
Efficient Overlapped FFT Algorithms for
Hypercube-Connected Multicomputers �

Cevdet Aykanat and Argun Derviş
Department of Computer Engineering, Bilkent University

06533 Bilkent, Ankara, Turkey

Abstract

In this work, we propose parallel FFT algorithms, for medium-to-coarse grain hypercube-
connected multicomputers, which are more elegant and efficient than the existing ones. The
proposed algorithms achieve perfect load-balance for the efficient simplified-butterfly scheme,
minimize the communication overhead by decreasing both the number and the volume of con-
current communications. Communication and computation cannot be overlapped easily due to
the strong data dependencies in the FFT algorithm. In this paper, we propose a restructuring
for the FFT algorithm which enables overlapping each communication with one fifth of the local
computations involved in a stage. Two of the proposed parallel FFT algorithms achieve overlap-
ping by exploiting this restructuring while using the efficient table-lookup scheme for complex
coefficients. The proposed algorithms are implemented on an Intel’s 32-node iPSC/2 hypercube
multicomputer. High efficiency values are obtained even for small size FFT problems.

KEYWORDS : FFT, Parallel Computing, Multicomputer,Hypercube, Perfect LoadBalance, Over-
lapping Communication and Computation.

1 Introduction

The Fast Fourier Transform (FFT) algorithm formulated by Cooley and Tukey in 1965 [5], provides an effi-

cient method for the analysis, design and the implementation of Digital Signal Processing (DSP) algorithms.

The extent to which these algorithms can be performed in real time has in many cases limited by the rate at

which the FFT algorithm can be executed. The high performance requirement for real time implementation

of these algorithms led to the design of special purpose hardwares. An extensive research has been conducted

to implement efficient FFT algorithms on vector processors [6, 11], and general purpose parallel architectures

with shared memory [1, 4, 10] and distributed memory [12, 13, 15].

The purpose of this paper is to investigate the efficient parallelization of one-dimensional FFT algorithm on

medium-to-coarse grain, distributed-memory, message-passing architectures (multicomputers) implementing

the hypercube interconnection topology. In order to achieve speedup on such architectures, the algorithm must

be designed so that both computations and data can be distributed to the processors with local memories in

such a way that computational tasks can be run in parallel, balancing the computational loads of the processors.

Communication between processors to exchange data must also be considered as part of the algorithm. One

�This work is partially supported by Intel Supercomputer Systems Division under Grant SSD100791-2 and Turkish Science and
Research Council (TUBITAK) under Grant EEEAG-5

1



important factor in designing parallel algorithms is granularity. Granularity depends on both the application

and the parallel machine. In a parallel machine with high communication latency, the algorithm should be

structured so that large amounts of computations are done between successive communication steps. Another

important factor is the ability of the parallel system to overlap communication and computation. In order to

exploit this property of the parallel system, the algorithm must be structured so that processors have indepen-

dent local computations to perform after initiating communication operations. In this work, all these points

are considered in designing efficient parallel FFT algorithms for hypercube-connected multicomputers.

In the literature, there is a lot of theoretical work done on the parallelization of FFT. However, there are

only a few parallel FFT algorithms proposed and implemented for hypercube-connected multicomputers.

Walker [12] proposed various parallel FFT algorithms for MIMD architectures including the hypercube-

connected multicomputers without any experimental results. First two parallel algorithms proposed in [12]

are mainly for fine-grain architectures which involve fragmentary message passing. The second algorithm

overlaps communication with computation. The third parallel algorithm eliminates fragmentary message

passing and requires only 2d concurrent exchange communication steps each with a volume of N�2P FFT

points for the parallelization of an N -point FFT on a d-dimensional hypercube with P � 2d processors. The

fourth algorithm achieves parallelization by performing only two global communications. However, each

global communication involves d concurrent exchange communication steps each with a volume of N�2P

FFT points on a hypercube architecture.

Walton [13] proposed an algorithm similar to Walker’s third algorithm. In his algorithm, each processor

exchanges N�2P points with one of its neighbors at two points, once to obtain the data for the next stage of

the transform, and again to send the partially transformed data “home”. Nevertheless, the parallel complexity

of his algorithm is equal to that of Walker’s.

These algorithms [12, 13] achieve perfect load-balance only for the basic-butterfly (Fig. 1(a)) scheme which

requires two complex multiplications per butterfly. However, the simplified-butterfly (Fig. 1(b)) scheme is

much more efficient since it requires only one complex multiplication per butterfly. Figure 1 shows clearly

the redundant multiplication which is discarded in the simplified-butterfly scheme. To our knowledge, only

Zhu [15] has proposed a parallel FFT algorithm which achieves perfect load-balance for the simplified-

butterfly scheme. His scheme also minimizes both the number and the volume of concurrent communications

to d and d�N�2P �, respectively. His scheme performs the communications in the first d stages of the FFT

computations and overlaps communications with the computation of the complex coefficients (complex ex-

ponentiations). However, in most of the DSP applications, N -point FFT is applied successively to N -point

input data sets, for a fixed N . In such applications, the computation of complex coefficient values as they are

needed, will be extremely inefficient. In general, N�2 complex coefficient values can be computed once and

stored in a table (during preprocessing), so that they are accessed by simple table-lookup operations during

successive FFT computations.

