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Abstract 

We discuss the polarization measurement of a fully polarized coherent field in the weak intensity quantum limit within 
the framework of operational approach which was recently discussed by Nob, Foug6res and Mandel. We mainly focus on 
the fluctuations in the measurement of the parameters of polarization and on the uncertainty relations between them. A 
dependence of these parameters and their quantum fluctuations on the parameters of the initial coherent field is found. 

The existence of  a well-behaved Hermitian quan- 
tum mechanical phase operator is a controversy last- 
ing from the early days of  quantum mechanics [ 1-4] .  
Most of  the literature in this area is mainly concen- 
trated on the mathematical description of  the optical 
quantum phase for the free electromagnetic field. Al- 
though these descriptions are equally satisfying for 
the classical limiting case, they give mutually conflict- 
ing results in the cases of  extremely low intensities 
or in strongly non-classical (e.g. squeezed light) dis- 
tributions [ 5].  An operational approach to the mea- 
surement of  the relative quantum phase between two 
optical fields has been developed recently by Noh, 
Fougtres  and Mandel (NFM) [6,7]. In this formu- 
lation, the relative phase is described in terms of  the 
photon counting operators which are defined directly 
by the measurement. 

l Also at Bogoliubov Laboratory for Theoretical Physics, Quan- 
tum Optics Division, Dubna, Moscow, Russian Federation. 

In this Letter, we investigate the quantum measure- 
ment of  the polarization of  a coherent optical field 
using an operational approach. The advantage of  this 
approach is that the quantum fluctuations of  the polar- 
ization state can be formulated in terms of  the quan- 
tum statistical fluctuations of  the number  of  detected 
photons, even in the weak field limit. We first outline 
a classical polarization measurement scheme and then 
investigate the quantum mechanical case. 

Classically, the state of  polarization of  a monochro-  
matic optical field, Ei = •i COS(tOt+t~i), where i = 1,2 
are the indices of  two pre-selected orthogonal polar- 
ization eigenmodes, can be fully described by the four 
Stokes parameters Sm (m = 0, 1 , 2 , 3 )  [8 -10 ] .  Here 
we only consider the Stokes parametrization of  a fully 
polarized field. For this case 

____ l :<K'2\ -- <E22)), SO = 21-(<E12> + <E22>), s1 ~t, *'1/ 

s2 = ( <E2> ) t/2 cos  

s3 = ( (E 2) (E~)) t/2 sin ~b, (1)  
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where ~b = 8 2 - 81 is the optical phase and (E/2) is 
the intensity of the ith component with the brackets 
indicating the average over the time interval of the 
measurement. For an optical field this measurement 
interval is much greater than the period but it is also 
smaller than the longitudinal coherence time [7,11 ]. 
Note that the Stokes parameters are not all indepen- 
dent, but are related by the equality s~ = s~ + s~ + s32. 

In the classical case, the Sm can be measured using 
a somewhat similar optical setup to that of NFM, as 
shown in Fig. 1. The beam whose polarization is to be 
measured is firstly split into two at the non-polarizing 
beam splitter BS1. One of the output beams from BS1 
is sent to a polarizing beam splitter PBS1, which de- 
fines two linearly polarized orthogonal polarization 
eigenmodes i = 1,2. Then 11 and 12 are measured 
as the output field intensities. The other output beam 
from BS1 is further split at BS2 with the purpose of 
measuring sin ~b and cos ~b simultaneously. One of the 
output beams from BS2 is analyzed with PBS2, which 
is oriented at a 45 ° angle with respect to the axes i = 
1,2 defined by PBS1. The intensities measured after 
PBS2 are 13 and 14. The other output beam from BS2 
goes through a quarter-wave (1A) plate whose fast 
and slow axes are aligned along the i = 1,2 direc- 
tions. This beam is then anayzed at PBS3 whose axes 
are aligned with PBS2. The intensities measured after 
PBS3 are/5 and 16. 

For 50% non-polarizing beam splitters, the mea- 
sured intensities Ii are related to the input field by 

1 2 II = ~ <E l>, 

/3 = ¼ + 

14 = ¼ + 

15 = ¼((E2> + (Ez 2) 

16 = ¼ ((El2> -{- (E2> 

1/E2\ I 2 = ~  ', 2/ ,  

+ 2 (~lZ)(E~)  cos ~b), 

- 2v/(E~) (E~2) cos ~b), 

+ 2v/(E2) (E2) sin 4~), 

- 2~//(E~15 (E~) sin ~b). (2) 

From these relations the classical Stokes parameters 
can be written as 

so = 11 + 12, S1 = 11 - 12, 

$2 = 13 --  14, $3 = 15 - 16. ( 3 )  

