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A semiphenomenological droplet model, which corrects for the macroscopic surface tension and 
monomer-monomer interactions from real gas behavior (second virial coefficient) and for the 
correlation between the mean surface area of a cluster and the number of molecules constituting 
the cluster over all ranges of temperature below the critical point, is proposed by modifying 
Fisher's droplet theory of condensation. A steady-state nucleation rate equation is derived and 
compared with expansion and diffusion cloud chamber data for a variety of substances. An 
overall good agreement is achieved for the range of temperatures investigated in contrast to 
comparison with the classical nucleation rate equation. 

I. INTRODUCTION 

The kinetics of phase transitions has rather a broad 
field of applications in science and technology from astro­
physics to biology. In particular, the kinetics of condensa­
tion from the vapor phase, which is the subject of this 
investigation, is described by the generation of condensa­
tion nuclei that grow into droplets in the metastable vapor 
state. Such nuclei may either form in the interior of the 
parent phase (homogeneous nucleation) or on ions, impu­
rity molecules, dust particles, etc. present in the parent 
phase (heterogeneous nucleation). Only homogeneous nu­
cleation theory is considered in this study. 

The theory of homogeneous nucleation has already 
been discussed for many years in various studies. I-

3 It was 
originated by Volmer and Weber4 using Gibbs' capillarity 
approximation and further refined by Farkas,5 Becker and 
Doring,6 Volmer,1 Zel'dovich,1 and Frenkel8 in developing 
into what today is commonly referred to as the classical 
nucleation theory. However, with the advent of experimen­
tal techniques in the last decades,9-18 it has been reported 
that classical theory yields nucleation rates which are 
sometimes off by several orders of magnitude in compari­
son with experiments. The attempts by Lothe and Pound,19 
Reiss, Katz, and Cohen,20 Courtney,21 and Feder et al. 22 to 
improve the theory by taking into account the various de­
grees of freedoms ( translational, rotational, vibrational, 
configurational, etc.) and the nonequilibrium effects left 
out in the classical theory have to some extent improved 
our understanding of the phenomenon, however, they have 
not proved successful in comparison with experiments 
(predicted nucleation rates by some of these theories are 
sometimes off by a factor of 1017). A consistent theory of 

of condensation and metastability.24 They achieve good 
agreement with reliable experimental data for a variety of 
substances by their proposed nucleation rate equation. 
However, the model contains inconsistencies arising from 
employing the ideal gas equation for monomers (clusters 
containing only one molecule) on the one hand and the 
virial equation of state of a real gas for the vapor phase on 
the other hand (e.g., see Ford25 ) as well as from approxi­
mating the mean surface area of a cluster by its geometric 
value. The aim of the present investigation is to overcome 
these inconsistencies without spoiling the agreement with 
the experiments. For this reason, a consistent semiphenom­
enological droplet model based on the actual virial equa­
tion of state is constructed by slightly modifying Fisher's 
cluster theory, and a steady-state nucleation rate equation 
that follows from this model is derived. Good agreement 
with the experimental nucleation rates is achieved for an 
substances over the range of temperatures investigated. 

II. EQUILIBRIUM CLUSTER DISTRIBUTION IN THE 
METASTABLE VAPOR STATE 

We consider an extension of Fisher's droplet or cluster 
theory24 of condensation and assume that a cluster Ai con­
taining i molecules (i mer) can only grow or shrink by 
monomolecular association or dissociation 

(i=1,2, ... ). (1) 

Following Band,26 the equilibrium number distribution Ni 
of i mers for reaction (1) can be evaluated by 

( 
iflu) 

Ni=Z;exp kT ' (2) 

homogeneous nucleation which agrees well with the mea- where Zi=exp( -F/kT) is the partition function of an i 
sured nucleation rates is still in need. mer with Fi denoting its Helmholtz free energy, k is Bolt-

Recently, Dillmann and Meier
23 

have proposed a semi- zmann's constant, flu is the chemical potential of mono-
phenomenological model based on Fisher's cluster theory mers, and T is the temperature. In arriving at Eq. (2), it is 

a) Alexander von Humboldt Fellow. 
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".~~. implicit that the interactions between clusters of size t;.2 
and the monomers are neglected; therefore, real gas effects 
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of the vapor phase can only arise from monomer-monomer 
interactions. If we also consider the equality fro 
= f.Lv,coex, where f.Lv,coex is the chemical potential and fro is 
the Helmholtz free energy per molecule of the bulk liquid 
phase on the vapor-liquid coexistence line, from Eq. (2) 
we arrive at the fundamental expression for the equilibrium 
number density ni of i mers as 