In this work, we propose and present more efficient and elegant parallel FFT algorithms for medium-to-coarse

grain hypercube-connected multicomputers. The proposed algorithms preserve the best features of the exist-

ing work in the literature as follows: (i) use simplified-butterfly scheme, (ii) achieve perfect load-balance,

2



(iii) exploit the efficient table-lookup scheme for handling complex coefficients, (iv) allow only nearest-

neighbor communications, (v) minimize the number of concurrent communications to d by eliminating

fragmentary message passing, (vi) minimize the volume of communication in each concurrent exchange step

to N�2P , (vii) overlap communications with one half of the addition/subtraction operations during the d

concurrent exchange communication steps. The proposed algorithms achieve these nice features by using a

simple yet efficient mapping scheme and a restructuring for the FFT algorithm which enables overlapping

communication with computation.

Different strategies exist for the computation of FFT [5, 7, 8, 14]. The FFT scheme chosen for parallelization

is radix-2, Cooley-Tukey scheme using the decimation-in-time decomposition [5]. Section 2 presents and

discusses the computational structure of this FFT scheme. Parallelization of the chosen FFT scheme is

discussed in Section 3. The mapping scheme proposed to achieve perfect load-balance is presented in

Section 3.1. Section 3.2 presents two different schemes proposed to overlap communication with computation.

Section 4 presents the implementation results and the relative experimental performance evaluation of the

proposed algorithms on a 32-node iPSC/2 hypercube multicomputer.

2 The Sequential FFT Algorithm
The computational flow graph of radix-2, Cooley-Tukey FFT scheme using the decimation-in-time decompo-

sition is illustrated in Fig. 2 for a (N�32)-point FFT computation. In this scheme, the input is in bit-reversed

order and the output is in normal order. The numbers in the normal decimal order used in Fig. 2 to illustrate

the output sequence also denote the indices of the corresponding FFT points used for in-place computations.

As is seen in Fig. 2, each stage of the computation takes a set ofN complex numbers and transforms them into

another N complex numbers by performing N�2 simplified-butterfly computations. This process is repeated

n� lg2 N times, resulting in the computation of the desired discrete Fourier transform in normal order. The

simplified-butterfly computations required at stage k of an N -point FFT is,

temp � W r
N �Xk�q�; Xk�1�p� � Xk�p� � temp; Xk�1�q� � Xk�p�� temp (1)

where q�p�2k, W r
N�e�j�

2Π
N
�r, for k � 0� 1� � � � � n�1. That is, at stage k, simplified-butterfly computations

are performed on partially transformed pairs separated by 2k. Hence, stage k consists of bk�N�2k�1 blocks

B0
k � B

1
k� � � � � B

bk�1
k where each block contains 2k�1 consecutive FFT points. The consecutive 2k�1 FFT

points in each FFT block constitute the p� q points of all 2k FFT butterflies in that block. First and second

halves of each block constitute the p and q points, respectively, of the FFT butterflies in that block. Note that,

the block size is b0�2 at the first stage and doubles at each successive stage and reaches bn�1�2n�N at the

last stage. Two consecutive blocks B2i
k�1 and B2i�1

k�1 of stage k�1 constitute the p and q halves, respectively,

of the block Bi
k of the next stage k, for i � 0� 1� � � � � bk�1.

The pseudo-code for an N -point FFT algorithm is given in Prog. 1. The SEQFFTk function shown in this

program performs the in-place computation of N�2 simplified-butterflies required at stage k. The SEQFFTk

function is invoked n� lg2 N times to compute the complete N -point FFT. The outer for-loop in SEQFFTk

function iterates N�2k�1 times to identify N�2k�1 consecutive FFT blocks. The inner for-loop iterates 2k

times to identify and perform the computations associated with the 2k FFT butterflies in the respective block.

3



X  (p)
kX  (p)

k

X  (q)
kX  (q)

k

X     (p)k+1

X     (q)k+1X     (q)k+1

X     (p)k+1

NW

WN

r

1Wr
N

(r+N/2) -

(a) (b)

Fig. 1: Computational flow graphs for (a) basic-butterfly, (b) simplified-butterfly.

Fig. 2: Computational flow graph for a 32-point FFT and its static mapping on a hypercube with 4-processors.

4



/* Input in bit-reversed order in X�0 � � � N�1� */
/* Output in normal order in X�0 � � � N�1� */
n := lg2 N ;
for k :� 0 to n�1 do

Call SEQFFTk (X, Wfac, N , k);
/* Performs N/2 butterfly computations over bit k */
SEQFFTk (X,Wfac,N ,k)

for i :�0 to �N�2k�1��1 do
for j :�0 to 2k�1 do

p :� i� 2k�1 � j;
q :� p� 2k;
temp :� Wfac �X�q�;
X�q� :� X�p� � temp;
X�p� :� X�p� � temp;

end SEQFFTk

Prog. 1: Sequential N-pt FFT algorithm

As is seen in Eq. 1 and Prog. 1, one complex multiplication and two complex addition/subtraction operations

are required in a simplified-butterfly computation. Since N�2 butterfly computations are performed at each

stage, the FFT algorithm requires �N�2� lg2 N and N lg2 N complex multiplication and addition/subtraction

operations, respectively. Hence, N -point FFT requires 2N lg2 N and 3N lg2 N real multiplication and

addition/subtraction operations, respectively. The complexity of the sequential FFT can be expressed as,

TP1 �
h
5Ntcalc

i
lg2 N (2)

where tcalc is the time taken by the floating point multiplication, addition and subtraction operations. The

computations of the complex coefficients (Wfac) are not involved in the given complexity analysis since they

are performed only once during the preprocessing.

