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Abstract 

New characterizations of the t 1 solutions to overdetermined systems of linear equations are given. The first is 
a polyhedral characterization of the solution set in terms of a special sign vector using a simple property of the 
t1 solutions. The second characterization is based on a smooth approximation of the t 1 function using a "Huber" 
function. This allows a description of the solution set of the t 1 problem from any solution to the approximating problem 
for sufficiently small positive values of an approximation parameter. A sign approximation property of the Huber 
problem is also considered and a characterization of this property is given. 
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1. Introduction 

The main purpose of this work is to give new 
characterizations of solutions to the following 
non-smooth optimization problem: 

[Ll] minimize G(x) = IIATx - bll1, (1) 

where x E IR", b E !Rm and A E IR" x m with m > n. The 
solutions to [Ll] are referred to as t 1 solutions to 
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an overdetermined linear system. We alternatively 
refer to this problem as the "linear t 1 minimization" 
or, simply the "linear t 1" problem. Let 

(2) 

and define a sign vector s with components s; such 
that 

1
-1 

S;(x) = ~ 

if r;(x) < 0, 

if r;(x) = 0, 

if r;(x) > 0. 

(3) 

In general a sign vector is any vector s E !Rm with 
components s; E { -1, 1, O}. 
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In the present paper we analyze the solution set 
of [Ll] by examining the structure of sign vectors 
associated with the solutions. The main results of 
the paper can now be summarized as follows. In the 
first part of the paper in Section 2 we give a new 
polyhedral description of the solution set of [L 1] 
using a special sign vector we refer to as the minimal 
sign vector of the solution set of [Ll]. This result is 
given in Theorem 3. In the second part of the paper 
in Section 3 we characterize the solution set of [Ll] 
in terms of the solution set of an approximating 
smooth problem, "the Huber problem" [2]. We 
also establish conditions under which the approx­
imating problem yields a sign vector that coincides 
with the minimal sign vector of the solution of set of 
[Ll]. These results are given in Theorem 6 and 
Theorem 7, respectively. To the best of our know­
ledge all the main results of the present paper are 
novel. 

2. The structure of the solution set of [Ll] 

In this section, we describe some properties of the 
solution set of [Ll] that are essential for our sub­
sequent analysis. We assume without loss of gener­
ality throughout the paper that A has rank n, and 
that every column ai of A is non-zero. Otherwise, 
the problem could easily be reformulated to have 
these properties. 

We begin with the well-known characterization 
of an t'i solution to an overdetermined linear sys­
tem. For any sign vector s we define 

W2 = diag(w1, ... , wm), 

where 

wi = 1 - s?. 

(4) 

(5) 

Theorem 1. A vector x E IR" solves [Ll] if and only 
if there exists d E !Rm such that 

AW0 d + As0 = 0, 

II Wodlloo ~ 1, 

where s0 = s(x), Wo = W.0 • 

Proof. See [7, Theorem 6.1, pp. 118-119]. D 

(6) 

(7) 

Clearly, the statement of the theorem is equiva. 
lent to the duality correspondence between [Li] 
and the following linear program 

[NormLP] maximize b Ty 
y 

subject to Ay = 0 

where y E !Rm and e = (1, ... , 1). 
Let Y' denote the set of solutions to [L 1 ], and let 

Q be the set of all xi E Y' such that rank 
{aJlrj(xi) = O} = n. Q is non-empty by Theorem 
6.2 of [7]. Now, we have the following description 
of the solution set of [Ll]. 

Theorem 2. Let .ff denote the convex hull of all 
xi E Y' such that rank { a JI r j(x;) = 0} = n. Then 
Y' == %. 

Proof. See [7, Theorem 6.3, p. 120]. D 

In the remainder of this section we characterize 
the solution set Y' entirely in terms of a special sign 
vector. 

2.1. Sign structure of the solution set of [Ll] 

The following simple result allows a sign charac­
terization of the solution set of [Ll]. The result is 
also mentioned in [7, Example 5, p. 121]. We state 
it in a slightly different form without proof since the 
proof is a simple exercise using the convexity of the 
function lrjl- Let d 0 {x)=={ilr;(x)=O} where 
XE !f'. 