N· 1 (t:..G.) 
ni= ~=Vexp - kTI (3) 

with 

(4) 

where t:..Gj the Gibbs free energy of formation is the revers­
ible work necessary to form an i mer from i molecules of 
the bulk liquid phase and V is the volume. The number 
density n of the vapor can then be related to the i-mer 
number density nj by 

00 

(5) 

If in addition monomers (thereby the vapor) are treated as 
an ideal gas, the pressure of the mixture can be evaluated 
by Dalton's law as 

00 

p=kT L nj. (6) 
j=1 

Equations (3)-(6) are the equations commonly employed 
in nucleation theory and neglect any possible cluster­
cluster interactions. However, if clustering is thought to 
result from real gas behavior of the vapor, at least 
monomer-monomer interactions cannot be neglected since 
most of the clusters present in the vapor are in the form of 
monomers. This implies that one should really abandon 
Eq. (6) (otherwise inconsistencies arise) and instead em­
ploy the virial equation of state in the form 

00 

l!...=kT+ L BjpU-I)=kT+B2P+B3/l+···, (7) 
n j=2 

where B j , j=2,3, ... are the temperature dependent virial 
coefficients presumably to be given for a chosen vapor. 
Equations (3), (4), (5), and (7) are the basic equations of 
the proposed semiphenomenological droplet model. What 
remains to be determined is the form of the Gibbs energy 
of formation, or equivalently the estimation of t:..f.L and Mi 
in Eq. (4). The chemical potential f.Lv of monomers is given 
by the well-known formula27 

where 

(9) 

with f.Le (T) being the chemical potential as p ..... O. As men­
tined earlier, since the number of monomers in the vapor 
are expected to be much greater than the total number of 
molecules bound in higher clusters, the number density nl 

of monomers and consequently their partial pressure PI can 
to a good approximation be taken as the total number 
density n and the total pressure p, respectively, in evaluat­
ing Eq. (8). With this in mind, substitution from Eq. (7) 
into Eq. (8) yields 

00 B. (j-I) 
;::;:kTlnS+ L j~sat (S(j-I)-I) 

j=2 ()-I) 

B3/J;at 2 
=kTlnS+B2Psat(S-I)+-2- (S -1)+"', 

where 

p 
S=-~ 

Psat 

(10) 

(11 ) 

is the supersaturation and Psat is the saturation pressure at 
T. Having estimated t:..f.L in Eq. (4), we suggest a general­
ized phenomenological form for the difference Mi of 
Helmholtz free energies F j and if 00 as (it is well known 
that M; cannot totally be determined from thermodynam­
ics or statistical mechanics) 

(12) 

for i= 1,2, ... , where qQ and r are parameters to be deter­
mined, r is the macroscopic surface tension, and iii are 
functions of size and temperature which describe devia­
tions of the surface energy from that of a macroscopic 
liquid droplet satisfying the limiting condition (e.g., see 
Sinanoglu28

) 

(13) 

The term sir; of Eq. (12) is the mean surface area of an i 
mer, where the unknown functions aj' in general size and 
temperature dependent, characterize the correlation be­
tween the mean surface area and the number of molecules 
of an i mer with the limiting condition 

(14) 
i-+ 00 

corresponding to its geometrical value, and where SI given 
by 

Sl=( 6~:;r/3 (15) 

is the mean surface area of a single molecule in the bulk 
liquid phase with ml and PI denoting, respectively, the 
mass of a single molecule and the density of the bulk liquid 
phase. In particular, the second and third terms of Eq. 
(12) signify the contributions to the free energy arising 
from the translational, rotational, vibrational, and config­
urational degrees of freedom23

,29 and all droplet models 
can be regarded as special cases of Eq. (12) depending on 
the values of the parameters rand qQ, provided that in all 
cases aj=2/3 and iii is set equal to unity for all i. For 
example, the classical theory is obtained with r=O, the 
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Lothe-Pound theory results when r= -4, and the Reiss­
Katz-Cohen theory is approached with - 3/2 < T < -1/2. 
Each theory yields its own value for qo. 