3 Parallel FFT Algorithms

Computational structure of the FFT algorithm is very suitable for parallelization on multicomputers imple-

menting the hypercube interconnection topology. The distribution of data and computations is straightforward

for medium-to-coarse grain parallelism whenever the number of FFT points,N � 2n, is greater than or equal

to the number of processors, P � 2d, in the hypercube. Successive processors in the decimal ordering

are assigned the consecutive slices of the X-array with each slice containing equal number of, M � N�P ,

consecutive FFT points. In this scheme, each processor is responsible for carrying out the complete in-place

computations required for the FFT points assigned to itself. The horizontal dashed-lines in Fig. 2 illustrate

this straightforward mapping for a 32-point FFT data and computations on a 2-dimensional hypercube, with

each processor assigned M�8 FFT points.

Computational interdependencies in a particular stage of an FFT algorithm are confined within butterflies

belonging to that stage. Furthermore, FFT butterflies are confined within consecutive blocks of size 2k�1 at

stage k. Note that, block size increases as 2� 4� 8� � � � � 2n�d during the firstn�d stages k � 0� 1� 2� � � � � n�d�1.

Thus, FFT blocks and hence FFT butterflies are not fragmented during the firstn�d stages since the straightfor-

ward mapping scheme assigns consecutive M�N�P �2n�d FFT points in blocks to consecutive processors

5



in decimal ordering. Hence, no interprocessor communication is required during the first n�d stages. How-

ever, in the last d stages, FFT blocks and hence FFT butterflies are fragmented between processors thus

necessitating interprocessor communication.

In the �n�d�th stage k� n�d�1, each processor Pi computes only a single FFT block Bi
n�d�1 of size M

for i � 0� 1� � � � � P�1. During the following d stages k�n�d� n�d�1� � � � � n�1, consecutive FFT blocks

of size 21M� 22M� � � � � 2dM , are fragmented across consecutive processor blocks containing 21� 22� � � � � 2d

consecutive processors in decimal ordering. Note that, each processor block constitutes a lower dimensional

hypercube called here subcube. Hence, during the last d stages, k� n�d� n�d�1� � � � � n�1, FFT blocks

are fragmented across � � 1� 2� � � � � d dimensional subcubes, respectively, where � � k��n�d��1. The

fragmentation of an individual FFT block of size 2�M across an �-dimensional subcube is such that ith

processors (for i�0� 1� � � � � 2��1�1) in the first and second halves ((��1)-dimensional subsubcubes) of that

subcube holdM p-points andM q-points, respectively, of the 2��1M butterflies involved in that block. Hence,

in the last d stages, p and q points of FFT butterflies separated by 2n�d� 2n�d�1� � � � � 2n�1, are assigned

to neighbor processors whose decimal indices differ by 20� 21� � � � � 2d�1 respectively. Thus, one concurrent

pairwise exchange communication step is required just before the computations involved at each stage during

the last d stages in order to exchange p values with q values, and vice versa, of the fragmented butterflies.

Note that, all processors should involve in these pairwise exchange communication operations at each stage

during the last d stages. The volume of concurrent information exchange between each processor pair is N�P

FFT points where each FFT point consists of a complex floating-point word.

A pseudo-code for the node program of the parallel FFT algorithm is given in Prog. 2. The local variable

mynode is assumed to contain the index of the respective node processor. A C-like notation is used in Prog. 2

and hereafter to represent the for-loops whenever needed. The first and second for-loops in Prog. 2, accumu-

late the summations over the first �n�d� and the last d bits by performing the computations corresponding

to the fragmented and unfragmented butterflies, respectively. The first for-loop involves no interprocessor

communication. The variable � inside the second for-loop denotes the dimension of the subcubes across

which FFT blocks of size 2�M are fragmented. The processor indices whose �� � 1�th bit is “0” and “1”

identify the processors in the first and second halves (subsubcubes) of these subcubes, and these two types

of processors hold M p-points and M q-points of the fragmented butterflies, respectively. Hence, M -point

pairwise data exchanges are performed concurrently across the channel (��1) by each processor issuing a

send/receive message pair at each iteration of the second for-loop. Here, channel (��1) refers to the set

of P�2 communication links connecting processor pairs whose indices differ only in the ���1�th bit. In

Prog. 2, csend and crecv denote synchronous (blocking) communication primitives which achieve the trans-

mission and receive of the communication packets. As is seen in Prog. 2, this scheme introduces a local storage

overhead of sizeM�N�P due to the local receive buffer XRB. Note that, the size of the localX-array isN�P .

The straightforward mapping scheme avoids fragmentary message passing and assigns interacting FFT sub-

block pairs to the neighbor processor pairs of the hypercube. However, this scheme has two major drawbacks.

First, partially transformed N�P FFT points have to be exchanged between processor pairs at each stage of

the last d stages. Second, perfect load-balance is disturbed during the last d stages. These two drawbacks can

explicitly be seen when Prog. 2 is analyzed. At each iteration of the second for-loop, one half of the processors

6



/* Computations over the first (n� d) bits: no communication phase */
n :� lg2 N ; d :� lg2 P ; M :� N�P ; m :� lg2 M ;
for k :�0 to n�d�1 do

Call SEQFFTk (X,Wfac,M ,k)
/* Computations over the next (last) d bits: d exchange communication phase */
for k :�n�d to n�1 do

� � k � �n� d� � 1; dnode :� mynode � 2��1;
if (���1�th bit of mynode is 1) then do

for q :�0 to M�1 do
X�q� :� Wfac �X�q�;

csend from (X�q�: q�0� 1� � � ��M�1) to dnode;
crecv into (XRB�p�: p�0� 1� � � ��M�1) from dnode;
for (q :�p :�0; q�M ; q++, p++) do