Lemma 1. Let x1, x2 E Y'. Then, sj(x 1)sj(x2 )? 0 
for any j E {1, ... ,m}. 

Theorem 2 and Lemma 1 have the following 
consequences: 

Corollary 1. Let x 1, x 2 E Y', and 
(1 - oc)x2, where O < oc < 1. 
s(x 1) EB s(x 2 ) where 

if sjsJ = 0, 
if Sj =SJ= S. 

let x = ax 1 + 
Then s(x) = 

(8) 
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Corollary 2. For any x E !/', there exists Q' £ n 
such that s(x) = EBx;en· s(x;). 

proof. Since n is non-empty the result follows from 
the previous development. D 

For. any sign vector s = (s 1 , ••• , sm), we define 1 

(J.=={ils;=O}, ii.+={ils;=l}, and ii.-={ils; 
:::-1}. Clearly, u.uii.= {1, ... ,m}, where a.= 

8.+ u ii.-. Let also 

,~ == cl{x E ~nls(x) = s} 

and 

~~=cl {x E ~n I sj(x) = Sj, j Ea-.}. 

(9) 

(10) 

Note that ~~ = ~n if a-. is empty. Now, let 
s == EB x; en s(x;). We note that if !/' is a singleton 
s== s(x) where!/'= {x}. We refer to s as the "min­
imal" sign vector of!/' since for any x e !/' such that 
s(x) = s, ldo(x)I ~ ld0 (x')I for any x' E !/'. 

Corollary 3. rank { aT I i E u.,} = n if! !/' is a 
singleton. 

Proof. Necessity follows using the same argument 
as in the proof of the previous corollary.· For the 
converse, let x 1, x 2 E !/', where x 1 -=/- x2• Since 
W.,AT (x 1 - x2 ) = 0 this implies { aT Ii Eu.,} do not 
span ~n. D 

Corollary 4. Let x E !/'. If s(y) = s(x) then y E !/'. 

Proof. Follows from Theorem 1. D 

Corollary 5. There exists i E !/' with s(i) = s. 

Proof. The result is obvious if !/' is a singleton. 
Otherwise, for all j e { 1, ... , m} there exists xi E n 
such that si = sj(x). Define i =If= 1 x;/p where pis 
the number of such distinct points. By construction 
s(i) = s. Now, by Theorem 2 i E !/'. D 

Now, we can give the following alternative poly­
hedral characterization of !/'. 

Theorem 3. !/' = ~r 
Proof. The result is evident if !/' is a singleton. 
Otherwise, by the previous corollary there 

exists i E !/' with s(i) = s. Now, by Corollary 4 
{ x E ~n I s(x) = s} £ !/'. Now, by continuity, 
~~ £ !/' since !/' is closed. 

Now, let x E !/'. Let s0 = s(x). If s0 = s, there is 
nothing to prove. Otherwise, using the definition of 
s and Lemma 1, u., c u.0 and S;r;(x) ~ 0 for all 
i E ii,. This implies that x E ~r D 

Corollary 6. !/' £ ~r 

Proof. Follows from~~£ ~r D 

Example 1. Consider the following problem 

minimize G(x) = lxl + Ix - 31 

where A = (1, 1) and b = (0, 3?. The solution set is 
the interval [O, 3] with s(O) = (0, -1) and 
s(3) = (1, 0), s = s(O) EB s(3) = (1, -1). In this case, 
~~ = ~~ = !/' = [O, 3]. 

3. An approximation of [Ll] 

In [ 4] the first two authors showed that a minim­
izer of G can be estimated by solving a sequence of 
approximating smooth problems, each of which 
depends on a parameter y > 0. These problems are 
defined as follows. Define for a given threshold 
y > 0 the sign vector 

s1 (x) = [si(x), ... ,s~(x)] 

with 

f -1 

sl(x) = l ~ 
if r;(x) ~ - y, 

if lr;(x)I < y, 

if r;(x) ~ y. 

(11) 

(12) 

Ifs= s1(x) then we also denote W. by W1(x), or 
it;, if no confusion is possible. 