We now discuss how we can determine the functions ai 

and lL i . It has already been mentioned that a 00 assumes the 
geometric value 2/3. In general, at any fixed temperature, 
ai oscillates with respect to the number of molecules i in a 
cluster. This means that addition of a single molecule to 
the i mer or cluster may change the correlation between the 
mean surface area of the cluster and the number of mole­
cules contained due to the many body interaction poten­
tials of the new configuration unless the cluster contains 
sufficiently large number of molecules so that a assumes its 
geometric value 2/3. In any finite interval of i, ai will fluc­
tuate about a mean value, and if the interval is chosen 
small enough, fluctuations in ai can be neglected with re­
spect to the mean value over the interval. From stability 
considerations, the interval of interest for condensation 
theory is I <J<J*, where i* is the critical number of mole­
cules in a cluster beyond which the cluster acts as a con­
densation nucleus and grows into a droplet (i* corresponds 
to a maximum of the Gibbs formation energy aGi with 
respect to i). Thus neglecting fluctuations, we can assume 
that ai may as well be approximated by its temperature 
dependent mean value a=a( T) over this interval. Actu­
ally this assumption was taken for granted for all i in Fish­
er's droplet modet24 where a was shown to satisfy 

O<a<1. (16) 

We will leave out the discussion of the temperature depen­
dence of a to the next sections and proceed to determine 
the functions lL i • For this reason, we first evaluate the num­
ber density n utilizing Eqs. (3)-(5), (10), and (12) to 
arrive at 

n=qo i~l si;-(r-1) exp [ -IL/Jiu 

+_l_ L jPsat (SU-ll_1) 
• 00 B (j-1) 1 

kT j=2 (j-l) , 
(17) 

which evaluates to 

(18) 

where 

(19) 

and 

(20) 

Now substitution from Eq. (18) to the virial equation of 
state (7) and collecting together equal powers of P deter­
mine the functions iLi , 

(21) 

(22) 

1 [1 ( Psat ] 3 2 ..J. r} 
1L3=-03uln "2 qokTX(T) (3B2-kTB3)'103 , 

(23) 

etc. It should be noticed that the functions ILl and 1L2 differ 
from the functions KI and K2 of Dil1mann and Meier23 by 
an additional factor X(T) and by replacement of Tin Eq. 
(22) by (T -I) as mentioned by Ford25 as well. It is now 
clear from Eqs. (21 )-(23) that the evaluation of lLi re­
quires a knowledge of the ith virial coefficient B i • In gen­
eral, knowledge of the virial coefficients beyond B2 is either 
poorly known or not available. Thus we would like to de­
termine iLi from a knowledge of the second virial coefficient 
B2 alone in terms of ILl and 1L2 • This is possible since the 
work of different authors30,31 indicates that lLi is of the form 

(24) 

where ri - l-a/2 is the mean spherical radius of an i mer and 
a is some characteristic submolecular length much smaller 
than the radius ofa monomer (a~rl)' Thus by expanding 
f in a Taylor series under the limiting condition (13), the 
functions iLl can be approximated by23,31 

(25) 

for all i. In particular, in the interval 1 <i<i*, we have from 
the above consideration ai= a. The parameters al and a2 
then follow from Eq. (25) as 

and 

2u/2(iL[_1) - 2U(iL2 -1) 

2u12 _1 

(26) 

(27) 

where ill and 1L2 are given by Eqs. (21) and (22). The 
equilibrium cluster distribution of an i mer can now be 
obtained from knowledge of the macroscopic surface ten­
sion y, the second virial coefficient B2 , and the density of 
the saturated liquid Pi in the form 

i= 1,2, ... ,i*, (28) 

where 

( 
B2Psat) X(T) =exp ----,zr (29) 

J. Chem. Phys., Vol. 98, No. 12, 15 June 1993 
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TABLE I. Experimental and theoretical values of the critical exponents f3 
and 8 (Ref. 33) and of O"c and T [Eqs. (30) and (31)]. 

f3 {j O"c T 

Experimental 0.320-0.330 4.727-4.906 0.611-0.661 2.204-2.212 
Renormalization 

0.324-0.327 4.795-4.842 0.633-0.645 2.207-2.208 
group 
High 
temperature 0.307-0.317 4.918-5.065 0.623-0.662 2.200-2.203 
series 

with Ai given by Eqs. (25)-(27). For a complete descrip­
tion, we still need to know the value of the parameters qo 
and 7 and the form of the function U= u( T). This requires 
a discussion of near critical behavior. 