The Sm defined by Eqs. (2) and (3) depend on the 
initial choice of the orthogonal axes 1, 2. The polar- 

ization state, hence the orientation of the polarization 
ellipse, for any input field will be measured relative to 
these axes. We are interested in the fluctuations asso- 
ciated with the measurement of the polarization state. 
Such fluctuations are very important when the mea- 
sured field is very weak or in some quantum state. In 
relation with the measurement of these fluctuations we 
first define the classical angular functions, 

sin 0 = 2 -  

COS q~ = 

(I112) 1/2 I1 - 12 
COS 0 = - -  

I1+12 ' I 1 + 1 2 '  

13 - - / 4  

[(13 - -14 )2 -1  - (15 --  16) 2] 1/2 '  

15 -- 16 
sin~b = [(13 - •4) 2 + (15 - 16)2] 1/2" (4) 

Using Eq. (4),  Eq. (3) can be described in a polar de- 
composition. If the axes 1, 2 are the principle axes of 
the ellipse of polarization, then cos 0 is related to the 
ellipticity angle, and ~b = g2 - 81 becomes the optical 
phase between the major and minor axis components 
[8]. Although 0 and Ob can be mixed by rotating the 
frame in which they are defined, they are closely con- 
nected with the geometry of the ellipse. 

The setup in Fig. 1 allows us to make measurements 
on 0 and ~b related to the polarization state without em- 
ploying any interference. In the laboratory, it is techni- 
cally difficult to eliminate the influence of the random 
path lenght fluctuations on the measurement of the op- 
tical phase. It should be emphasized that in our pro- 
posed setup, each component goes through the same 
optical path in both the cos ~b and the sin ~b measure- 
ments. There is also no restriction on the arm lenghts 
BS2-PBS3 and BS2-PBS2 imposed by the temporal 
coherence length. Therefore, the setup in Fig. 1 is im- 
mune to random phase fluctuations resulting from me- 
chanical vibrations of various optical components. 

Having defined our measurement, we next look 
at the quantum description of the polarization state. 
Quantum meachanically, the unused ports in the beam 
splitters are considered as input for vacuum fields. 
Therefore, we include in Fig. 1 the vacuum fields 
V ( I ) , v  (2) for BS1 and BS2 and W(I) ,w(2) ,W (3) for 
PBS1, PBS2 and PBS3, respectively. 

The annihilation operators associated with the op- 
tical fields at the output arms of PBS1 are related to 
those at the input through 
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Fig. 1. Experimental setup for the measurement of all Stokes parameters. Note that this setup can be used in the measurement of a partially 
polarized field as well. However, here we only concentrate on the fully polarized case. 

dl = rat + tD~ 1), d2 = ra2 4- t ~  1), (5) 

where r = i/x/~ and t = 1/x/~ are the field reflection 
and transmission coefficients, and t3) 1) ( j  = 1,2) de- 
scribes the polarized vacuum field in the j direction 
entering through the vacuum port of BSt. The vacuum 
fields if(k) (k = 1,2, 3) do not couple with the mea- 
sured field operators since they are orthogonal to them. 
Therefore, we do not include any of these orthogonal 
vacuum field components, as they do not contribute 
to the fluctuations of the intensity in our operational 
formalism. We next define the operators 

So = 2 (nlh2)l/2 nl - n2 
nl -'~ h2 ' do - ~1 4-h2' (6) 

where hj = d~dj, j = 1,2, are the photon number 
operators for the fields measured at the detectors 1, 
2. Assuming ideal detectors with unit quantum effi- 
ciency, the measured value of h j  represents the pho- 
tocurrents at the detectors. Since "^(~) ^(l)t" tv I ,v 2 j = 0 a n d  
[hi, b~] = 0 due to independence, we have [dl, d~] = 
0. This relation together with the use of the semiclas- 
sical analogy justifies the definition of the operators in 
Eq. (6). As a consequence of [dl,d~] = 0 ,  we also 
have [ So, Co ] = 0 and So 2 -t- C02 = 1. 

On the other hand, at the output ports of PBS2 and 
PBS3, the field operators d3, d4, ds, d6 are 

1 d3 = --~[(trgq + r20~ 1) -~- tD~ 2))  

+ (trgt2 -t- r20  (1) + tO(2)) ], 

1 
d4 = - t-(tra, + r2O  + 

+ (trgt2 + r20(21) + ttg~2)) ], 

d5 = --~ [i(t2al + trt311)+ r0~ 2)) 

+ (t2~2 + trO~ 1~ + rO2(2)) ], 

1 
& = ~ [ - i ( t2a l  + trOUt)+ rb~ 2~) 

+ (tzfi2 + trO(2 l) + r02(2))]. (7) 

