on alternative
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machines in a workstation. Increasing the number of alternative machines in a workstation increases the
machining flexibility of the workstations.

3.2. Problem formulation

It is important to start with the simplest formulation of the problem in order to properly understand
the various interactions between the subsystems. Suppose there are M machines, and each one of them
is assigned to a unique workstation. So, there are M machines and correspondingly, M workstations in
the system. There are N different part types to be processed. Part type i requires J; operations to be a
complete part and ready for assembly.

Suppose all machines are identical with the same magazine capacity, C slots per magazine. Note that
in real life all operations could not be performed in all machines. For any operation, there may be a
feasible subset of all machines in which the operation could be performed. Let us define:

V;: The production volume of part type i, in a period of time in which there are L time units.

P,;: The processing time, in time units, required for the j-th operation of the i-th part to be processed
in the system. Machine blocking set-up times are included in processing times.

S;;:  The space requirements on the magazine in terms of slots required for the tools used in the j-th
operation of the i-th part.

Xim: A binary variable showing the assignment of the j-th operation of the i-th part to the m-th
machine.

Several objectives could be found related with the selected performance criteria. One such simple,
linear and practically interesting objective is to maximize minimum machine utilization.

Assuming there is only one part type, the problem reduces to the deterministic line balancing
problem. Otherwise, it is a mixed integer linear program, as follows:

(F1)

Maximize Z,=Z

subject to
N J;
YL Y (Xyw* Py *xV))/L=Z Ym=1,...,M, (1)
i=1j=1
N J;
Xij * $;<C Vm=1,..., M, (2
i=1j=1
M
Y (Xijm—Xijoym) * m<0 Vi=1,...,N, Vj=1,...,J,—1, (3)
m=1
M
Y X,,=1 Vi=1,...,N, Vj=1,...,J, 4

m=1

Xijm isbinary and Z>0 Vi=1,...,N, Vj=1,...,J

i

Vm=1,...,M. (5)

In this model, Z denotes minimum target machine utilization in the system. Note that almost all of the
objective functions considered in previous formulations of the loading problem are non-linear. This
formulation differs from the previous studies with the linear maximin objective. In the first constraint, Z
should not exceed the assigned work-loads of the machines. The second constraint is for the magazine
capacity of the machines. In this formulation of the model, the tool duplications are not considered. The
third constraint requires the operations of a part type to be assigned in a flow line structure to the
machines. This is another distinguishing feature of this formulation in loading a manufacturing line. That
is, after the completion of the j-th operation of a specific part, the (j + 1)-st operation of the same part
can be assigned either to the current machine or to the succeeding machines along the line. For all parts,
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a one way flow of processing is allowed along the production line. Note that allowing alternative flows of
operations for processing in the system increases the flexibility but this makes controlling the system
much more difficult. The fourth constraint assures to one-to-one assignment of all operations of all parts
to the machines in the system. Since Z is a measure for minimum planned machine utilization, a value
for Z that is greater than one shows the need for overtime at all machines. Finally, X;;, is a binary
decision variable showing the assignment decision of the j-th operation of the i-th part type to the m-th

machine.
In this model there are 1 nonnegative and M * LV ,J; binary variables together with 2 M +

i=1
2% &N J;— N constraints. For moderate values of M, N and J; the resulting problem may become
computationally prohibitive in finding an optimal solution. Therefore, some computationally more

tractable solution procedures must be developed to attack real size problems.
3.3. Problem generation

A software package is designed to test the solution capability of the primary formulation for the
system configuration and tooling problem with a built-in random problem generation mechanism. By the
help of this software some test problems are generated and solved both by a commercially available large
scale mathematical programming system and heuristics which are exclusively designed to solve larger
problems.

In the generation procedure of problems a standard random number generator is used. That makes it
possible to generate the same problem using the same input parameters if the need arises. There are two
kinds of input parameters which generate the system configuration and tooling problem. The first group
of parameters is composed of constants which define the general characteristics of the problem. Those
parameters are as follows:
® number of machines in the system,; .
number of part types in the system;
machine magazine capacity in terms of slots;
total available time units in a planning period;
planned capacity utilization, required to determine the maximum throughput of the system, with
generated production ratios.

The second group of parameters consists of some distribution parameters for the required data of the
problem. The data are generated uniformly with specified lower and upper limits on:

e the number of operations required to complete a specific part type;

® processing times of operations in time units;

® slot requirements of tools in the system:;

® production ratios of part types.