X�q� :� XRB�p� �X�q�;
else /* ���1�th bit of mynode is 0 */

csend from (X�p�: p�0� 1� � � ��M�1) to dnode;
crecv into (XRB�q�: q�0� 1� � � ��M�1) from dnode;
for (p :�q :�0; p�M ; p++, q++) do

X�p� :� X�p� �XRB�q�;

Prog. 2: Parallel FFT algorithm.

hold only the updated values for the p-points, whereas the other half hold only the updated values for the

q-points of the butterflies. Since only the updated values of the q-points of the butterflies have to be multiplied

by the complex coefficients, those processors holding N�P q-points perform N�P complex multiplications

while the other processors wait idle for receiving the multiplication results from those processors. Hence, the

parallel complexity of this scheme is,

TP 2 �
h5N
P

tcalc
i

lg2
N

P
�

h8N
P

tcalc
i

lg2 P �
h
tsu �

N

P
ttr

i
lg2 P (3)

Here, tsu denotes the message set-up time overhead, and ttr denotes the time taken for the transmission of a

complex floating-point word (2 � 4 bytes) between two neighbor processors.

3.1 Perfect Load Balance

The straightforward mapping scheme used in Prog. 2 already maintains perfect load-balance during the first

�n � d� stages since all processors hold equal number(s) of unfragmented FFT blocks. Hence, this mapping

is maintained during the first �n � d� stages of the parallel algorithm proposed in this subsection. As is

indicated earlier, one half of the processors hold only updated values for the p-points and the other half hold

only updated values for the q-points of the butterflies during the last d-stages. This static mapping scheme is

altered at the beginning of each stage of the last d stages. At the very beginning of each stage, each processor

holding updated values for N�P q-points exchanges one half of its q-points with one half of the p-points of its

neighbor processor which holds all the p-points of its butterflies at that stage and vice versa. This exchange

operation is not only the exchange of data values to be used at that stage. In fact, processors effectively

exchange the responsibility of the further FFT computations associated with those exchanged FFT points.

This scheme maintains a single unfragmented FFT subblock of size M �N�P at each processor during the

last d stages.

7



Fig. 3: Dynamic mapping of 32-point FFT data and computations on a hypercube with 4-processors.

This dynamic mapping scheme is illustrated in Fig. 3 for a 32-point FFT on a 4-processor hypercube. The

pseudo-code for the node-program of the proposed parallel FFT algorithm is given in Prog. 3. We only present

the last d concurrent exchange communication phase of Prog. 3 since the initial mapping scheme and the first

for-loop is exactly similar to Prog. 2. As is seen in Fig. 3 and Prog. 3, each processor exchanges either the first

half or the second half of its local X-array, in-place, by simply checking the ���1�th bit of its processor index,

where ���1� denotes the channel across which the exchange operation is to be performed at that stage. Due

to the dynamic mapping scheme, each processor performs simplified-butterfly computations on local p and q

pairs separated by 2m�1 �N�2P after the exchange operations at each stage of the last d stages. Hence, in

this scheme, each processor holds equal number of p and q points which form unfragmented FFT subblocks

of size M �N�P points (consisting of M�2 p-points and M�2 q-points) after the exchange operation. Each

processor performs equal number of �N�2P � complex multiplications thus achieving a perfect load-balance.

8



/* Computations over the last d bits: d exchange communication phase */
for k :�n�d to n�1 do

� :� k � �n � d� � 1; dnode :� mynode � 2��1;
if (���1�th bit of mynode is 1) then do

csend from (X�q�: q�0� 1� � � ��M�2�1) to dnode;
crecv into (X�p�: p�0� 1� � � ��M�2�1) from dnode;

else /* ���1�th bit of mynode is 0 */
csend from (X�p�: p�M�2�M�2�1� � � � �M�1) to dnode;
crecv into (X�q�: q�M�2�M�2�1� � � � �M�1) from dnode;

for (p :�0, q :�M�2; p�M�2; p++, q++) do
temp :� Wfac �X�q�;
X�q� :� X�p� � temp;
X�p� :� X�p� � temp;

Prog. 3: Parallel FFT algorithm with perfect load-balance (d concurrent exchange communication phase).

This scheme requires no extra storage for send/receive buffers since send/receive operations are performed

in-place from/to the local X-array. Furthermore, the volume of concurrent communication at each exchange

communication step is reduced by a factor of two (fromN�P toN�2P complex floating-point words). Hence,

the parallel complexity of the proposed scheme is,

TP3 �
h5N
P

tcalc
i

lg2 N �
h
�tsu � �

N

2P
ttr� �

N

2P
tcopy

i
lg2 P (4)

The set-up times (tsu) of the mutual send operations are overlapped in an exchange operation. The overlap

of mutual data transmissions (�N�2P �ttr) between a pair of processors is feasible only when two physical

links are present between neighbor processors as in iPSC/2. However, the internal hardware architecture of

an individual iPSC/2 processor is such that internal bus conflicts occur due to the outgoing and incoming long

messages during an exchange operation. Hence, a complete overlap cannot be achieved in iPSC/2 during the

mutual data transmission phase of the exchange operation. The performance of the exchange operation can

be modeled as �tsu���N�2P �ttr� on iPSC/2, where � is measured to vary between 1�3 and 1�6 with varying

incoming/outgoing message size [2]. Note that, ��1 corresponds to complete overlap.