Here 0) 2~ ( j  = 1,2) describes the polarized vacuum 
field in the j direction through the vacuum port of BS2. 
Then, by the same analogy with Eq. (4) we have the 
following relations for the optical phase operators, 

n3 -- n4 

C4' = [ ( h 3  - ~/4) 2 --[- (n5  - n 6 ) 2 ]  1 /2 '  

h 5 --  h 6 
S~b = [ ( h 3  _ h 4 ) 2  + ( h  5 _ h 6 ) 2 ] 1 / 2  ( 8 )  



T. Hakio$lu et al. /Physics Letters A 194 (1994) 304-309 307 

with hj = d~dj ( j  = 3 ,4 ,5 ,6 ) .  Here h3 - ~4 and 
h5 - h6 are 

n3 - -  ~/4 = [ (r*t*a2* + r *r-D(1) + t*D~ 2)t) 

x (rtgtl + rZv~ 1) + tO~ 2)) + h.c.], 

n5 --  rt6 = i[ (t*2a~ + t*r*3~ 1) + r'D2 (2)*) 

x (tzal + trb~ l) + r0~ 2)) - h.c.], (9) 

where h.c. denotes Hermitian conjugate. Using Eqs. 
(7) it can be shown that neither h5 nor h6 commute 
with n4 or n3. Here [C 0, S0 ] = 0 follows explicitly 
from the existence of the vacuum fields in the com- 
bination h3 - h4 and h5 - h6. On the other hand, for 
the commutation [ So, Co ] = 0 of the previous case, 
the vacuum field ~(1) does not play any role. This is 
because at PBS1 the orthogonal field operators dl and 
d2 do not have the same components of the vacuum 
field ~(1). 

We first analyze the fluctuation 

Do = x/(  ASo) 2 + (ACe) 2 

in the measurement of S0 and C0 where the variances 
are (ASo) 2 = ((So - (So)) 2) and (AC0) 2 = ((C0 - 
(C0))2), respectively. The brackets indicate quantum 
averages calculated with respect to the initial state 
10IN). In this semiclassical operational approach, the 
measured field is treated classically, and the joint prob- 
ability distribution of the detectors is treated quantum 
mechanically [ 11,12]. At PBSI the measured value 
of a general operator f ( h l ,  h2) is given by [7] 

(j~(hl, h2)) =JV'~ ' f (n l ,n2) (79(h l ,h2) ) ,  (10) 
nl ,n2 

where Af is the normalization, and (P(h l ,h2) )  = 
(0INIP(hl, h2)10IN), where 10IN) is the initial photon 
state as observed in PBS1. Here T'(hl ,  ~2) is given by 
the normal ordered product 

2 

~ ( n l '  n 2 )  = I I  : ( a~aj )n '  exp(-d~dj)  /nj! :, 
j= l  

(11) 

which is the joint probability distribution of detecting 
nj photons at detectors 1, 2. To calculate the fluctuation 
A f  in the measurement of the operator f ,  we find (f') 
and (f2) using Eq. (10). An important point is that 

there is an ill-defined contribution of the unobserved 
data corresponding to nl = n2 = 0 in the calculation 
of Do. The relative contributions of these unobserved 
events in the total average is not small if the initial 
average field intensities are weak (i.e. nl,n2 < 1). 
Therefore, we discard these data points by subtracting 
the probability (7:'(0, 0)) from the normalization and 
also excluding the corresponding terms in the sum- 
mation (indicated by the prime). Hence the normal- 
ization, in the operational sense, is given by A/"-1 = 
1 -- (5o(0,0)) [7]. 

According to the measurement scheme in Fig. 1 the 
orientation of the first polarizing beam splitter PBS1 is 
arbitrary. Thus, fluctuations should not only be exam- 
ined with respect to the independent average number 
of particles hi and h2 but also with respect to their ra- 
tio r /=  ~2/hl. Let us assume that the initial beam is 
given in a product coherent state with average num- 
ber of particles I~12 and 1312 with respect to some 
fixed reference axes 1 ° and 2 °. Then [(nln210iN)[ 2 = 
P(nl ,  I~12 ) ®e(n2,1312) where P describes the num- 
ber probability distribution of a coherent state with 
mean photon numbers I< 2 and 1312. If a = I~1 eiS° 
and fl --- 131 es~ one also has a coherent distribution 
in 1, 2 frame with average number of particles, 

nl = ½l~cos~, - / 3 s i n y l  2, 

n2 = ½1/3 cos y + a sin y[ z, (12) 

with y describing the arbitrary angle between the 
frames 1 °, 2 0 and 1, 2, and the overall ½ is due to the 
BS1. In Fig. 2 Do is shown as a function of fil for 
r /=  0.1,1, 10. The fluctuation increases rapidly to its 
maximum value from the classically expected value 
of zero as the average number of detected photons 
decreases. The largest fluctuation is associated with 
r /=  1. Even if I,~1 * 131 n can still be very close to 
one if the axes of PBS~ are oriented relative to 1 °, 2 0 
by certain amount which is determined by Eq. (12). 