To gain insight in solving the system configuration and tooling problem we have designed and
evaluated experiments. Three control groups are considered in these experiments. Each control group is
composed of several problems with similar characteristics. All problems in each control group are
generated using the same random niumber seed, planned capacity utilization (average machine utiliza-
tion) and average machine magazine utilization. The problems in each control group are comparable in
size.
® Control group 1 problems are composed of 2—-3 machines and 8-16 part types. The average number of

operations of a specific part type is increased from 5 to 20 in increments of 5. There are 16 different

problems in this control group. These problems are relatively computationally easy due to simplicity of
the machines’ configuration.
® Control group 2 problems are composed of 4-5 machines and 5-10 part types. The average number of

operations of a specific part type is increased from 5 to 20 in increments of 5. There are again 16

different problems in the second control group. These problems are relatively more complex, due to

configuration, than previous group.
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Table 1

Solutions of problems in control group 1. The optimal seeking branch and bound technique is use in the solutions. Problem
identifier ‘MxxNxxOxx’ refers to a specific problem. The numbers placed after the letters denotes the number of machines, part
types and operations, respectively. The optimal linear, initial and best integer solutions are three different solutions tabulated for a
problem. For each solution, objective value, the number of iterations performed and elapsed CPU time information are tabulated.

Problem LP optimum solution Initial integer solution Best integer solution

identifier Obj. val. Itr. Sec. Obj. val. Itr. Sec. Obyj. val. Itr. Sec.
MO02N080O05 0.8881 77 1.0 0.8635 104 33 0.8821 154 6.9
MO02N08O10 0.8736 186 3.7 0.8631 240 11.9 0.8730 261 16.1
MO02N080O15 0.8614 299 8.6 0.8402 349 26.3 0.8582 628 63.0
MO02N08020 0.8546 353 12.2 0.8546 359 25.0 0.8546 359 25.0
MO02N16005 0.8752 152 2.5 0.8750 .200 11.0 0.8750 200 11.0
MO02N16010 0.8585 330 10.5 0.8554 465 65.1 0.8554 465 66.0
MO02N16015 0.8299 518 234 0.8298 734 165.1 0.8298 734 165.1
MO02N16020 0.7927 679 35.7 0.7916 884 190.6 0.7916 884 190.6
MO03N08O05 0.8908 102 2.0 0.8519 276 8.3 0.8878 3420 76.0
MO3N080O10 0.8840 244 6.5 0.7539 1216 49.3 0.8796 11331 429.9
MO03N080O15 0.8793 375 14.2 0.7442 1998 129.5 0.8736 23501 1428.0
MO03N08O20 0.8638 458 22.3 0.8019 1043 116.8 0.8607 3405 403.0
MO03N16005 0.8811 186 4.6 0.8497 755 325 0.8781 1263 55.1
MO3N16010 0.8662 477 18.9 0.8403 2199 206.9 0.8609 8823 715.8
MO03N16015 0.8638 608 36.3 0.8071 1566 328.0 0.8585 7668 1219.5
MO03N16020 0.8463 835 594 0.8444 2298 738.8 0.8444 2298 738.8

® Control group 3 problems are composed of 6—8 machines and 3-6 part types. The average number of
operations of a specific part type is increased from 5 to 20 in increments of 5. There are 24 problems
in this control group. Relatively the most complex problems are in this group.

4. Solution strategies
4.1. Optimal seeking solution technique

The experimentation started with solving control group 1 problems on the mainframe Data General
MV /2000 by using SCICONIC/VM V1.47. This is a professional mathematical programming code for
solving linear and non-linear programming problems. This code utilizes the branch and bound technique
in solving integer programming problems. In all problems, since the formulation is maximization type,
the optimal linear solution is an upper bound on the optimal integer solution. An integer solution which
has an objective value greater than 99% of the upper bound is considered to be sufficient to stop
branching.

All problems of the first group could be solved with a 1% maximum deviation from the upper bound.
A total of 90 minutes of CPU time elapsed in solving 16 problems in this group. Optimal linear solutions
are obtained in less than 5 minutes. A CPU time of 30 minutes more is required to obtain the initial
integer solutions. An additional 55 minutes is needed for improving the initial integer solutions. On the
average, a 3% improvement is attained in the objective. The details of the solutions are tabulated in
Table 1. Because of the complexity inherited in the mixed-integer linear programming problems, it is not
possible to estimate the required computer time a priori. During the design of the analysis a limit on the
number of iterations (50000 is imposed) is set to solve all problems under the same condition. So, it is
possible to get infeasible solutions to some of the problems within the predetermined limit. For three
problems of the second group, the code was not able to find an initial solution in 50000 iterations. For
other problems, the average deviation from the upper bound is 13%. In solving these problems, a total of
9 hours of CPU time elapsed. Only 6 minutes of this amount is utilized for obtaining optimal linear
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Table 2

Solutions of problems in control group 2. See the explanation given in Table 1.