III. BEHAVIOR NEAR THE CRITICAL POINT 

The behavior of the droplet model near the critical 
point was first studied by Fisher24 leaving out the excluded 
volume effects (cluster-cluster interactions). He arrived at 
the relations 

and 

1 
7-2+­- 8' 

(30) 

(31) 

where subscipt c denotes values at the critical point and 
where f3 and 8 are three-dimensional universal critical ex­
ponents.24 Since we have presumably taken into account 
some of the excluded volume effects by employing the phe­
nomenological virial equation of state (7) instead of Eq. 
(6) used by Fisher and other investigators, the question 
whether or not relations (30) and (31) remain valid when 
monomer-monomer interactions are considered naturally 
arises. This question was partially answered by Stauffer 
and Kiang32 who considered the "second virial coefficient" 
of the hard sphere droplet-droplet interaction. Their con­
clusion was that relations (30) and (31) still remained 
valid. This result inspires us to assume that relations (30) 
and (31) also remain unchanged in our semiphenomeno­
logical model where the actual second virial coefficient of 
the vapor is thought to account for monomer-monomer 
interactions as well as for the interactions of molecules 
forming a cluster. Table I (from Beysens33

) shows the ex­
perimental, the renormalization group, and the high tem­
perature series expansion values of the critical exponents f3 

{ [ 
B'lPsat l} Xexp -Ai*(}I"*O"-rlnl"*+I"* InS+J(T (S-l) , 

and {j and the corresponding values of U e and 7. Thus the 
parameter 7 and the value U e of U at the critical tempera­
ture can be taken from this table. On the other hand, the 
parameter qo follows directly from Eq. (17) evaluated at 
T=Te , where (}=o and S=I, 

qo s(7-1)' 
(32) 

where ~(x) is the Riemann zeta function of x and ne is the 
critical number density. From the critical behavior, we 
have thus identified the parameters ue' r, and qo. It re­
mains to find out the temperature dependence of u=u( T). 
This will be discussed later in Sec. V. 

IV. STEADY-STATE NUCLEATION RATE 

The kinetics of reaction (1) where the kinetic process 
rapidly reaches a steady nonequilibrium state is described 
in detail in various studies.2

,34 The steady-state current or 
nucleation rate I (number of condensation nuclei formed 
per unit volume and time) is given by 

I a AGil 
1= -21T"kT----azr- i=i*c,*n,"*, (33) 

where i*, given by the maximum of Gibbs formation en­
ergy 

aAGil =0 
ai i=i* 

(34) 

(apparently a2/aPAGi l i=,'*<0), is the critical number of 
molecules in a cluster beyond which the cluster acts as a 
condensation nucleus and grows into a droplet, n,'* is the 
eqUilibrium number density of clusters of critical size, and 
the kinetic factor ci* is the rate of monomer impact on the 
surface of a cluster of critical size and is given by 

p 
(35) ·s 

~21T"mlkT i* 

with s,*=sl*O" denoting the mean surface of a critical clus­
ter of i molecules. The maximum condition (34) with AGi 

evaluated from the proposed droplet model by combining 
Eqs. (4), (10), (12), and (25)-(27) together with the 
assumption Ui=U for l<i<i* yields the equation for i*, 

U /2 [ B'lPsat ] u(}I"*0"+ia1(}1"*(7 +r-i* InS+ kT (S-l) =0. (36) 

Now Eqs. (33), (35), and (28) with i replaced by 1"* to­
gether with Eqs. (4), (10), (12), and (25)-(27) yield the 
steady-state nucleation rate of the proposed droplet model 
as 

(37) 

J. Chern. Phys., Vol. 98, No. 12, 15 June 1993 
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TABLE II. Empirical values of C for the substances investigated. 

Substance C 

Water 0.045 
n-nonane 0.Q38 
Methanol 0.048 
Ethanol 0.046 
n-propanol 0.048 
n-butanol 0.048 

where the functions A.,* are given by Eqs. (25)-(27) with 
i replaced by i*. All of the values of the free parameters 
appearing in Eq. (37), except for the temperature depen­
dence of u which will be discussed in the next section, are 
already available from the discussion in previous sections. 
It should also be noticed that when the functions and free 
parameters of the proposed model assume the "artificial" 
values Ai= 1 (al =a2=0), T=O, u=2/3, and qo=p/(kT) 
together with B2 -+O- in Eqs. (36) and (37), we recover 
precisely the steady-state nucleation rate equation of the 
cl!issical Becker-D6ring-Zel'dovich theory, namely, 

I re PSI p (4 3 -2 )~ 
IcIass=3Y;~' ~211mlkTkTexp -27 8 In S. (38) 

