406 European Journal of Operational Research 72 (1994) 406-416
North-Hollang

Theory and Methodology

A comparative study of computational
procedures for the resource constrained
project scheduling problem

Osman Oguz and Hasan Bala
Department of Industrial Engineering, Bilkent University, 06533 Ankara, Turkey

Received September 1991; revised January 1992

Abstract: Performance of two new integer programming based heuristics together with some special
purpose algorithms for project scheduling are tested from a computational point of view. The objective of
the study is to compare the quality of solutions obtained by using these algorithms and reach conclusions
about their relative merits on this specific problem.

Keywords: Project scheduling; Integer programming; Heuristics

1. Introduction

The resource constrained project scheduling problem is an important and challenging problem for
both practitioners and mathematicians. It is important because it has a wide variety of application areas
such as design of production facilities, installation of computer systems, large scale construction projects,
scheduling of radio and television broadcasts, new product development, etc. It is challenging because it
is an NP-complete problem [16].

The basic problem is to schedule the activities of a project so that none of the resource constraints,
nor any of the predecence relationships, is violated, with the objective of minimizing the total completion
time. Holloway et al. [12] provide a classification of resource constrained project scheduling problems
using the number of resource types, resource availabilities and resource requirements. The specific
problem in this study is the multiple resource constrained, single project scheduling problem which falls
into the category of type n/n/n, according to Holloway’s [12] notation, in which the n’s stand for
multiple resource types, multiple units of resources, and multiple number of resource types required by
an activity, respectively. It is assumed that an activity cannot be interrupted once begun (non-preemptive
case). Further, both the resource availabilities and the resource consumption are assumed to be
stationary, that is, they remain constant throughout the project duration. The 0-1 formulation of the
problem, modified from Pritsker et al. [23], is given in Section 3.1.

Our intention is to give a computational comparison of two new heuristics with some existing ones.
Since the new ones are integer programming based, the choice of special purpose heuristic algorithms for

.

Correspondence to: Dr. O. Oguz, Department of Industrial Engineering, Bilkent University, 06533 Ankara, Turkey.

0377-2217 /94 /$07.00 © 1994 — Elsevier Science B.V. All rights reserved
SSDI 0377-2217(92)00133-3

0. Oguz, H. Bala / Computational procedures for project scheduling 407

comparison adds another dimension to the study by providing a possibility of comparing performance of
general versus special purpose algorithms to some extent.

2. Resource constrained scheduling techniques

During the past three decades, since the pioneering work of Kelley [14] and Wiest [30] on the resource
constrained project scheduling problem, there have been more than 80 publications and Theses that have
investigated various versions of this challenging problem. See Boctor [2] for a classification of these
versions according to differing criteria. The techniques aimed at solving this problem, on the other hand,
can be categorized into two major groups:

(i) Heuristic, or approximate procedures which are designed to produce good resource-feasible

schedules,

(ii) Optimization techniques to obtain the best schedule.

2.1. Heuristic approaches

The inherent difficulty of the problem due to its complexity brings the application of heuristic
procedures for obtaining a solution predominantly into the forefront. The earliest studies in this vein
have appeared in the 1960s. They were given by Wiest [31] and Fendly [10]. There were many attempts at
making comparative studies between existing heuristics and between the heuristics and the optimal
solution procedures [1,2,4,5,7,9,10,12,13,15,18,19,29,31]. We use an algorithm given by Davis and Patter-
son [7] in three slightly differing forms in this study.

More recently, Bell et al. [1] introduced a novel approach to resolve resource conflicts. Khattab et al.
[13] developed eight priority rules with the aim of finding the shortest duration. There are also many
commercially available computer based heuristic routines. They are often quite elaborate and copyright
protected.