Problem LP optimum solution Initial integer solution Best integer solution

identifier Obj. val. Itr. Sec. Ob;. val. Itr. Sec. Obj. val. Itr. Sec.
MO04N05005 0.8948 93 22 0.7748 292 114 0.8335 10684 364.1
MO04N05010 0.8929 204 7.1 0.6090 1925 84.5 0.7546 45467 1513.6
MO04N05015 0.8903 331 15.3 0.6591 3264 220.3 0.7639 14190 920.6
MO04N05020 0.8807 347 17.7 0.5359 2880 174.1 0.6827 47430 2654.5
MO04N10005 0.8938 158 45 0.7143 730 21.9 0.8894 15698 413.5
M04N10010 0.8870 334 15.4 0.6663 2614 246.4 0.8234 39710 3216.7
MO04N10015 0.8811 531 305 0.7007 19554 12574 0.7737 35145 2446.6
M04N10020 0.8726 668 49.6 0.7278 7449 897.3 0.7983 24522 2643.9
MO5N05005 0.8977 114 32 0.5980 1387 36.4 0.6946 7847 182.7
MO05N05010 0.8965 223 7.9 0.6131 23273 756.1 0.7965 48660 1583.2
MO5N05015 0.8941 285 14.7 . 50000 2256.6 . 50000 2256.6
MO05N05020 0.8898 349 22.1 e 50000 3339.2 . 50000 3339.2
MO05N10005 0.8945 203 7.3 e 50000 1436.7 . 50000 1436.7
MO5N10010 0.8903 380 24.5 0.7136 3057 192.8 0.7846 48224 2178.2
MO05N10015 0.8758 561 444 0.6612 10544 7474 0.7617 28759 1918.7
MO5N10020 0.8757 913 87.3 0.4598 4095 614.3 0.5478 35012 3979.1

solutions. More than 3 hours is required to obtain initial integer solutions. Nearly 6 hours is needed for
improving initial integer solutions to the best solutions found. An average of 9% improvement is attained
in the objective. The details of the solutions are tabulated in Table 2. We conclude that for moderately
large problems acceptable feasible solutions could be found in reasonable time, but it takes too much
time to improve the initial solution or prove optimality of the solution.

4.2. Heuristic loading rules

There are some heuristic solution techniques to be used in obtaining an acceptable solution for the
system configuration and tooling problem. All these heuristic solution techniques are myopic in the sense
that they are one pass algorithms and they choose an operation from a subset of all operations with a
given rule. The set of available operations consists of operations that have no unassigned preceeding
operation. If an available operation finds enough empty slots on the current machine magazine, then this
operation is called a feasible available operation.

The heuristics choose an operation from the feasible available operation set by considering the given
criteria. Workloads and magazine capacities are the two restrictions of the problem during the solution.
Heuristic solution rules differ in two points. The first is the selection criteria and the other is the
maximum workload to shift the assignments to the next machine in the manufacturing line. Note that

C = magazine Capacity of the machine.

PR = Processing Requirement of the operation to be selected.

SR = Slot Requirement of the operation to be selected.

L = the Length of the production period.

TAPR = Total Assigned Processing Requirement to the machine before the operation is selected.
TASR = Total Assigned Slot Requirement to the machine before the operation is selected.

TMCU = Target MaChine Utilization.

TMGU = Target MaGazine Utilization.

TPR = Total Processing Requirement.

TSR = Total Slot Requirement.

TUPR = Total Unassigned Processing Requirement.
TUSR = Total Unassigned Slot Requirement.
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Heuristic #1. Select from the feasible available set of operations that minimizes the absolute difference
between the following two ratios:

Ratio#1 TAPR + PR Ratio#2 TASR + SR

atio#l= ——, atio#2 = ———.
L + TMCU C * TMGU

The machines are loaded up to a limit where the absolute deviation of the current workload of the
machine from target workload could not be less than the previous value of that absolute deviation by
assigning more operations to the current machine.

Heuristic #2. Select the operation from the feasible available set of operations as is done in Heuristic
#1, and load the machines up to target workload.

Heuristic #3. Select the operation from the feasible available set of operations that minimizes the
absolute difference between the following two ratios:

TUPR - PR TUSR - SR
Ratio#l = ———, Ratio#2 = ————.
TSR

TPR

The machines are loaded up to a limit where the absolute deviation of the current workload of the

machine from target workload could not be less than the previous value of that absolute deviation by
assigning more operations to the current machine.

Heuristic #4. Select the operation from the feasible available set of operations as is done in Heuristic
#3, and load the machines up to target workload.

Best strategy: Apply all four heuristics to the problem, then select the best solution obtained that gives
the maximum of minimum workloads assigned to the machines. When the heuristic does not produce a
feasible solution, then the target workload should be incremented by a minimal amount and the same
heuristic should be executed again. This is because the starting value of the target workload is
theoretically set to the minimum which is the average workload. The re-execution process is stopped if
an infeasibility is obtained at any machine excluding the last one. In that case that would mean heuristics
do not produce any feasible solution to this problem. When the heuristics are not successful in finding a
feasible solution to the problem then formulation (F1) should be solved.