The steady-state nucleation rate equations for the rest of 
the known droplet models can also be obtained accordingly 
from Eqs. (36) and (37) by taking B2 -+O-, assuming the 
geometric value u=2/3 and using the appropriate values 
of T, qo, and Ai' 

v. COMPARISON WITH EXPERIMENTS 

For comparison of the nucleation rate equation of the 
proposed model given by Eqs. (36) and (37) with exper­
iments, we need no more than a discussion of the temper­
ature dependence of u for T,;;;;,.Tc ' It has already been men­
tioned in Sec. III that the critical value U c can be obtained 
by Eq. (30) using the three-dimensional universal critical 
exponents (see also Table I). It is possible for a cluster 

0.650 

0.640 L-.L-..c:'-...L...-::'---'--L-'--'---'---'-__ TIT, 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 1. The variation of a with temperature [the solid lines are results of 
Eq. (39) for a variety of substances, namely (1) methanol, n-propanol, 
n-butanol; (2) ethanol; (3) water; (4) n-nonane, and the dashed line is 
the geometric value 2/3). 
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temperatures in degrees Celsius). 
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containing a fixed number of molecules that the mean sur­
face area, thereby 0', is smaller when cluster--cluster inter­
actions are important (apparently closer to the critical 
point), whereas the more probable larger configurations 
which occur with a large surface area tend to increase the 
value of 0' (e.g., see Fisher,24 and Hiley and Sykes35). This 
suggests that 0' assumes its minimum value O'c at the crit­
ical point since cluster--cluster interactions are most impor­
tant there. Thus we can to a good approximation assume a 
power law for the temperature dependence of 0' in the form 

O'=O'(T)=O"c+ C ( t-;J D (39) 

for T<.Tc, where O'c is given by Eq. (30) and C and Dare 
substance dependent constants. Comparison of nucleation 
rates by Eqs. (36), (37), and (39) with those of reliable 
experiments of different substances over a relatively wide 
range of temperatures suggests that D is the same constant 
for all substances close to the value 0.2. We herein make 
the ansatz that D is a universal constant which we take as 

(40) 

80 
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FIG. 5. A comparison of experimental supersaturations with the predic­
tions of the classical theory and the new theory at the constant nucleation 
rates [= 10° cm-3 S-1 and [= 104 cm- 3 S-1 for n-nonane. 

where (j is a universal critical exponent (see Table I). The 
values of C for the variety of substances investigated are 
shown in Table II. For these substances, C seems to vary 
between 0.038 and 0.048. Notice also that the value 
C=0.038 is attained for n-nonane which is the only non­
polar substance investigated, whereas for the other polar 
substances (water, methanol, etc.), experiments suggest a 
value of 0.045-0.048 for C. Needless to say that the power 
law temperature dependence of Eq. (39) for 0' together 
with Eq. (40) for D and the empirical values listed in 
Table II for C should ultimately be compared with molec­
ular dynamical models, which is outside the scope of this 
investigation. It is important to mention that the appear­
ance of the constants C (given empirically in Table II) and 
D [given by Eq. (40)] in Eq. (39) of the proposed model 
should be regarded as being essential since all previous 
droplet models suffer quantitatively from the assumption 
of the mean surface area of a cluster being approximated 
by its geometric value, i.e., by taking 0"=2/3, which ac­
cording to Eq. (39) implies the unrealistic values D=O 
and C=2/3-O"c for all substances and all temperature 
ranges below Tc.,The function O'=O'(T) is plotted for a 
variety of substances in Fig. 1. Although experiments show 
that the deviation of u from its geometric value 2/3 is small 
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FIG. 6. A comparison of experimental supersaturations with the predic­
tions of the classical theory and the new theory at the constant nucleation 
rates 1= 10° cm- 3 S-1 and 1= 109 cm-3 S-1 for methanol. 

over the range of temperatures investigated, the nucleation 
rates calculated are effected considerably by orders of mag­
nitude. 