2.2. Optimization approaches

Early attempts concentrated on formulation and solution of the problem as a mathematical (usually
integer) program. Pritsker et al. [23] gave the first integer programming model. The number of variables
of the model increases very rapidly with the problem size. This is a major drawback, considering the
capacity of existing integer programming algorithms to obtain a solution. Numerous specialised (usually
enumerative) approaches for solving certain versions of this problem optimally were developed
[3,6,11,22,24-28]. _

Patterson [21] presented a comparative study between three approaches [6,25,26] with the reminder
that each of the approaches evaluated in his study represents the state of the art in its respective area.
The techniques investigated were the Bounded Enumeration Algorithm of Davis [6], Stinson’s [25]
Branch and Bound Procedure and the Implicit Enumeration Algorithm of Talbot [26]. They differ in
such aspects as the order in which candidate problems are considered for evaluation and the methods
used to identify and discard inferior partial schedules.

Christofides et al. [3] developed a branch and bound algorithm which uses four different lower bounds
to reduce the search tree. Fisher’s [11] formulation in 0-1 variables employs Lagrangean relaxation to
obtain bounds for a branch and bound algorithm. He relaxes the resource constraints using Lagrange
multipliers. Although the relaxed problem is easy to solve, the problem of determining Lagrange
multipliers is not.

Recently, Deckro et al. [8] presented a decomposition approach that offers two distinct advantages: (1)
the ability to solve large problems realistically, (2) the option of using decomposition approach as a
heuristic.

408 0..Oguz, H. Bala / Computational procedures for project scheduling

The above and the remaining undiscussed analytical techniques provide optimal solutions for smal]
problems. However, their computational requirements for even moderate size problems are prohibitiye_

3. Problem formulation and solution procedures

In this section, we first provide the 0-1 formulation of the problem together with the underlymg
assumptions. The solution procedures that are tested in this study will be discussed in Section 3.2,

3.1. Problem formulation

The formulation given here is modified from Pritsker et al.’s [23] through the following assumptions:

e single project consisting of a given set of activities,

e no activity can start unless all its predecessors are completed,

e job splitting is not allowed — nonpreemptive case,

e limited multiple resources,

e resource availabilities and resource consumptions are constant over the scheduling horizon,

e no substitution between resources,

e The project due date is set to a predetermined multiple of unconstrained critical path duration, i.e.,
the length of the critical path when the resource levels are set to infinity.

The definitions related to the formulation are as follows:

Definitions:
Indices:
J: Activity index; j=1, 2,..., N; N=number of activities in project.
k: Resource index; k=1, 2,..., K; K = number of different resource types.
t: Time period; ¢t =1, 2,...,T; T = project due date.
Problem parameters:
d;: Duration of activity j.
ri: Amount of resource type k required by activity .
R,,: Amount of resource type k available in period ¢.

[Earliest possible period by which activity j could be completed.
u; Latest possible period by which activity j could be completed.
H;: {set of all immediate predecessors for activity j}.

Note that /- and u -values are computed through the CPM calculations.
Decision varzables

_ {1 if activity j is completed in period ¢
10 otherwise

Note that x;, need not be treated as a variable in periods where ¢ </, and ¢>u;. So the problem is
formulated as below.

Objective function: The choice of an appropriate performance measure differs for various scheduling
environments. In this study, the objective is chosen to minimize the total of activity completion times.
That is, the activities in the project are tried to be scheduled as early as possible. So, the objective
function is to minimize

Uj

Z L, (1

j=11t=l;

O. Oguz, H. Bala / Computational procedures for project scheduling 409

Constraints: v
Activity completion: Each activity has exactly one completion period:
Uj

Yx,=1, j=1,2,...,N. (2)

t=I;
Notice that in each constraint, the value of any one x;, can be determined by the values of the others
in that constraint. To use this relationship to full advantage, constraint (2) is replaced by

u;—1

Z <1 2

where Xjup = 1-X¥; L, x . So, by replacing Xjtu,) by its definitional equivalence, the total number of
variables in the formulatlon is reduced by N.