Now, the non-differentiable problem [Ll] is ap­
proximated by the smooth "Huber problem", [2], 

[SLl] minimize Gy(x) = ;y rT Wyr 

+ s1T[r - ~ys1 J (13) 
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where the argument x is dropped for notational 
convenience. Clearly, Gy measures the "small" re­
siduals (lr;(x)I < y) by their squares while the 
"large" residuals are measured by the / 1 function. 
Thus, Gy is a piecewise quadratic function, and it is 
continuously differentiable in Iii". In [ 4] the first 
two authors showed that when y ~ O+ then any 
solution to [SL1] is close to a solution to [Ll]. 
Furthermore, in a more recent work [5], it was 
shown that dual solutions to [Ll] and [NormLP] 
can be detected directly when y is below a certain 
(problem dependent) threshold y0 > 0. In the same 
reference, a finite algorithm based on the above 
ideas is developed to solve linear programming 
problems of the form [NormLP] where the right­
hand side is not necessarily zero. 

3.1. The structure of the solution set of [SL1] 

The structure of the function Gy and its minim­
izers have been previously studied in [1, 3-5]. 
Therefore, we are not concerned with a detailed 
study of the properties of [SL1]. Instead, we de­
scribe some properties of this problem, which are 
essential to our subsequent development. In par­
ticular, we characterize the solution set of [SL1], 
and we give a new characterization of the solution 
set of [Ll] in terms of the solution set of [SL1]. 

Clearly Gy is composed of a finite number of 
quadratic functions. In each domain D ~ Iii" where 
sY(x) is constant Gy is equal to a specific quadratic 
function as seen from the above definition. These 
domains are separated by the following union of 
hyperplanes, 

By= {x E Iii" I 3i: lr;(x)I = y }. 

A sign vector s is yjeasible at x if 

'vs > 03z E lli"\By: 

llx - zil <BI\ s = sY(z). 

(14) 

(15) 

Ifs is a y-feasible sign vector at some point x then 
QI is the quadratic function which equals Gy on the 
subset 

(16) 

CCI is called a Q-subset of Iii". Notice that any 
x E lli"\By has exactly one corresponding Q-subset 

(s = sY(x)), whereas a point x e By belongs to two 
or more Q-subsets. Therefore, we must in genera] 
give a sign vector s in addition to x in order to 
specify which quadratic function we are currently 
considering as representative of Gy. 

QI can be defined as follows: 

Q!(z) = !(z - x)T(AW.AT)(z - x) 

+ G?(x)(z - x) + Gy(x). (17) 

The gradient of the function Gy is given by 

G;(x) = A [f w.r + s J (18) 

where s is a y-feasible sign vector at x. For 
x E lli"\By, the Hessian of Gy exists, and is given by 

(19) 

The set of indices corresponding to "small" resid­
uals 

Ay(z) = {ii 1 ~ i ~ m" lr;(z)I ~ y} 

is called the y-active set at z and the subspace 

'f'iz) = span{a; Ii E .w'y(z)} 

(20) 

(21) 

is called the y-active subspace at z. The set of 
minimizers of Gy is denoted by My. In [1] it is 
shown that there exists a minimizer Xy E My for 
which -,,y{xy) = Iii". 

The following three results were proved in [5] for 
the more general problem 

(22) 

where c is a vector of appropriate dimension. Nat­
urally, they also apply to [Ll]. In the interest of 
clarity we reproduce the proofs here. 

Lemma 2. sY(xy) is constant for xy E My. Further­
more r;(Xy) is constant for Xy e My if sr = 0. 