In Prog. 3, each processor issues a synchronous receive just after the synchronous send operation. Due to the

perfect load-balance, communicating processor pairs perform the synchronous send operations concurrently.

A synchronous send operation returns the control back to node program only after the outgoing message

leaves the indicated send area in the local X-array. Whenever an incoming message begins to arrive to a

destination processor, it does not find a pending receive, hence it is copied to a temporary system buffer by

the node operating system NX. Later, whenever the receive operation is issued by the node program, that

message is copied from the temporary system buffer to the indicated half of the local X-array. Hence, late

issue of the receive operation introduces a block copy overhead �N�2P �tcopy where tcopy represents the time

taken to copy a single complex floating-point word from the system buffer to the indicated half of theX-array.

Note that, such a receive overhead is not included in the parallel time complexity model given in Eq. 3 for

Prog. 2. In Prog. 2, due to the lack of load balance, communicating processor pairs do not initiate send

operations concurrently. The model in Eq. 3 is given for the bottleneck processors which stay idle, waiting for

the multiplication results from their neighbor processors. These processors always issue early synchronous

receives thus avoiding the receive overhead.

9



As is seen in Fig. 3, the output results are slightly scrambled (in N�2P blocks) in this scheme due to

the proposed dynamic mapping scheme. In most DSP applications a sequence of DSP blocks are applied

consecutively on a set of input data. A proper output/input interface between successive DSP blocks can

always be maintained, if the output data order of a particular DSP block is disturbed for the sake of efficiency.

For example, in most DSP applications, a set of time domain sample data is transformed into the frequency

domain by applying an FFT DSP block. Then, a sequence of frequency domain operations are performed.

The results are transformed back to the time domain by applying an inverse FFT DSP block. The sequence

of frequency domain computations including the inverse FFT block can easily be modified to operate on the

disturbed output order of the previous FFT block. Hence, the order of input and output data of individual

DSP blocks does not bring any inefficiency to the overall application.

3.2 Overlapping Communication with Computation

There are strong data dependencies in the FFT algorithm. As is seen in Prog. 3, the update of each butterfly

necessitates the communication of either its p or q point, during the last d-stages of the algorithm. Hence,

as is also indicated in [12], the FFT algorithm differs from local and spatially decomposable problems such

as Finite Difference and Finite Element problems. In such problems, communications associated with the

boundary points can easily be overlapped with the update of interior data points [2, 12]. Thus, communication

and computation in the FFT algorithm cannot be overlapped easily. In this section, we propose a restructuring

for the FFT algorithm which enables overlapping by pipelining the communication of the following stage by

the local computations of the current stage, as much as possible. Based on this restructuring, we present two

schemes which overlap each communication with one fifth of the local computations involved in a stage.

3.2.1 Scheme 1: Asynchronous Send and Synchronous Receive

The pseudo-code for the node program of the parallel FFT algorithm which overlaps communication and

computation is given in Prog. 4. The initial static mapping for the first �n � d� stages and the dynamic

mapping for the last d-stages are similar to the scheme given in Prog. 3. However, as is seen in Prog. 4, the

first for-loop iterates only �n�d�1� times which is one less than the iteration count in Prog. 3. Then, at each

iteration (computation stage) of the second for-loop, each processor initiates the send portion of the exchange

operation required at the following stage. Each processor classifies its computational tasks at each stage into

two categories: those updates to be sent to its neighbor processor in the following stage and other updates to

be kept local for the following stage. Then, each processor first performs the computations associated with

those points required by the neighbor processor in the next stage. Hence, each processor first performs N�2P

complex multiplications associated with its local N�2P q-points. Then, each processor updates either the

values of its local p-points or q-points simply by checking the �th bit of its processor index. Here, � denotes

the channel across which the exchange operation is to be performed in the next stage. Upon completion

of these N�2P updates, each processor issues an asynchronous (non-blocking) send (isend in Prog. 4) to

initiate the transmission of the updated N�2P FFT-point values to the neighbor processor. After initiating

the send operation, each processor completes the local computations associated with that stage by updating

the other half of its local FFT points that will be kept local for the following stage. Upon completion of

the second type updates each processor issues a synchronous receive to complete the already initiated exchange.

10



/* Computations over the first (n� d� 1) bits: no communication phase */
n :� lg2 N ; d :� lg2 P ; M :� N�P ; m :� lg2 M ;
for k :�0 to n�d�2 do

Call SEQFFTk (X, Wfac, M , k)
/* Computations over the next d bits: from n�d�1 to n�2 */
/* d concurrent exchange communication phase */
for k :�n�d�1 to n�2 do

� :� k � �n � d� � 1; dnode :� mynode � 2�;
if (�th bit of mynode is 1) then do

for (p :�0, q :�M�2; p�M�2; p++, q++) do
X�q� :� Wfac �X�q�;
XSB�p� :� X�p� �X�q�;

isend from (XSB�p�: p�0� 1� � � ��M�2�1) to dnode;
for (q :�M�2, p :�0; q�M ; q++, p++) do

X�q� :� X�p� �X�q�;
crecv into (X�p�: p�0� 1� � � ��M�2�1) from dnode;
msgwait on isend;

else /* �th bit of mynode is 0 */
for (q :�M�2, p :�0; q�M ; q++, p++) do

X�q� :� Wfac �X�q�;
XSB�q�M�2� :� X�p� �X�q�;

isend from (XSB�q�: q�0� 1� � � � �M�2�1) to dnode;
for (p :�0, q :�M�2; p�M�2; p++, q++) do

X�p� :� X�p� �X�q�;
crecv into (X�q�: q�M�2�M�2�1� � � � �M�1) from dnode;
msgwait on isend;

/* Computations over the last bit: no communication */
Call SEQFFTk (X, Wfac, M , m�1);

Prog. 4: Overlapped parallel FFT algorithm (Scheme 1) with perfect load-balance.