Precedence relationships: Assume that activity n must precede activity n. Let ¢,, and ¢, denote the
completion periods of activities m and n, respectively. Then

um n
t,+d,<t, wheret,=) tx, and t,=) tx,.

So, the constraint becomes

um n
Y o, +d, < Y. tx,, VmeH,. (3)
l

t=1, t=1,

&

Resource constraints: In any period, the amount of resource k used by all activities cannot exceed the
available resource k. An activity j is being processed in period ¢ if the activity is completed in period g
where t <g <t +d; — 1. So, the resource constraints are written as

N t+di—1
Y Z wXg <Ry t=Il,...u;, k=1,2,... K. (4)

j=1

Implementation of this constraint necessitates recognizing the values of /; and u;.

The above formulation has N activity completion, K-T resource and LV j=10| H;| precedence
constraints. So, this makes a total of N +E,=1|H | +K-T constraints. Due to the advantage of
constraints (2'), N variables are dropped from the formulation. Moreover, the variables in periods ¢ <l
and ¢ > u; are priorily set to 0, and the number of variables becomes N-T— N — LN (T—u+1, - 1)
This is equal to X ,(u; —1)).

It is noted that due to replacmg Xjtu;) its definitional equivalence, the objective function row takes the

form

u;—1 u;—1 u;—1

= i::l g 1), g 1-) x, g: Jg(—u;)x; + %uj.

t=1; j=1

Then it has a constant value of £ u;. This constant is not considered during the execution of the
heuristics; the objective functions are adjusted accordingly after finding the solutions.

3.2. Solution procedures

The solution procedures tested in this study are the following:
(i) the MIXED-heuristic based on a penalty function method;
(i) the MINSLK, SDFIRST, and LDFIRST-heuristics which are the applications of the Minimum
Job Slack Rule given in [7], with three alternative prioritizing rules;

410 O. Oguz, H. Bala / Computational procedures for project scheduling

(iii) SCICONIC ! Optimization Software which is used to solve a reduced version of the integer
programming problem given in the preceding section.
The MIXED heuristic. The MIXED heuristic is a general purpose algorithm designed to solve integer
programming problems of the form

n
Max) ¢;x;
j=1
n
st. Y a;x;<b Vi=1,.
j=1

0<x;<u; Vj=1,...,n and x; integer.

The problem under consideration is a special case of this from where all upper bounds, u;, are 1. In
the execution of the algorithm, it is first transformed into an unconstrained minimization problem. Three
slightly different versions of this transformation are shown below:

Version 1:

F(x)= (z“— i cjxj) + ip,-(Min[O, b, — i a,-jle)

i=1 j=1

S
S

+ X o (Min[0, x;])*+ X w,(Min[0, u; —x])". (1)

j=1 Jj=1

2 m n 2
]+ Zp,»(Min[O, b, — Ea,-jxj})

j=1 i=1 j=1
+ % 0, (Min[0, 5]+ ¥ w,(Min[0, 4, ~x,]). (2)
j=1 j=1
Version 3.
F()'c)=—(icjxj)+ ﬁpi Mm[O, b, - i l)
j=1 i=1 j=1
+ ivj(Min[O, xj]) i w;(Min[0, u,])2 (3)
j=1 j=1

Here, z" is the upper bound on the value of the objective function of the original problem, and p,, v;
and w; denote penalty weights on violation of constraints, nonnegativity requirements, and upper
bounds, respectively. We have used the third version only because the initial tests indicated that it
provides solutions in shorter time.

The MIXED heuristic tries to minimize the function given in (3) which is a convex nonsmooth
quadratic function. Although the starting point can be chosen randomly, starting from the origin seemed
comparatively better. We try to minimize (3) using descent directions based on gradients (subgradients),
and n-dimensional search. Penalties are used to attain feasibility. We divide the penalties, p,’s, for
constraints into three parts such that:

Pys---» D =PCy: Penalties corresponding to activity completion constraints;
Pjc+1+++> Pic4pe = PCy: Penalties corresponding to precedence relationships constraints;
Pjctpe+1s-++s Pjc+pe +,c =PC;: Penalties corresponding to resource constraints,

wherejc—N pc=X)_|H;| and rc=K-T.