We are now in a position to present an algorithm for 
the calculation of nucleation rates by the proposed model 
using only macroscopic quantities. The required quantities 
are 

( 1) molar mass M or equivalently mass of a single 
molecule m1; 

(2) critical properties of state (Pc, nc' and Tc); 
(3) the macroscopic surface tension y( T); 
( 4) the density of the saturated liquid P I( T); and 
(5) the second virial coefficient B 2(T). These quanti­

ties for a variety of substances over a relatively broad range 
of temperatures are already tabulated in Dillmann and 
Meier23 (for other substances of interest, one may consult 
the references given therein). With knowledge of macro­
scopic quatities listed above, the parameters O-c' T, and qo 
are evaluated by Eqs. (30), (31), and (32), respectively, 
where the universal critical exponents f3 and 8 are obtained 
from Table I (we herein suggest the values f3=0.325, 
8=4.81 =>o-c=0.640 and T=2.208). The value of 0- at any 
temperature T<,.Tc then follows from Eqs. (39) and (40) 
with C to be taken from Table II (for substances which are 
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FIG. 7. A comparison of experimental supersaturations with the predic­
tions of the classical theory and the new theory at the constant nucleation 
rates 1= 10° cm-3 8- 1 and 1= 109 cm-3 S-1 for ethanol. 

not listed in Table II and for which no experimental data 
exist, one may, as a first guess, assume a value for C from 
Table II depending on polarity). For any given tempera­
ture T and supersaturation ratio S, the solution of Eq. 
(36 ) yields the critical number of molecules i*. The nucle­
ation rate then follows from Eq. (37). 

The above algorithm proposed for calculating nucle­
ation rates by this model has been carried out for a variety 
of substances in comparison with data available from ex­
pansion or diffusion cloud chamber experiments. Figures 2 
and 3 show the predictions of the classical nucleation the­
ory [Eq. (38)] and of the new theory [Eqs. (36) and (37)] 
in an 1-8 (nucleation rate-supersaturation) plot for water 
and n-nonane data at various temperatures by MillerlO and 
Adams et al., 14 respectively. The nucleation rates by the 
classical theory are off by a factor of 102_103 for water and 
by a factor of 108 for n-nonane. The new theory yields 
nucleation rates which are in very good agreement with the 
experimental data for both water and n-nonane. Figures 4 
and 5 show, respectively, the corresponding S-T plots for 
water against data of Heist and Reiss,9 Miller,1O and 
Anderson et al. 12 and for n-nonane against data of Katz 
et al. 17,18 and Adams et al. 14 employing both the classical 
and the new nucleation rate equations. The new nucleation 
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FIG. 8. A comparison of experimental supersaturations with the predic­
tions of the classical theory and the new theory at the constant nucleation 
rates 1= 10° cm-3 S-1 and 1= 108 cm-3 S-1 for n-propanol. 

rate equation gives a better agreement with experimental 
data than the classical one except in comparison with the 
data by Katz et aL for n-nonane which is obviously in 
disagreement with the data of Adams et al. The compari­
son of the new nucleation rate equation with the classical 
one against data of Flageollet et al.,ll Garnier et aL, 13 and 
Strey et al. 16 for methanol, against data of Kacker and 
Heist,15 Garnier et al., 13 and Strey et al. 16 for ethanol and 
n-propanol, and against data of Garnier et al. 13 and Strey 
et al. 16 for n-butanol in S-T plots at fixed nucleation rates 
is illustr~ted in Figs. 6-9. An overall good agreement with 
the experimental data over the temperature ranges investi­
gated is achieved by the present nucleation rate equation 
(37). 

VI. CONCLUDING REMARKS 

A semiphenomenological droplet model, which cor­
rects for the macroscopic surface tension and monomer­
monomer interactions from real gas behavior and general­
izes the correlation between the mean surface area. of a 
cluster and the number of molecules contained, is devel­
oped as an extension of Fisher's droplet theory of conden­
sation and metastability. A steady-state nucleation rate 
equation is derived and compared with the classical 
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FIG. 9. A comparison of experimental supersaturations with the predic­
tions of the classical theory and the new theory at the constant nucleation 
rates 1= 10° cm-3 S-1 and 1= 109 cm-3 S-1 for n-butanol. 

Becker-D6ring-Zel'dovich nucleation rate equation 
against the expansion or diffusion cloud chamber data of 
various vapors. In contrast to the comparison with the 
classical nucleation rate equation, an overall good agree­
ment with experimental data by the proposed nucleation 
rate equation is achieved over the range of temperatures 
investigated (0.4.;;; T /Tc';;;0.6). 

For future investigations, the power law introduced by 
Eq. (39) for the exponent CT in the expression of the mean 
surface area can be compared with models from molecular 
dynamics and further refined yielding more information 
about the nature of the molecular constant C, which ap­
pears as purely empirical in the proposed model. This 
power law or possibly its refined extension can be checked 
for substances other than those investigated herein when­
ever reliable data of nucleation rate for these substances are 
available. 
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