We now study D 0 = [ (AS0)2 + (AC0) 2 ] 1/2 for C o 

and S0 operators. Here the operator f (n3,  n4, n5, n6) 
in Eq. (10) is given by the corresponding G 0 and 
S0 operators defined by Eq. (8),  and T'(hl ,h2)  is 
replaced by ~O(h3, h4, n5, n6). The calculated D o is 
shown in Fig. 3. Figs. 2 and 3 indicate that for r /=  1, 
Do takes its largest and DO its smallest values com- 
pared to other possible values o f t / f o r  small values of 
~l. As hi gets large enough, the roles of Do and D o 
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Fig. 2. Fluctuation in 0 as a function of the average number of 
particles measured at the detector dl. 
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Fig. 3. Fluctuation in ~b as a function of the average number of 
particles measured at the detector d2. 
interchange. We will  now briefly study this behaviour 
in connection with an uncertainty principle. 

The analysis o f  fluctuations in the polarization mea- 
surement o f  weak fields yields interesting results. Figs. 
2 and 3 indicate that the quantum statistics o f  the ini- 
tial field has an important influence on the measured 
parameters o f  polarization. Although the choice  o f  the 
axes on which one  measures the polarization is arbi- 

0.25 . . . .  I ' ' ' ' ' ' ' ' I ' ' ' ' 

0.2 1 '0 
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Fig. 4. Uncertainty product described by the l.h.s, of Eq. (13) for 
r / =  0.1, 1, t0. 

trary, fluctuations strongly depend on the relative in- 
tensity of the field components measured along the 
axes. Theoretically, the optical phase ~b is the canon- 
ically conjugated operator to the number difference 
operator/V = h2 - hi [ 1,2]. Then from Eq. (6) we 
have N = -C0 (fit + n2). Hence we expect the fluctua- 
tions in 0- and ~b-dependent operators to be regulated 
by the uncertainty relations 

(a~)2(ad,)2 > 1(:~,)2, 

(A~r)2(AS4,) 2 ~> ¼(Ha) 2. (13) 

In Fig. 4 the first one  o f  Eqs. (13)  is plotted as a 
function o f  ill for r / =  0.1,  1, 10. We examined it and 
observed that the unequality is respected for all val- 
ues o f  hit even though one  would expect it to be ques- 
tionable for ht < 1 due to the subtracted statistics in 
the averages. For small values o f  ht, AA r is small due 
to the number coherent state but does not go to zero 
like in the pure coherent state. This is also a result o f  
the subtracted, unobservable data. Also  in Fig. 4, an 
interesting feature o f  Eqs. (13)  with respect to ~7 de- 
serves some attention. Curves corresponding to two 
different r/'s cross each other at ~1 values fixed by the 
ratio of  those ~'s .  For instance, in the range hi < 1 
r / =  1 yields the largest uncertainty among all possible 
rl values. At ht -~ 1 a crossover is observed between 
the curves corresponding to r / =  0.1 and r / =  1. The 
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~7 = 1 and ~7 = 10 curves cross each other at h l  N 10 
and then ~ = 1 yields the smallest uncertainty of  all 
three curves for hi > 10. If, instead of  Fig. 4, we had 
plotted (A ~0) 2 ( A C e )  2 against n m we would have seen 
the same crossing pattern at approximately the same 
nt values. Natural ly because of  the form of  Eqs. (4 ) ,  
(6)  and (8)  the point  where the crossover is observed 
scales with respect to 77 2. Thus, although r / =  1 cor- 
responds to the largest uncertainty in the weak field 
limit, it  is the fastest decaying one with increasing av- 
erage number of  particles. 

In conclusion, we believe that the relative inten- 
sity dependence of  the uncertainty relations (13) de- 
scribed in Fig. 4 is of  experimental importance for the 
measurement o f  the polarization of  weak fields. These 
theoretically observed features can be easily examined 
in an experiment described in Fig. 1. There have been 
a number of  studies on the measurement of  the proba- 
bil i ty distribution of  the moments of  the phase opera- 
tor [ 13]. It can be shown that in polarization measure- 
ment the widths o f  the corresponding probabil i ty  dis- 
tributions Po and P~ of  0 and ~b dependent operators 
are correlated in the reciprocal sense due to the uncer- 
tainity relations (13) .  A more detailed analysis of  this 
manifestation o f  the uncertainty in weak polarization 
measurements will  be given in another publication. 
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