1 Copyright SCICON Ltd.

O. Oguz, H. Bala / Computational procedures for project scheduling 411

The choice of these weights PC,, PC,, PC;, v; and w;’s together with the strategies to reach a feasible
solution will be discussed in Section 4.3.

At any point ¥¥, the value of the function F(X) is calculated at ¥ =¥ — VF(x*). If it decreases, x* is
replaced by k! and the same process is repeated at the new point. Otherwise, a norm reduction
operation on VF (x*) is performed by dividing all components of this vector by its smallest (in absolute
value) component which is greater than one, and then rounding down the divisions to the nearest
integers. Then this new vector, the subgradient, is used in the same manner as above. In case of failure,
the norm reduction process is repeated to find a new subgradient. If all of the components of the
resulting subgradient are equal to zero or one, then the MIXED heuristic activates an n-dimensional
search. During the n-dimensional search, all 2n corners of the n-dimensional cube in which the starting
point is the center of the cube are tested. If F(X) decreases at any of these points, the starting point is
moved to this new point and the whole process is repeated at this point. If the MIXED heuristic cannot
improve through searching all 2n points, it stops and outputs the starting point of the n-dimensional
search as the best solution achieved.

For a clearer understanding, a stepwise description of the algorithm is given below:

Step 1. Start with the origin, x°.

Step 2. Set k=0 and compute F(x*).

Step 3. Compute the gradient VF(x*).

Step 4. Set x¥+1=x* — VF(xX).

Step 5. If F(¥**') < F(x*), set k=k + 1 and go to Step 3.

Step 6. Determine the smallest, in absolute value, nonzero element of VF(x*) which is greater than
one. If there is no such element, go to Step 7. Otherwise, divide all components of VF(x*) by
the absolute value of this element and round down the divisions to the nearest integer and go to
Step 4.

Step 7. Set i =1 and start n-dimensional search.

Step 8. Set xf*'=x}+1 and all other X' =X}, Vj, except j =i. If F(x**") <F(x*), set k=k +1
and go to Step 3.

Step 9. Set x}*!'=xf—1 and all other X*' =xF, Vj, except j =i. If F(x**') <F(x*), set k=k + 1
and go to Step 3.

Step 10. Set i =i+ 1. If i > n, output x* as the best solution and stop. Otherwise go to Step 8.

The rounding down procedure in Step 6 guarantees that the solution is integral if the initial problem
data and the starting point are integers.

MINSLK, SDFIRST and LDFIRST heuristics. These heuristics are based essentially on three rules:

(i) Resources are allocated serially in time. That is, start on the first day and schedule all activities
possible, then advance to the next day and do the same.

(i) In case more than one activity compete for the same resources, rank them in the order of
minimum activity slack (MINSLK), or shortest duration (SDFIRST), or longest duration
(LDFIRST).

(iii) Reschedule noncritical activities, if possible, so as to free resources for scheduling critical
activities — those activities which have no slack (not applied in SDFIRST and LDFIRST).

One can refer to references [7,20,31] to get more details on these rules. We omit giving -the

descriptions of the algorithms here for the sake of brevity. The algorithm design is quite straightforward
once these rules are well understood.

The optimizing software: SCICONIC

SCICONIC/VM V1.47 is used on a Data General MYV /2000 to solve the integer programming model.
This is a commercial package designed to solve linear and nonlinear programming problems. A branch
and bound subroutine is embedded in it to find solutions for integer programming problems.