In Prog. 4, the first inner for-loop of the second outer for-loop computes the updates to be sent to the neighbor

processor while storing the intermediate muliplication results into the second half of the local X-array to be

reused in the second inner for-loop. Each processor stores these local update results into a send buffer (XSB

array) of sizeN�2P since it does not need these results in further FFT computations. Note that, updated local p

points sent from the local buffer XSB will be the q points of the following stage, and vice versa. After initiating

the asynchronous send operation, the second inner for-loop computes the local updates to be kept local for the

following iteration and stores them either into the first or the second half of the local X-array depending on

the type of updates, p or q point updates, respectively. Hence, N�2P complex addition/subtraction operations

in the second inner for-loop are overlapped with communication. Thus, communication is overlapped with

one fifth of the computations involved in a stage. The receive portion of the exchange operations can be

done in-place into the local X-array since synchronous receive is issued after the completion of the overall

computations associated with that stage. Hence, the local storage overhead is onlyN�2P due to the local send

buffer XSB. The only computational overhead is the loop overhead since two for-loops are required instead

of one. The number of floating-point computations is exactly equal to that of Prog. 3. Thus, the parallel

complexity of the proposed algorithm is,

TP4 �
h5N
P

tcalc
i

lg2
N

P
�

h4N
P

tcalc
i

lg2 P �
h
Maxf

N

P
tcalc� �tsu � �

N

2P
ttr�g�

N

2P
tcopy

i
lg2 P (5)

Hence, complete overlap of communication can be achieved for sufficiently large N�P , where,

�N�P �tcalc � tsu � �N�2P �ttr (6)

11



/* Computations over the d bits from n�d�1 to n�2 */
/* d concurrent exchange communication phase */
pstart :� 0; qstart :� M�2;
for k :�n�d�1 to n�2 do

� :� k � �n� d� � 1; dnode :� mynode � 2�;
if (� is even) then rptr � M else rptr � 3M�2;
irecv into (X�i�: i�rptr� rptr�1� � � � � rptr�M�2�1) from dnode
pptr :� pstart; qptr :� qstart;
if (�th bit of mynode is 1) then

for (p :�0, q :�M�2; p�M�2; p++, q++, pptr++, qptr++) do
X�q� :� Wfac �X�qptr�;
XSB�p� :� X�pptr� �X�q�;

isend from (XSB�p�: p�0� 1� � � � �M�2�1) to dnode;
for (q :�M�2, pptr :�pstart; q�M ; q++, pptr++) do

X�q� :� X�pptr� �X�q�;
msgwait on isend; msgwait on irecv;
pstart :� rptr; qstart :� M�2;

else /* �th bit of mynode is 0 */
for (q :�M�2; q�M ; q++, pptr++, qptr++) do

X�q� :� Wfac �X�qptr�;
XSB�q�M�2� :� X�pptr� �X�q�;

isend from (XSB�q�: q�0� 1� � � ��M�2�1) to dnode;
for (p :�0, q :�M�2, pptr :�pstart; p�M�2; p++, q++, pptr++) do

X�p� :� X�pptr� �X�q�;
msgwait on isend; msgwait on irecv;
pstart :� 0; qstart :� rptr;

/* Computation over the last bit: no communication */
pptr :� pstart; qptr :� qstart;
for (p :�0, q :�M�2; p�M�2; p++, q++, pptr++, qptr++) do

temp :� Wfac �X�qptr�;
X�q� :� X�pptr�� temp;
X�p� :� X�pptr� � temp;

Prog. 5: Overlapped parallel FFT algorithm (Scheme 2) with perfect load-balance (computations over the last d�1 bits).

3.2.2 Scheme 2: Asynchronous Send and Asynchronous Receive

As is seen in Prog. 4, only the send portions of the exchange communications are overlapped with one fifths

of the local computations. Note that, in Prog. 4, each processor issues synchronous receive after initiating

asynchronous send operation and performing N�2P complex addition/subtraction operations. Due to the

perfect load-balance, communicating processor pairs initiate the asynchronous send operations concurrently.

Hence, there are no pending receives in the destination processors for the incoming messages. The last term

of the communication component in Eq. 5 accounts for the receive overhead due to the late issue of the

synchronous receives. However, if there is a pending receive for an incoming message, then it is directly

copied into the indicated receive buffer. Hence, it is also possible to overlap the receive portion by issuing an

early asynchronous receive. In this section, we present a second scheme which overlaps both send and receive

portions of the exchange communications with local computations. Prog. 5 illustrates the pseudo-code for the

node program of this scheme. We only present the pseudo-code for the computations over the last d�1 bits

since the initial mapping and the first-loop is same as that of Prog. 4.

In the d concurrent exchange phase of Prog. 5, each processor issues an asynchronous receive at the beginning

of each iteration in order to provide a pending receive for the incoming message. In this scheme, a local

12



Table 1: Relative performance features of the proposed parallel FFT algorithms Progs. 2, 3, 4 and 5.