5. Concluding results

The system configuration and tooling problem is formulated and solved utilizing both optimal seeking
and heuristic solution techniques. The solutions of optimal and heuristic techniques are evaluated by
utilizing both parametric (Paired-t test with normality assumption) and non-parametric (Wilcoxon
signed-rank test) tests with appropriate hypotheses. In all cases, both statistical tests resulted in same
decisions. The solutions obtained from formulation (F1) give a flow line structured Flexible Manufactur-
ing System. Alternative flows of processing of operations is not allowed in a flow line structured Flexible
Manufacturing System but this reduces the complexity of the control and scheduling problems in the
system. It takes substantial CPU time to solve the problem optimally. For relatively large problems, after
obtaining a feasible integer solution, convergence to optimal solution is too slow.
® Control group 1: An improvement of 3% on the average is realized over the initial integer solution by

utilizing an optimal seeking branch and bound procedure. Solutions obtained by best strategy on the

average are within 4% of the optimum (or best if 50000 iterations exceeded) solutions. There is no
definite dominating heuristic solution technique. Solutions obtained by heuristics 3 and 4 are
significantly worse than the initial integer solutions of optimal seeking algorithm. On the other hand,

the best integer solution is significantly better than solutions of all heuristics. Solutions of heuristics 1,
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Table 3

Results of heuristics for the problems in control group 1. Problem Identifier “MxxNxxOxx” refers to a specific problem. The
numbers placed after the letters denotes the number of machines, part types and operations, respectively. The objective values for
optimal linear solution, initial integer solution, best integer solution, solutions of heuristic rules and the solution of best strategy
which is the best of four heuristics are tabulated.

Problem Optimal seeking technique Heuristic loading rules
identifier LP Initial Best’ #1 #2 #3 #4 Best
obj. obj. obj. obj. obj. obj. obj. strategy

MO02N08O05 0.89 0.86 0.88 0.89 0.87 0.87 0.87 0.89
MO02N08O10 0.87 0.86 0.87 0.86 0.88 0.81 0.81 0.88
MO02N08O15 0.86 0.84 0.86 0.86 0.86 0.86 0.86 0.86
MO02N08O20 0.85 0.85 0.85 0.82 0.82 0.80 0.80 0.82
MO02N16005 0.88 0.88 0.88 0.88 - 0.87 0.86 0.86 0.88
MO02N16010 0.86 0.86 0.86 0.86 0.6 0.86 0.85 0.86
MO02N16015 0.83 0.83 0.83 0.78 n.78 0.74 0.74 0.78
MO02N16020 0.79 0.79 0.79 0.68 0.68 0.75 0.75 0.75
MO03N08O05 0.89 0.85 0.89 0.88 0.86 0.87 0.83 0.88
MO03N08O10 0.88 0.75 0.88 0.73 0.75 0.73 0.73 0.75
MO3N08O15 0.88 0.74 0.87 0.84 0.85 0.69 0.69 0.85
MO03N08020 0.86 0.80 0.86 0.70 0.71 0.72 0.72 0.72
MO3N16005. 0.88 0.85 0.88 0.88 0.87 0.86 0.86 0.88
MO03N16010 0.87 0.84 0.86 0.86 0.86 0.83 0.83 0.86
MO03N16015 0.86 0.81 0.86 0.68 0.73 0.77 0.77 0.77
MO03N16020 0.85 0.84 0.84 0.71 0.70 0.72 0.72 0.72
Average 0.86 0.83 0.86 0.81 0.81 0.80 0.79 0.82

2 and the best strategy could be treated as equivalent to initial integer solutions of the optimal seeking
algorithm. For more detail on statistical tests, see Tables 3 and 6.

Control group 2: An improvement of 11% on the average, is realized over the initial integer solution by
utilizing an optimal seeking branch and bound procedure. The best solutions found are, on the
average, 13% less than the solutions given by LP relaxation. That shows the computational complexity
of this group. The best strategy, on the average,gave 4% better solutions than the best solutions
obtained (in 50000 iterations of the branch and bound algorithm). There is no definite dominating
heuristic solution technique. Except heuristic #1, all other heuristics gave significantly better solutions
than initial integer solutions obtained by the optimal seeking technique. In comparison to the best
solutions attained by the branch and bound procedure, heuristic #1 is significantly worse and the best
strategy is significantly better. Other heuristics gave equivalently acceptable solutions with optimal
seeking solution technique. For more detail on statistical tests, see Tables 4 and 7.

Control group 3: Only heuristic solution techniques are used in this control group, since the CPU time
requirement of the optimal seeking solution technique becomes unreasonably high. The heuristic
solutions found are, on the average, 8% less than the upper bound given by LP relaxations. The
numerical data of the solutions are tabulated in Table 5. For three of the problems in this control
group workloads could not be balanced well. These are the smallest sized problems in this group.
During the generation of the problems, decreasing the total number of operations and at the same
time keeping average machine and magazine utilizations close to a target value result in artificial
problems which are away from reality. The relative reduction in the average number of operations per
machine negatively affects the balance of the workloads.