412 O. Oguz, H. Bala / Computational procedures for project scheduling

In order to have integer solutions by SCICONIC in a reasonable amount of time, the 0-1 formulatigp,
of the problem was reduced in size as mentioned before. The reduction process is based on the fact that
the problem size is dependent on activity duration times, d;. In the reduction process, the time unit jg
scaled down by a predetermined factor. It is achieved through dividing activity durations by a predeter.
mined scale factor keeping other input parameters constant in the generation process of the tegt
problem. Then, the scaled problem has a smaller number of variables and constraints. In order to keep
the integrality of the data, the divisions are truncated to the nearest integer. After finding a feasible
integer solution by SCICONIC, the value of the objective function is updated by a rescaling process. We
note here that this may result in some information loss which leads to a superoptimal objective function
value, as well as the possibility of having no feasible integer solution. However, for low values of the
scaling factor this effect seemed insignificant. As is explained in more detail in the next section, we have
used a scaling factor of two, and ignored the effect of rescaling completely.

4. Experimentation and results
4.1. Problem generation

In order to test the performance of solution procedures, a problem generator called NGNR is coded
in Pascal. A standard random number generator is embedded in the procedure which performs the
following steps to generate a problem:

Step 1. Read the following input parameters that are grouped into two:
(i) Set of parameters related to problem characteristics:
* number of nodes, called nnode, in the project where a node represents the start or end of

a activity;

upper limit on the number of preceding activities in the project;

upper limit on the number of succeeding activities in the project;

number of different resource types;

lower and upper limits on the resource consumption rates;

range for the duration of activities;

resource tightness ratio, called rt, that is used to calculate the resource avaliabilities;

critical path duration multiplier, called dm, that is used to set the absolute due date, T;

scale parameter, called Scale, that is needed to reduce the problem in size for the solution

procedure, SCICONIC.
(ii) Set of parameters used by NGNR:
* initial seed for the random number generator;
* upper bound on the number of iterations that is needed to produce incidence matrix,
called niter.

Step 2. Generate the incidence matrix in niter number of iterations. The incidence matrix, called
NETWORLK, is an nnode X nnode upper triangle matrix that is used to define the precedence
relationships in the project network. For example, if there is an activity whose starting event is i
and ending event j, then NETWORK]i, ju] is set to 1. Activities are represented by arcs whereas
events are by nodes in the project network. All arcs are unidirected, with the head showing its
starting node and tail representing its ending node. The project has only one starting and ending
node.

Step 3. Update the incidence matrix in order to have a complete project network, i.e., append new arcs
emanating from unconnected nodes to the ending node.

Step 4. Determine the following for each generated arc:

— its starting node;
— its ending node;

* ¥ X X X ¥ ¥ *

O. Oguz, H. Bala / Computational procedures for project scheduling 413

Table 1 ‘

The input range for parameters

parameter name Input range
of nodes in project 10- 15

of ingoing arcs 2- 4

of outgoing arcs 2- 4
Time duration for activities 2- 12

of resource types 3~ 6
Resource consumption rates 1-180

activity duration time, d;. Note that the reduction process discussed in Section 3.2.3 is

achieved through dividing the duration time by the scale parameter, Scale;

each resource requirement, r;;;

the predecessor set, i.e., all the activities that precede the ongoing activity;

the successor set which is all the activities that succeed the ongoing activity.

Step 5. Perform CPM calculations which results in computed values of:

early start and finish time;

latest start and finish time;

total and free slack-used only by MINSLIK, SDFIRST and LDFIRST heuristics;

critical path duration;

absolute due date, T, that is set to critical path duration times dm.

Step 6. Determine the peak resource requirements.

Step 7. Compute the resource availability for each resource type, R,, through multiplying peak resource
requirement by the resource tightness ratio, rt.

Step 8. Make necessary arrangements in order to output the problem in the form of formulation that was
discussed in Section 3.1.

The input ranges for parameters are tabulated in Table 1.