Prog. 2 Prog. 3 Prog. 4 Prog. 5

Local Storage Overhead N�P none N�2P 3N�2P
Concurrent Comm. Volume d�N�P � d�N�2P � d�N�2P � d�N�2P �

Perfect Load Balance no yes yes yes

Comm./Comp. Overlap no no send send�receive

X-array of size 2N�P is used compared to N�P in Progs. 2, 3, and 4. The third and fourth quarters (each of

size N�2P ) of the local X-array are used as two consecutive receive buffers. As is seen in Prog. 5, incoming

messages are received either into the first or the second buffer in a cyclic manner according to � being even or

odd, respectively. This switching receive buffer scheme is chosen to avoid the contamination of the message

received in the previous iteration by the incoming message expected in the current iteration. In Prog. 5, the

local variables pstart and qstart are used to inform the following iteration about the two particular quarters of

the local X-array which will contain the updated p and q points, respectively. The local variables pptr and

qptr are used to index the local X-array for accessing updated p and q points. In the first inner for-loop of

the first outer for-loop, the results of the local updates to be sent to the neighbor processor are stored into the

send buffer XSB, whereas the multiplication results are temporarily stored into the second quarter of the local

X-array to be reused in the second inner for-loop. In the second inner for-loop, results of the local updates

to be kept local for the following iteration are either stored into the first or the second quarter of the local

X-array depending on the type of updates, p or q point updates, respectively.

The size of XSB-array is N�2P as in the case of Prog. 4. Hence this scheme introduces an extra local storage

overhead of size N�P due to the two receive buffers in the second half of the X-array, compared to Prog. 4.

On the other hand, the computational overhead introduced compared to Prog. 3 is as same as in Prog. 4, only

an extra for-loop. The number of floating point computations associated in each stage is exactly equal to those

of Progs. 3 and 4. Thus, the parallel complexity of the proposed algorithm is,

TP5 �
h5N
P

tcalc
i

lg2
N

P
�

h4N
P

tcalc
i

lg2 P �
h
Maxf

N

P
tcalc� �tsu � �

N

2P
ttr�g

i
lg2 P (7)

As is seen in Eq. 7, receive overhead is avoided by the early issue of the asynchronous receive.

Table 1 illustrates the relative performance features of the proposed parallel FFT algorithms. The local storage

overhead in Table 1 denotes the extra local storage requirement for send/receive operations in addition to the

local X-array of size N�P . The parallel performance of these algorithms are expected to increase with

increasing program index as is also verified experimentally in the following section.

4 Experimental Results

All programs presented in this paper have been coded in C language and run on a 32-node iPSC/2 hypercube

multicomputer for various data sizes, 256� N � 2n � 64K. Figure 4, illustrates the variation of percent

performance improvement of Prog. 3 compared to Prog. 2 during the d exchange communication phase. As

is seen in Fig. 4, Prog. 3 outperforms Prog. 2 as expected since it achieves perfect load-balance and reduces

the volume of communication by a factor of two compared to Prog. 2. As is also seen in Fig. 4, percent

performance improvement of Prog. 3 compared to Prog. 2 increases with increasing data size.

13



10
2

10
3

10
4

10
5

Data Size (N)

0

10

20

30

40

50

60

70

Pe
rc

en
t I

m
pr

ov
em

en
t i

n 
Pr

og
. 3

d=1
d=2
d=3
d=4
d=5

Fig. 4: Percent improvement curves for Prog. 3, over Prog. 2, during d exchange communication phase.

10
2

10
3

10
4

10
5

Data Size (N)

-10

0

10

20

30

40

50

60

Pe
rc

en
t O

ve
rla

p 
in

 (a
) P

ro
g.

 4
, (

b)
 P

ro
g.

 5 d=1
d=2
d=3
d=4
d=5

10
2

10
3

10
4

10
5

Data Size (N)

-10

0

10

20

30

40

50

60

d=1
d=2
d=3
d=4
d=5

(a) (b)

Fig. 5: Percent overlap curves for (a) Prog. 4, (b) Prog. 5, compared to Prog. 3.

Figures 5(a) and 5(b) display the variation of percent overlap achieved in Progs. 4 and 5, respectively. Total

communication times, and overlapped communication times in Progs. 4 and 5 are computed by running

Prog. 3 without invoking csend and crecv communication routines and subtracting these timings from the

original execution timings of Progs. 3, 4 and 5, respectively. Percent overlap is then computed by dividing

overlapped communication times by total communication times. As is seen in Figs. 5(a) and 5(b), percent

overlap increases with increasing data size as expected. Note that, for-loop overhead is also included in these

timings. For small data sizes, the amount of computation is not large enough to achieve complete overlap of

the communication (see Eq. 6). Hence, negative percent overlap values are obtained for small data sizes. As

is also seen in Figs. 5(a) and 5(b), percent overlap values begin to decrease slightly after reaching a maximum

value at large data sizes (16K�N�2P �32K). This decrease is closely related to the variation of � for

those large data sizes. Comparison of Figs. 5(a) and 5(b) shows that Prog. 5 achieves higher percent overlap

values than Prog. 4 for N�P �32. Maximum overlap values of 23% and 54% are obtained in Progs. 4 and 5,

respectively, in spite of the for-loop overheads. Also, as is indicated in [3], complete overlap cannot be

achieved due to the internal architecture of an individual iPSC/2 processor.