Considering all problems of control groups 1 and 2 as a pooled control group, some conclusions could

be stated:

Applying all heuristic techniques and then selecting the best solution results in significant improve-
ments.

There is no significant difference between initial integer solutions and solutions of any one of the
heuristics.



26 N. Kirkavak, C. Dinger / Analytical loading models in FMS

Table 4 N
Results of heuristics for the problems in control group 2. See the explanation given in Table 3.
Problem Optimal seeking technique Heuristic loading rules
identifier LP Initial Best #1 #2 #3 #4 Best
obj. obj. obj. obj. obj. obj. obj. strategy
MO04N05005 0.89 0.77 0.83 0.79 0.88 0.84 0.85 0.88
MO04N05010 0.89 0.61 0.75 0.68 0.68 0.50 0.63 0.68
MO04N05015 0.89 0.66 0.76 0.79 0.85 0.71 0.71 0.85
MO04N05020 0.88 0.54 0.68 0.48 0.54 0.63 0.63 0.63
MO04N10005 0.89 0.71 0.89 0.79 0.79 0.82 0.82 0.82
MO04N10010 0.89 0.67 0.82 0.66 0.66 0.83 0.83 0.83
M04N10015 0.88 0.70 0.77 0.77 0.73 0.82 0.82 0.82
MO04N10020 0.87 0.73 0.80 0.56 0.57 0.78 0.78 0.78
MO5N05005 0.90 0.60 0.69 0.73 0.71 0.82 0.75 0.82
MO5N05010 0.90 0.61 0.80 0.69 0.83 0.51 0.51 0.83
MO5N05015 0.89 e . 0.87 0.86 0.63 0.57 0.87
MO05N05020 0.89 .. . 0.45 0.43 0.58 0.58 0.58
MO05N10005 0.89 .. . 0.65 0.87 0.81 0.81 0.87
MO05N10010 0.89 0.71 0.78 0.70 0.70 0.87 0.85 0.87
MO5N10015 0.88 0.66 0.76 0.86 0.86 0.86 0.84 0.86
MO5N10020 0.88 0.46 0.55 0.46 0.48 0.81 0.81 0.81
Average 0.89 0.65 0.76 0.68 0.72 0.74 0.74 0.80
Table 5

Results of heuristics for the problems in control group 3. Problem Identifier “MxxNxxOxx” refers to a specific problem. The
numbers placed after the letters denotes the number of machines, part types and operations, respectively. No optimal seeking
solution technique is used for the solutions of the problems. The solutions obtained by the best strategy are within 10% of the
upper bound except for three problems.

Problem Heuristic loading rules
identifier #1 #2 #3 #4 Best
obj. obj. obj. obj. strategy

MO6N03005 0.42 0.42 0.47 0.38 0.47
MO6N03010 0.75 0.77 0.83 0.84 0.84
MO06N03015 0.82 0.84 0.85 0.83 0.85
MO6N03020 0.87 0.84 0.87 0.86 0.87
MO6N06005 0.83 0.78 0.80 0.84 0.84
MO6N06010 0.83 0.82 0.87 0.85 0.87
MO6N06015 0.87 0.85 0.87 0.86 0.87
MO6N06020 0.85 0.87 0.83 0.88 0.88
MO7N03005 0.65 0.35 0.63 0.54 0.65
MO7N03010 0.77 0.77 0.84 0.73 0.84
MO7N03015 0.69 0.78 0.85 0.83 0.85
MO07N03020 0.87 0.83 0.87 0.83 0.87
MO07N06005 0.82 0.70 0.53 0.84 0.84
MO07N06010 0.81 0.84 0.88 0.86 0.88
MO07N06015 0.82 0.86 0.85 0.85 0.86
MO7N06020 0.84 0.88 0.82 0.87 0.88
MO8N03005 0.35 0.35 0.32 0.32 0.35
MO8N03010 0.73 0.74 0.77 0.83 0.83
MO8N03015 0.79 0.72 0.81 0.80 0.81
MO08N03020 0.88 0.79 0.73 0.88 0.88
MO8N06005 0.81 0.58 0.61 0.85 0.85
MO8N06010 0.79 0.85 0.69 0.86 0.86
MO8N06015 0.87 0.85 0.87 0.86 0.87
MO08N06020 0.84 0.87 0.78 0.88 0.88

Average 0.77 0.75 0.76 0.79 0.81
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Table 6
Tests of hypothesis related with the means of objective values of the problems in control group 1. Paired-t and Wilcoxon

signed-rank tests are applied on the difference of means with a 0.05% level of significance. N denotes the number of observations,
DF refers to degrees of freedom, ¢-stat denotes the computed ¢-value, Table refers to the tabulated t-value, Power corresponds to
power of the test, R* is the sum of the positive ranks, R~ is the absolute value of the sum of the negative ranks and R* is the
critical value for Wilcoxon signed-rank test. Heuristic Rule #1 is denoted by H1, Heuristic Rule #2 by H2, Heuristic Rule #3 by
H3, Heuristic Rule #4 by H4, Best Strategy by BS, Initial Integer Solution by IIS, and Best Integer Solution by BIS.