4.2. Design of analysis

As discussed in Section 4.1, there are two parameters involved in the generation process, namely the
resource tightness ratio and the critical path duration multiplier. The experiment is carried out with
different combinations of these parameters. Each combination consists of several problems generated
using a different seed. The arbitrariness in the number of problems in these combinations is accidental,
i.e., no effort was made to make them equal. The nature of the heuristics we are proposing is the reason
for this irregularity. When reaching a feasible solution seemed to require an inordinate amount of time,

Table 2

List of different combinations of rt and dm

Combination # It dm # of problems
1 2 1.5 13

2 z 1.7 2

3 0.5 2.0 7

4 0.6 1.8 8

5 0.7 1.6 10

6 0.7 1.7 9

414 O. Oguz, H. Bala / Computational procedures for project scheduling

we abandoned the test problem in favor of a newly generated one. To get the statistics for 49 tests, we
have run approximately 150 trials. A list of the combinations and related data are give in Table 2.

The feasibility of the problem depends on two factors. As the resource tightness ratio increases, the
problem becomes more difficult. Also, the critical path duration multiplier is aimed at relaxing the time
constraint. As it increases, the feasibility of the problem becomes more likely.

The test problems have activities ranging from 16 to 36. The number of constraints in the formulated
problems changes between 114 and 397, and the number of variables is between 241 and 969. The density
of the problems ranges from 0.071 to 0.210. Before running SCICONIC, the reduction process is carried
out. The scaling operation reduces the number of variables for each problem by one-half because the
scaling factor is equal to 2 for all test problems.

4.3. Results of the study

As stated in Section 3.2, the MIXED heuristic works with a penalty function. It involves choice of
penalties associated with job completion, precedence relationships, nonnegativity and upper bound
constraints in order to find a feasible solution for the problem. The following strategy in setting penalty
weights in executing the MIXED heuristic is implemented:

The penalties, v; and w; corresponding to nonnegativity and upper bound constraints are set at least
twice greater than the penalties assigned to job completion constraints, PC,. They are kept equal in all
test problems (v; = w;, Vj). The penalties for precedence relatonships and resource constraints, PC, and
PC, respectively, are always less than the penalty weight associated with job completion constraints. PC,
is experimentally selected by taking the combination of resource tightness ratio and critical path duration
multiplier into account. It is at most equal to PC,. If the MIXED heuristic solution results in violated
constraints with the ongoing set of penalties, the penalty weights corresponding to violated ones are
updated and the heuristic is executed again.

In the case of SCICONIC software use, we had to introduce some stopping criteria based on the
elapsed time and closeness to the linear programming lower bound to end further branchings. An integer
solution that has a objective value within 90% proximity of its corresponding linear optimum solution,
excluding the objective constant, }:jilu j» discussed in Section 3.1, is taken to be sufficient. Moreover,
maximum CPU time (in seconds) allowed is constrained to 18000 seconds and maximum number of
iterations to 200 000.

Out of 49 problems, the optimizing software SCICONIC could not find a feasible integer solution for
13 problems in the allowable time and number of iterations. For those problems in combination #3, that
are tightly resource constrained, it does not provide any feasible integer solution. It is interrupted in 27
problems in order not to let further branching occur. On the other hand, a feasible integer solution for
14 problems was not achieved by the heuristic MIXED, whereas the other heuristics provided feasible
solutions for all test problems. The number of problems that both SCICONIC and MIXED could not
yield a solution for is 8. Considering all test problems, the number of times SCICONIC yields the best
solution is 21, and for the other heuristics the number are: MINSLK heuristic: 18, SDFIRST: 10,
LDFIRST: 2, and MIXED: zero.

On the average, the solutions given by SCICONIC are within 9.23% of their respective linear
optimum values covering only those problems where it is ended with feasible integer solutions. On the
other hand, the MIXED heuristic provides integer solutions that are deviated 31.59% from their
corresponding linear optimum solution for those problems in which the heuristic finds a feasible integer
solution. The full list of average (in %) deviations from the linear optimum solutions is:

SCICONIC: 9.23%, MIXED: 31.59%, MINSLK: 15.19%, SDFIRST: 14.03%, LDFIRST: 19.74%.