14



10
2

10
3

10
4

10
5

Data Size (N)

-3

-2

-1

0

1

2

3

4

5

6

7

Pe
rc

en
t I

m
pr

ov
em

en
t i

n 
(a

) P
ro

g.
 4

, (
b)

 P
ro

g.
 5

d=1
d=2
d=3
d=4
d=5

10
2

10
3

10
4

10
5

Data Size (N)

-3

-2

-1

0

1

2

3

4

5

6

7

d=1
d=2
d=3
d=4
d=5

(a) (b)

Fig. 6: Percent improvement curves for (a) Prog. 4, (b) Prog. 5, over Prog. 3, during d exchange communication phase.

0 8 16 24 32
Number of Processors (P)

0

4

8

12

16

20

24

28

32

Sp
ee

d-
up

 o
f P

ro
g.

 5

Linear
N=256
N=1K
N=4K
N=16K
N=64K

10
2

10
3

10
4

10
5

Data Size (N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
t E

ffi
cie

nc
y 

of
 P

ro
g.

 5

d=1
d=2
d=3
d=4
d=5

(a) (b)

Fig. 7: (a) Speedup, (b) Efficiency curves for Prog. 5.

Figures 6(a) and 6(b) display the variation of percent performance improvement of Progs. 4 and 5 compared

to Prog. 3, respectively, during the d exchange communication phase. Comparison of Figs. 6(a) and 6(b)

shows that Prog. 5 performs better than Prog. 4 for N�P � 32. As is seen in these figures, the variation of

percent performance improvement is very similar to the variation of overlap curves in Figs. 5(a) and 5(b)

as expected. Programs 4 and 5 give better performance results than Prog. 3 for N�P �8K and N�P �32,

respectively. These overlapped programs do not perform better than Prog. 3 for small granularities due to the

for-loop overhead and the insufficient amounts of local computations for overlapping communications (see

Eq. 6). The relative performances of the overlapped algorithms are expected to be much higher on larger

dimensional hypercubes and architectures which enable complete overlap.

Figures 7(a) and 7(b) show speed-up and efficiency curves for Prog. 5. As is seen in Fig. 7(a), almost linear

speed-up is achieved for N � 4K and P � 32. As is seen, in Fig. 7(b), efficiency remains over 94% when

N�P �128 FFT points are mapped to an individual processor of the hypercube.

15



5 Conclusion
We have proposed more elegant and efficient, three parallel FFT algorithms for medium-to-coarse grain

hypercube-connected multicomputers. All the proposed parallel FFT algorithms achieve perfect load-balance

by exploiting the efficient simplified-butterfly and the table-lookup schemes. The first proposed parallel FFT

algorithm (Prog. 3) achieves perfect load-balance, reduces the volume of concurrent communication by a

factor of two, and doesn’t introduce any memory overhead. The second proposed parallel FFT algorithm

(Prog. 4) overlaps only the send portions of the exchange communications with one fifths of the local com-

putations. This method introduces an extra send buffer of length N�2P . The third proposed parallel FFT

algorithm (Prog. 5) overlaps both send and receive portions of the exchange communications with one fifths

of the local computations. This method further introduces an extra receive buffer of length N�P .

References

[1] A. Averbuch, E.Babber, B.Gordinssky and Y. Meclan, “A parallel FFT on an MIMD machine”, in Proceedings of
the ICPP, Vol.3, pp.63-70, 1989.

[2] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative Algorithms for Solution of Large Sparse Systems of
Linear Equations on Hypercubes,” in IEEE Transactions on Computers, Vol 37, no. 12, pp. 1554-1568, December
1988.

[3] L. Bomans, and D. Roose, “Benchmarking the iPSC/2 hypercube multiprocessor,” in Concurrency : Practice and
Experience, Vol. 1(1), pp. 3-18, September 1989.

[4] W.L. Briggs, I.B. Hart, R.A. Sweet and A. O’Gallagher, “Multiprocessor FFT methods”, in SIAM J. Sci. Stat.
Comput. Vol.1, No.1, pp.27-42, January 1987.

[5] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math.
Comput., Vol. 19, pp. 297-301, April 1965.

[6] B. Fornberg, “A vector implementation of the Fast Fourier Transform”, in Math. Comput., 36, pp.189-191, 1981.

[7] G. Goertzel, “An Algorithm for the evaluation of Finite Trigonometric Series”, Amer. Math. Monthly, 65, pp.34-35,
1968.

[8] I.J. Good “The relationship between two fast fourier transform”, IEEE Transactions on Computers, C-20, pp.310-
317, 1971.

[9] A.V. Oppenheim “Digital Signal Processing,” (Prentice Hall International, 1985).

[10] P.N. Swarztrauber, “Multiprocessor FFTs”, in Parallel Computing Vol.5, pp. 197-210, 1987.

[11] P.N. Swarztrauber, “FFT algorithms for vector computers”, in Parallel Computing 1, pp. 45-63, 1984.

[12] D. W. Walker, “Portable Programming within a Message-Passing Model: the FFT as an Example,” in Third
Conference on Hypercube Concurrent Computers and Applications, Pasadena, CA, pp. 1438-1450, January 1988.

[13] S. R. Walton, “Performance of the One-Dimensional Fast Fourier Transform on the Hypercube,” in Second
Conference on Hypercube Multiprocessors, Knoxville, pp. 530-535, Sept. 1986.

[14] S. Winograd “On Computing the Discrete Fourier Transform”, Math. Comp., 32, pp.175-199, 1978.

[15] J.P. Zhu, “An Efficient FFT algorithm on Multiprocessors with Distributed Memory,” in The Fifth Distributed

Memory Computing Conference, Vol. 1(2), pp 358-363, January 1990.

16