Null Alternative Paired-¢ test Wilcoxon signed-rank test
hypothesis hypothesis N DF tstat Table Power Decision R* R~ R* Decision
u(BS)= w(HD) w(BS) > u(H1) 16 15 2.24 1.75 =0.65 Reject Null - 0 35 Reject Null
w(BS)= w(H2)  p@BS)>upMH2) 16 15 261 175 =0.75 Reject Null - 0 35  Reject Null
w(BS) = w(H3) w(BS) > u(H3) 16 15 2.53 1.75 =0.75 Reject Null - 0 35 Reject Null
w(BS)= w(H4) n(BS) > u(H4) 16 15 2.85 1.75 =0.85 Reject Null - 0 35 Reject Null
“(BIS) =up(H1) w@BIS)>uH1) 16 15 3.13 1.75 =0.90 Reject Null - 7 35 Reject Null
w(BIS)= w(H2)  w@BIS)>pH2) 16 15 3.44 1.75 =090 Reject Null - 6 35 Reject Null
w(BIS) = w(H3) p@BIS)>uMH3) 16 15 4.42 1.75 =1.00 Reject Null - 0 35 Reject Null
u(BIS) = u(H4)  w(BIS)>p(H) 16 15 479 175 =100 RejectNull - 0 35 Reject Null
w(BIS) = u(BS) u@BIS)>uBS) 16 15 2.90 1.75 =0.85 Reject Null - 14 35 Reject Null
LIS = w(HD)  p(IS)#u(HD) 16 15 128  +213 =030 AcceptNull 82 48 29  Accept Null
/J,(IIS) = u(H2) w(IIS) # u(H2) 16 15 1.21 +2.13 =0.25 Accept Null 81 53 29 Accept Null
w(1S) = w(H3)  p(IS) > u(H3) 16 15 3.11 1.75 =090 Reject Null - 19 35 Reject Null
w(11S) = w(H4)  p(IIS) > p(H4) 16 15 3.66 1.75 =0.95 Reject Null - 12 35 Reject Null
pIS)=pu(BS)  pdIS)#u(BS) 16 15 047 +213 =010 AcceptNull 75 56 29  Accept Null

e Applying all heuristic techniques and then selecting the best solution is just as good as the best
solution obtained by the optimal seeking solution technique (in 50000 iterations).

e Best integer solutions found by the optimal seeking solution technique (in 50000 iterations) are
significantly better than the individual solutions obtained by all heuristics.

e There is no dominating heuristic rule.

Related statistical tests are tabulated in Table 8. The performance of heuristic solution rules is even
better for larger problems. A medium sized machine configuration and tooling problem is generated with
parameters of, on the average, 10 machines, 15 part types and 12 operations by utilizing 10 different
random number generation seeds. Best strategy gave solutions within 2 % on the average from the upper

bound of the problem. Heuristics 2 and 4 are better than the other two on the average.

Table 7

Tests of hypothesis related with the means of objective values of the problems in control group 2. See the explanation given in
Table 6.

Null Alternative Paired-t test Wilcoxon signed-rank test
hypothesis hypothesis N DF t-stat Table Power Decision R* R~ R* Decision
u(BS)=pH1)  w@BS)>uH) 16 15 4.83 1.75 =1.00 Reject Null - 0 35 Reject Null
u(BS)=pu(H2) u@BS)>pMH2) 16 15 343 1.75 =090 RejectNull - 0 35 Reject Null
uBS)=pH3) w@BS)>uMH3) 16 15 2.39 175 =0.75 Reject Null - 0 35 Reject Null
w(BS)=puMH4) wBS)>uMH4) 16 15 2.44 175 =075 Reject Null - 0 35 Reject Null
w(BIS)=pu(H1) wBIS)>uHD) 13 12 2.62 1.78 =0.75 Reject Null - 14 21 Reject Null
w(BIS) = u(H2) w(BIS)#pu(H2) 13 12 1.66 +2.18 =030 AcceptNull 67 25 17 Accept Null
w(BIS)=pn(H3) w(BIS)#u(H3) 13 12 0.15 +218 =0.05 AcceptNull 44 47 17 Accept Null
w(BIS)= u(H4) u(BIS)#u(H4) 13 12 011 4218 =0.05 AcceptNull 45 46 17  Accept Null
w(BIS)=u(BS) wBIS)#uBS) 13 12 —-181 +218 =035 AcceptNull 22 69 17  Accept Null
p(IS) = p(H1)  p(IS)#uHD 13 12 -155 4218 =025 AcceptNull 22 68 17  Accept Null
p(IS)=p(H2) wp(dIS)<pH2) 13 12 -225 -178 =065 RejectNull 15 - 21  Reject Null
w(IS) = w(H3) w(IS)<up(H3) 13 12 -307 -178 =085 RejectNull 12 - 21 Reject Null
p(IS)=pH4) pdIS)<pdH4) 13 12 -376 -178 =095 RejecyNull 6 - 21  Reject Null
p(IS)=pu(BS) pdIS)<u®BS) 13 12 -708 —-178 =100 Reject Null 0 - 21  Reject Null
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Table 8