For the problems provided with feasible integer solutions by MIXED heuristics, average time to spend is
found to be 1778 CPU seconds including the number of repetitions. On the other hand, in spite of
execution interruption conditions, SCICONIC spends 6055 CPU seconds on the average. It takes an
average of 27 seconds to find linear optimum solutions.

O. Oguz, H. Bala / Computational procedures for project scheduling 415

5, Conclusions and recommendations

Based on the results obtained from the experiment, we can state the following:

(1) From a computational effort point of view, the heuristics MINSLIK, SDFIRST and LDFIRST are
found to be better. This is expected since these heuristics are specially suited for project scheduling
problems and they are single-pass type algorithms.

(2) On the basis of both number of times yielding the best solution and deviation from linear optimum,
the heuristic LDFIRST is worsc than the other two. Although MINSLIK heuristic is better than
SDFIRST in view of the number cases where the best solution was achieved, SDFIRST has a better
solution quality on the average.

(3) The percent deviation from linear optimum through these single-pass typed heuristics is sensitive to
the problem difficulty.

(4) There is no dominating solution procedure if all the cases are taken individually into account, but it
is clear that special purpose heuristics are superior are superior to integer programming based
heuristics in general. There does not seem to be much likelihood for a general purpose integer
programming heuristic to outperform these methods on this specific problem.

(5) The solution quality attained by SCICONIC is the best. It should certainly be considered as a viable
alternative to solve small and some medium scale problems. The computational costs can easily be
covered by the savings obtained through better solutions.

(6) The MIXED heuristic does not seem fit for these type of problems. However, there may be scope for
increasing its efficiency by a more judicious selection of penalty weights and starting solutions.

References

[1] Bell, C.E., and Han, J., “A new heuristic solution method in resource-constrained project scheduling”, Naval Research
Logistics 38 (1991) 315-331.
[2] Boctor, F.F., “Some efficient multi-heuristic procedures for resource constrained project scheduling”, European Journal of
Operational Research 49 (1990) 3-13.
[3] Christofides, N., Valdes, R.A., and Tamarit, J.M., “Project scheduling with resource constraints: A branch and bound
approach”, European Journal of Operational Research 29 (1987) 262-273.
[4] Cooper, D.F., “Heuristics for scheduling resource constrained projects: An experimental invcstigation”, Management Science
22/11 (1976) 1186-1184.
[5] Davis, E.W., “Networks: Resource allocation”, Journal of Ind Engineering 4 (1974) 22-32.
[6] Davis, E.-W., and Heidorn, G.E., “An algorithm for optimal scheduling under multiple resource constraints”, Management
Science B 17/12 (1971) 803-816.
[7] Davis, E.-W., and Patterson, J.H.,, “A comparison of heuristic and optimum solutions in resource-constrained project
scheduling”, Management Science 21 /8 (1975) 944-955.
[8] Deckro, R.F., Winkofsky, E.P., Hebert, J.E., and Gagnon, R., “A decomposition approach to multi-project scheduling”,
European Journal of Operational Research 51 (1991) 110-18.
[9] Elsayed, E.A., and Nasr, N.Z., “Heuristics for resource constrained scheduling”, International Journal of Production Research
24 /2 (1986) 299-310.
[10] Fendly, L.G., “Toward the development of a complete multiproject scheduling system”, Journal of Ind Engineering 19/10
(1968) 505-515.
[11] Fisher, M.L., “Optimum solution of problems using Lagrange multipliers: Part I”, Operations Research 21 (1973) 1115-1127.
[12] Holloway, C.A., Nelson, R.T., and Suraphongschai, V., “Comparison of a multi-pass heuristic decomposition procedure with
other resource-constrained project scheduling procedures”, Management Science 25/9 (1979) 862-872.
[13] Khattab, M.M., and Choobineh, F., “A new approach for project scheduling with a limited resource”, International Journal of
Production Research 29 /1 (1991) 185-198.
[14] Kelly, J.E., and Walker, M.R., “Scheduling activities to satisfy resource constraints”, in: Muth and Thompson, Industrial
Scheduling,, Prentice-Hall, Englewood Cliffs, NJ, 1963.
[15] Kurtulus, 1., and Davis, E.-W., “Multi-project scheduling: Categorization of heuristic rules performance”, Management Science
28/2 (1982) 161-172.
[16] Lenstra, J.K., and Rinnooy, Kan, A.H.G., “Complexity of scheduling under precedence constraints”, Operations Research 26
(1978) 22-35.