Proof. Let xy E My and let s = sY(xy), i.e., 
Gy(x) = QI(x) for x E CC!. If x E CC! n My then 
Q{'(x)(x - xy) = 0. Therefore, if lr;(xy)I < y then 
aT(x - xy) = 0 (see (17)), and hence r;(x) = r;(Xy). 
Thus r; is constant in CC! n My. Using the fact that 
My is connected and r; is continuous, it is easily seen 
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by repeating the argument above that r; is constant 
in My- Next suppose r;(xy) ~ y. Then r;(x) ~ y for 
all x E My because existence of x E My with 
r;(x) < y is excluded by the convexity of My, the 1 

continuity of r;, and the first part of the lemma. 
Similarly, r;(xy) ~ -y => r;(x) ~ -y for x E My. 
This completes the proof. D 

following the lemma we use the notation 
5Y(M1 } = sY(xy ), xy E My as the sign vector corres­
ponding to the solution set. Lemma 2 has the fol­
lowing consequences which characterize the solu­
tion set My. 

Corollary 7. My is a convex set which is contained in 
one Q-subset: CCJ where s = sY(M1 ). 

Proof. Follows immediately from the linearity of 
the problem and Lemma 2. D 

Corollary 8. Let Xy E My, ands = sY(My). Let JV, be 
the orthogonal complement of "Y, = span { aT I s; = 0}. 
Then 

M1 = (xy + %.) n CCJ. 

Proof. It follows from (18) that G;(xy + u) = 0 if 
u E JV. and Xy + u E cc;. Thus 

My 2 (x1 + %.) n CCJ. 

If x E My then r;(x) = r;(xy) for S; = 0, and hence 
x - xy E .A-';. Therefore, Corollary 7 implies 

M1 ~ (x1 + %.) n CCJ 

which proves the result. D 

An important consequence of the previous char­
acterization of My is that it provides a sufficient 
condition for the uniqueness of Xy. This result given 
below in Corollary 9 is related to Lemma 6 in the 
paper by Clark [1]. The difference between the two 
approaches stems from the fact that Clark uses the 
following sign vector Sy with components 

1
-1 

S1;(X) = ~ 

if r;(x) < - y, 

if lr;(x)I ~ y, 

if r;(X) > y. 

(23) 

Corollary 9. Let s = sY(My). Xy E My is unique if 
rank{aTls; = O} = n. 

Example 2. -Note that the condition in the previous 
lemma is not necessary for uniqueness of xy. To see 
this consider the problem of Example 1 with 
y = 1.5. The unique minimizer occurs at xy = 1.5 
where sY = (1, -1). 

3.2. "Huber" characterization of the solution set of 
[Ll] 

In this section we show how the solution set 
My approximates the solution set !/' of the linear 
t 1 problem as y approaches 0. 

Assume xy E My, and lets= sY(My). Let "Y, and 
%, be defined as in Corollary 8. 

Since Xy satisfies the necessary condition for 
a minimizer, 

0 = AW.(AT xy - b) + yAs 

the following linear system is consistent, 

(A W.AT)d = As. 

(24) 

(25) 

Now let d solve (25) and assume sY-'(xy + ed) = s, 
i.e., xy + ed Ere;-• for some e > 0. The linearity of 
the problem implies xy + /5d E CCJ- 6 for O ~ /5 ~ e. 
Therefore (24) and (25) show that (xy + bd) is 
a minimizer of Gy-d· Using Corollary 8 we have the 
following lemma. 

Lemma 3. Let xy E My and let s = sY(My). Let d 
solve (25). If s1 -'(xy + ed) = s for e > 0 then 
sY- 6(x 1 + bd} = s, and 

My- 6 = (x1 + bd + JV,) n CCJ- 6 

for O ~ /5 ~ e. 

(26) 

Theorem 4. There exists y0 > 0 such that sY(My) is 
constant for O < y ~ y0 • Furthermore, 

My- 6 = (x1 + bd + %.) n rc;- 6 for O ~ /5 < y ~ Yo 

wheres= sY(My) and d solves (25). 

Proof. Since there is only a finite number of differ­
ent sign vectors the theorem is a consequence of the 
previous lemma. D 
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Let .;V(C) denote the null space of an arbitrary 
matrix C. 

Corollary 10. Let O < y ~ y0 , where Yo is given in 
Theorem 4 and lets= sY(My). Then 

W,r(xy + yd) = 0 (27) 

where dis any solution to (25). 