Tests of hypothesis related with the means of objective values of the problems in pooled control group. See the explanation given in
Table 6.

Null Alternative Paired-t test Wilcoxon signed-rank test
hypothesis hypothesis N DF tstat Table Power Decision R* R~ R*  Decision
w(BS)=u(H1)  w(BS)>uHIL) 32 31 4.29 1.70 =1.00 Reject Null - 0 175 Reject Null
w(BS)=u(H2) wp@BS)>uMH2) 32 31 3.48 1.70 =095 Reject Null - 0 175 Reject Null
w(BS) = u(H3) w(BS) > u(H3) 32 31 3.12 170 =0.90 Reject Null - 0 175 Reject Null
w(BS)=w(H4) w@BS)>uH4) 32 31 3.28 1.70 =095 Reject Null - 0 175 Reject Null
w(BIS)=u(H1) w(BIS)>u(H1) 29 28 4.05 1.70 =095 Reject Null - 52 140 Reject Null
w(BIS)=pn(H2) w(BIS)>u(H2) 29 28 3.34 1.70 =095 Reject Null - 79 140 Reject Null
u(BIS)=u(H3) w(BIS)>pu(H3) 29 28 1.87 1.70 =0.60 Reject Null - 113 140 Reject Null
w(BIS)=n(H4) w(BIS)>u(H4) 29 28 2.12 170 =0.65 Reject Null — 105 140 Reject Null
w(BIS)=pu(BS) w(BIS)#u(BS) 29 28 002 +2.05 =005 AcceptNull 229 192 126 Accept Null
pn(dIS)=p(H1)  w(IS)+uH1D) 29 28 —042 +205 =0.05 AcceptNull 187 239 126 Accept Null
pn(IS)=p(H2) w(IS)+u(H2) 29 28 —1.10 +205 =0.10 AcceptNull 161 269 126 Accept Null
n(IS)=pMH3) w(IS)#u(H3) 29 28 —1.44 4205 =030 AcceptNull 175 260 126 Accept Null
n(dIS)=p(H4)  w(IS)=#u(H4) 29 28 —152 +205 =030 AcceptNull 171 265 126 Accept Null
p(IS)=pu@BS) w(IS)<u(BS) 29 28 —-342 —-170 =0.01 RejectNull 83 — 140 Reject Null

As a result, heuristic rules, in most cases, could safely be used instead of solving the current
formulation of the system configuration and tooling problem by optimal seeking solution techniques such
as branch and bound.

6. Model extensions

The primary formulation of the system configuration and tooling problem is the simplest representa-
tion of reality. It should be extended to cover some real life features of the problem. The size of the
formulation increases with the addition of new features. This makes the extended formulation more
complicated and difficult to solve yet more realistic.

In the primary model formulation, all mac\hines are assumed to be identical with the same magazine
capacity, C. Different machine magazine capacities could be incorporated into the model by using C,,
instead of C in the primary model fomulation. Here, C,, is the machine magazine capacity of the m-th
machine.

Tool duplications are allowed in this formulation. Tool duplication occurs, when two operations
requiring the same tool are assigned to the same machine. Incorporating the tool duplication problem
results in an increase in both the number of binary variables and the number of constraints. Let us divide
the set of operations into two: operations that do not share the same tool with some other operations
and operations that share the same tool with some other operations. D;; is a matrix of binary parameters
indicating that either the j-th operation of the i-th part shares the tool if the binary parameter value is
zero, or otherwise that operation does not share any tool. Suppose Y,,, is a binary variable representing
the assignment of the ¢-th tool to the m-th machine in the system. There are T different tools available.
Additionally, E, is a binary parameter showing either tool ¢ is required by only one operation if the value
is zero, or that tool ¢ is utilized by more than one operation. R, is the number of slots required on the
magazine by the #-th tool. W, is the number of operations using the ¢-th tool, that is, the total number of
operations is ©7_,W,. In summary, assign any tool sharing operation to a machine if the required tool is
available on that machine. So, the assignment decision is extended to cover the assignment of sharing
tools to the machines.