416 0. Oguz, H. Bala / Computational procedures for project scheduling

[17] Levy, F.K., and Wiest, J.D., A Management Guide to PERT / CPM, Prentice-Hall, Englewood Cliffs, NJ, 1969.

[18] Mohanty, R.P., and Siddig, M.K., “Multiple projects-multiple resources constrained scheduling: Some studies”, Internationg]
Journal of Operation Research 27/2 (1989) 261-280.

[19] Norbis, M.L, and Smith, M., “Two level heuristic for the resource constrained scheduling problem”, International Journal of
Operation Research 24,2 (1986) 1203-1219.

[20] Patterson, J.H., ““Alternate methods of project scheduling with limited resources”, Naval Research Logistics 20 (1973) 767-84.

[21] Patterson, J.H., “A comparison of exact approaches for solving the multiple constrained resource project scheduling problem”,
Management Science 30/7 (1984) 854-867.

[22] Patterson, J.H., and Huber, W.D., “A horizon varying zero—one approach to project scheduling”, Management Science 20 /6
(1974) 990-998.

[23] Pritsker, A.B., Watters, L.J., and Wolfe, P.M., “Multiproject scheduling with limited resources: A zero—one programming
approach”, Management Science 16 /1 (1969) 93-108.

[24] Scrage, L., “Solving resource-constrained network problems by implicit enumeration: Nonpreemptive case”, Operations
Research 10 (1970) 263-278.

[25] Stinson, J.P., Davis, E.W., and Khumawala, B.M., “Multiple resource constrained scheduling using branch and bound”, AIIE
Transactions 10/3 (1978) 1197-1210.

[26] Talbot, F.B., “An integer programming algorithm for resource-constrained project scheduling problem”, unpublished Ph.D.
Dissertation, Pennsylvania State University, 1976.

[27] Talbot, F.B., “Resource-constrained project scheduling with time resource tradeoffs: The nonpreemptive case”, Management
Science 28 /10 (1982) 1197-1210.

[28] Talbot, F.B., and Patterson, J.H., “An efficient integer programming algorithm with network cuts for solving resource-con-
strained scheduling problems”, Management Science 24 /11 (1978) 1163-1174.

[29] Thesen, A., “Heuristic scheduling of activities under resource and precedence restrictions”, Management Science 23 /4 (1976)
412-422.

[30] Wiest, I.D., “The scheduling of large projects with limited resources”, Ph.D. Dissertation, Carnegie Institute of Technology,
1963.

[31] Wiest, J.D., “A heuristic model for scheduling large projects with limited resources”, Management Science 13/6 (1967)
B359-B377.

	MX-M316NV_20190207_155457_Page_1_1L
	MX-M316NV_20190207_155457_Page_1_2R
	MX-M316NV_20190207_155457_Page_2_1L
	MX-M316NV_20190207_155457_Page_2_2R
	MX-M316NV_20190207_155457_Page_3_1L
	MX-M316NV_20190207_155457_Page_3_2R
	MX-M316NV_20190207_155457_Page_4_1L
	MX-M316NV_20190207_155457_Page_4_2R
	MX-M316NV_20190207_155457_Page_5_1L
	MX-M316NV_20190207_155457_Page_5_2R
	MX-M316NV_20190207_155457_Page_6_1L
	MX-M316NV_20190207_155457_Page_6_2R