Proof. Let xy-d E My-d for O ~ {) < y. By Theorem 
4 there exists d that solves (25) such that 
Xy-d = Xy + bd. Therefore, using the definition of 
r we have 

(28) 

Any solution d to (25) can be expressed as 
d = d + '1 where '7 E %(AW.AT). Now, %(AW.AT) 
= .;V(W,AT) since W. W, = W.. Hence, we have 

(29) 

or equivalently, 

11 W.r(xy + {)d) 11 oo < y - b. D (30) 

We notice that if xy E My then Yy = - (W.r(xy)/ 
y + s), where s = sY(My), is feasible in [NormLP] 
as it is seen from (24). Now we recall a classical 
result from linear programming known as the com­
plementary slackness theorem. This result is simply 
a restatement of Theorem 1, which is more con­
venient for our purposes; see for instance [6]. 

Theorem 5. Let x E ~n and y E ~m. Then x and y are 
optimal solutions in their respective problems if and 
only if y is feasible in [NormLP] and the following 
conditions hold: 

-1 < Yi < 1 => ri(x) = 0, 

ri(x) > 0 => Yi= -1, 

ri(x) < 0 => Yi=+ 1. 

(31) 

(32) 

(33) 

Next, we state and prove the first main result of this 
section. 

Theorem 6. Let O < y ~ Yo, where Yo is given in 
Theorem ,4 and let s = sY(My). Let Xy E My, and 
d solve (25). Then 

Mo= f/1 

where 

M0 = (xy + yd + %.) n ~?, 

and 

' 
y* = - ( t W.r(xy) + s) 

solves [NormLP]. 

(34) 

(35) 

Proof. First, M0 is non-empty as a consequence of 
the constant sign property of Theorem 4. Assume 
x 0 E M0 . Then there exists a solution d0 to (25) such 
that x0 = xy + yd0 . Therefore using Corollary IO 
<ls ~ .sit 0 (x0 ). Now the linearity and Theorem 4 
imply that Xy-d = xy + bd0 E My-d for O ~ {) < y. 
Since sY(xy) = sy-d(Xy-d) for O ~ {) < y the conti­
nuity of r gives 

r;(x0 ) =f O => sign (ri(x0 )) = sign (ri(xy-d)) 

=S;=-yt, (36) 

for {) close to y. Furthermore, y* is feasible for 
[NormLP]. Therefore 

G(x0 ) = - r(x0? y* 

= -xJAy* + bTy* 

= bTy*. 

Hence, x 0 and y* are solutions to [Ll] and 
[NormLP], respectively. Since this holds for any 
x 0 E M 0 , M 0 ~ [/1 and y* solves [NormLP]. 

If f/1 is a singleton, the proof is complete. There­
fore, assume [/1 is not a singleton. What remains to 
be shown is that x E M0 for any x E f/1. Since x 0 and 
y* are primal-dual solutio.ns it follows from condi­
tion (31) that <ls~ .sil0 (x) for any x E f/1. Now, let 
x E f/1 and Xy E My. Since <ls ~ .sit 0 (x), we have the 
following: 

W,(ATx - b) = 0. (37) 
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Then using (24) and (37) we have 

AW.AT(x - xy) = !AW.ATx _ !AW.ATx1 
y y y 

1 1 
= -AW.b - -(AW.b - yAs) 

y y 

= As, 

which shows that (x - x 1 )/y solves (25). Therefore 
we have shown that x e x 1 + yd + ,Ks. Using con­
ditions (32) and (33), the following sign accordance 
holds: 

Si f= 0 => siri(x) ~ 0. 

Therefore, x e ~f for any x e f/. Hence, x e M0 • 

This completes the proof. D 

Following Theorem 6, all the / 1 solutions to an 
overdetermined linear system and all the "Huber" 
solutions are linked by a solution d to (25) for 
sufficiently small positive values of the parameter y. 
The following is now an immediate corollary of the 
Theorem 6. 

Corollary 11. M 1 = (x0 - yd - %.) n <t'J for ye 
(0, y0 ] where x 0 e f/ and d solves (25). 

Another immediate consequence of the charac­
terization theorem is the following corollary. 

Corollary 12. f/is a singleton if rank { aT I i e u,} = n 
wheres= s1(M1 ) for ye (0, y0 ]. 