There is also only one sequence of operations for processing in the system. It is possible to consider
alternative sequences of operations. During the process planning stage of a part type, precedence
relations between operations are set. This information could be summarized in a matrix of binary
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parameters of a specific part. If operation j, of part i should be processed before operation j, of part i,
then Pre,(j;, j,) has a value of 1, otherwise zero. For -all pairs of operations having 1 in the precedence
matrix, there are m — 1 corresponding constraints for not violating the precedence relations.

The primary model formulation considers maximization of minimum machine utilization as the
objective. If the average machine utilization is low, then minimizing the difference between the maximum
and the minimum machine utilizations would be a better objective resulting in a better balance in loading
of the machines. This objective could be formulated by minimizing the difference between two linear
variables. The first variable should exceed all assigned workloads to the machines and the second
variable should not.

The modified formulation of the system configuration and tooling problem then becomes:

(F2)
Minimize Z,=Z,—-Z,

subject to
N Ji
Y Y (Xijm * Pj*V)/L<Z, Ym=1,...,M, (1)
i=1j=1
N J;

(Xim * P; *V)/L=Z, Ym=1,...,M, ("
i=1j=1
N J; T
Y Y (Xijm *S;;* D)+ X (E *Y,, *R)<C, Vm=1,..., M, (3)
i=1j=1 t=1

Xijm=Yim *W,<0 Vi=1,...,T, Vm=1,..., M, (4)
(i,j))el)
M
YV, <W Vi=1,...,T, (5)
m=1

M
Pre,(jy, j,) * X m * (Xijm—Xijm) <0 Vi=1,...,N, Vj,=1,...,J, Vi,=1,...,J, (6)
m=1

M

Y X;,=1 Vi=1,...,N, Vj=1,...,7J, (7
m=1

Xiim»> Y, are binary and Z,, Z,>0 Vi=1,...,N, Vj=1,....,J;, VYm=1,..., M,

vi=1,...,T, (8")
where

J(t) ={(i, j): if j-th operation of i-th part uses ¢-th tool for processing,
Vi=1,...,N;Vj=1,...,J}.

The objective function is modified for minimizing the difference between maximum and minimum
machine utilizations. The first two constraints put an upper and lower bound on the machine utilizations.
The modification to allow different machine magazine capacities is reflected in the third constraint. This
constraint also avoids the duplication of tools. Then the fourth and fifth constraints are added to dictate
the assignment of tools and operations to the machines. The sixth constraint is modified to consider
alternative sequences of operations in assignment. Also, there are additional binary tool assignment
variables in this formulation. »

The hidden objective behind maximizing minimum machine utilization,or minimizing the difference
between maximum and minimum machine utilizations, is balancing the workload between machines
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equally. An alternative objective could be to minimize the number of parts processed on different
machines while keeping the balance of the workloads in an acceptable range. The hidden objective in
that case is to minimize the number of intermediate buffers between machines to reduce the total
inventory cost.

Suppose, Z;,, is an addition variable showing some of the operations of the i-th part performed on the
m-th machine if it takes on the value 1, and zero otherwise. A new constraint is required to assure the
assignment of parts to machines in the system for some of their processing requirements.

The resulting alternative formulation of the system configuration and tooling problem is as follows:
(F3)

N M
Minimize Z,= ). Y. Z,,
i=1m=1
subject to
N J;
Z Z(lem*Plj*I/l)/LSKmax Vm:l""’My (1”)
i=1j=1
J;
XijmsZim*Ji Vm:l""aMy Vi:l,""Ny (2”)
j=1
N J; T
(Xijm * Sij * D)+ L (E, *Y,, *R)<C, Vm=1,..., M, (3")
i=1j=1 t=1
Y Xjp—Y *W,<0 Vi=1,..,T, Vm=1,...,M, (4")
(i,j))€J(t)
M
Y Y, <W Vt=1,...,T, (5")
m=1

M
Pre,(Ji, o) * L m % (X = Xijw) <0 Vi=1,..,N, Vjy=1,...,J, VYi,=1,....J;, (6")
m=1

M
Y X,,=1 Vi=1,..,N, Vj=1,...,J, (7")
=1
Xijm> Yom> Zipy are binary Vi=1,...,N, V¥j=1,....,J;, ¥Ym=1,...,M, Vt=1,...,T. (8")

The objective function is altered for minimizing the number of parts processed on different machines.
The first constraint does not allow a machine to be overloaded since K ,, is the maximum capacity
utilization ratio. K, could be either theoretically set to 1 or determined from the solution of the
formulation (F1) for incorporating the effect of balancing the workload. The second constraint assigns
parts to machines. All other constraints of the formulation remain the same as in the modified
formulation of the system configuration and tooling problem. Also, there are additional binary part
assignment variables in this formulation.
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