Proof. Since rank { aT Ii e u,} = n x 1 e M1 is unique 
by Corollary 9. This also implies that .Ar,= {O}. 
Hence (A W.AT)d = As has a unique solution, 
d0 say. Therefore, xy + yd0 + .K. is a singleton. 
Hence, by Theorem 6, f/ is a singleton. D 

Our final results concern the following question 
of sign identity: "If and when s as defined in 
Theorem 4 coincides with the minimal sign vector 
s off/?" The following sample problem from [1] 
illustrates the sign identity. 

Example 3. Consider the problem 

minG(x) = 13x1 + 2x21 + 14x1 -41 + 13x2 - 31 

+ 12x1 + 3x2 - 51 + l8x1 + 7x2 - 201. 

f/ = Q = {x1} = (1, W and s(x1) = (1,0,0,0, 
-W whereas for O < y < 1.23, x 1 = (1 + 3y/ 

16, 1 + 2y/9)T, with s1(x1 ) = (1, 0, 0, 1, -W. If "8" 
is changed to "7.5" for O < y < 1.34, s1 (x1 ) = 
(1, 0, 0, 0, -W thereby giving sign identity. 

Recall that when f/ has a unique sign vector, s* 
say, s reduces to s* by definition. The following 
result which is a by-product of the proof of 
Theorem 6 gives a partial answer to the question of 
sign identity. The sign identity property is also 
mentioned in [1]. In this connection Corollary 13 
below offers an alternative statement to Theorem 
6 of [1] by using the concept of a minimal sign 
vector. 

Corollary 13. Let O < y ::;; y0 , where y0 is given in 
Theorem, 4 and let s = s1(M1 ). Then u, ~ u,, 
<Ti ~ ii,+, and ii,- ~ ii,- wheres is the minimal sign 
vector of f/. 

In [1] no conditions are specified under which 
the sign identity is expected to hold. In our final 
theorem we give alternative characterizations the 
sign identity property. Let Y * denote the set of 
optimal solutions to [NormLP]. 

Theorem 7. Let O < y ::;; y0 , where y0 is given in 
Theorem 4 and lets= s1 (M1 ). Lets be the minimal 
sign vector of f/. Then the following statements are 
equivalent: 
(1) s = s 
(2) For all i e ii., Yi= - si for ally e Y * 
(3) For all i e ii., there exists x e f/ such that 

si(x) = si 
(4) There exists de ~n that solves 

(A W,AT)d = As (38) 

such that II W,AT d II 00 < 1. 

Proof. The equivalence of (2) and (3) follows from 
the complementarity theorem of Goldman and 
Tucker (see e.g., [8]). Now, clearly (1) and (3) are 
equivalent using the previous corollary. 

(1) => (4): This follows immediately from 
Corollary 11 where x 0 satisfies s(x0 ) = s = s. 

(4) => (1): The system (38) is consistent following 
Theorem 1 and Corollary 5. Now, let x be 
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a solution to [Ll] such that s(x) = s. Let 
b = min{lr;(.i)I: i Ea.,}. Choose O < y0 ,.;; b so that 
for all O < y ,.;; Yo, 

. -+ 
l E <1., , 

i E o'i. 

(39) 

(40) 

Now using (38) and the fact that W.,(AT x - b) = 0 
we have 

0 = AW.,AT(-yd) + yAs 

= AW.,(AT(x - yd)- b) + yAs. 

Since II W.,AT d II 00 < 1,. using (39) and (40) we have 
s1 (.i - yd)= s. Hence, x - yd E Mr By Theorem 4, 
s = s. This proves the theorem. D 

The following corollary gives a necessary condi­
tion for the uniqueness of solution in [NormLP]. 

Corollary 14. If Y * is a singleton s = s. 

In example 3 above it can be verified that Clause 
(2) of Theorem 7 fails to hold since the associated 
linear program [NormLP] has two extreme solu­
tions y 1 = (-1, -3/4, -2/3, -1, ll, and y 2 = 
(-1, -11/12, - 1, -2/3, 1). 
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