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Abstract. Linea as well as non-linear contributions to the Zeebeck and Peltier coefficients of 
a mrdlic film in contact with the equilibrium metal are calculated within a simple model. The 
non-linear p m  of the thermoelectric response survives down to a vezy low temperature which in 
principle permits thermoelectric cooling ai these conditions. Thermal equilibrium in a metallic 
constriction between dissimilar metals IS evaluated in the non-linw current-canying regime. 

1. Introduction 

Small metallic and semiconducting specimens develop a number of specific low-temperature 
phenomena including flux quantization and persistent currents in normal-metal loops [I], 
charge discreteness effects in tiny metallic granules [Z, 31. non-equilibrium electron-phonon 
states in metallic microconstrictions (point contacts [4, SI), etc. Mostly these phenomena, 
which are promising for novel microelectronic applications, are displayed at quite a low 
temperature. In these conditions, the electron and phonon systems-of a metal can be 
easily driven out of equilibrium, which changes the state of the kinetic processes. Some 
questions which have been the subject of controversy for years can be subjected to theoretical 
investigation and experimental tests, for example why the resistivity is non-zero when 
phonons are dragged after electrons (the Peierls problem), or how the Joule heating takes 
place when scattering of electrons is purely  elastic.^ (The Drude formula gives a finite 
resistivity at Zi = 00.) 

We shall partly answer the last question by considering the limit of large but finite 
inelastic electron mean free path Zi. The conductivity is not much affected by inelastic 
scattering processes whereas thermoelectric coefficients are, provided that the current is not 
small. In the non-linear regime, thermoelectric coefficients are strongly enhanced at large 
Zi. The possibility of using this effect for thermoelectric cooling at very low temperatures 
will be discussed in section 4. 

2. Formulation of the model 

We consider a degenerate electron gas interacting elastically with impurities (or other defects 
-of the crystalline lattice) and inelastically with phonons, electrons, etc. Inelastic relaxation 

t On leave of absence from the B I Verkin Institute for Low Temperature Physics and Engineering, Academy of 
Sciences of the Ukraine. 47 Lenin Avenue. 310164 Kharkkov, Ukraine. 
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provided by electron-phonon interaction becomes ineffective at low temperatures and low 
excitation energies with the corresponding scattering rate 

si-' N (T3 (1) 

where OD is the Debye temperature and E the energy of electron relative to the Fermi 
energy. 

We suppose that electrons in a metal film M (figure 1) can tunnel to a bulk metal M', 
the latter being considered as a thermostat for M. The interaction between M and M' is 
described by a tunnelling Hamiltonian 

HT = W z ( u : b q  + bqfup) 
P.4 

where u:(u,) creates (annihilates) an electron in M whereas bqf(bq) does the same in M'. 

J L 

Figure 1. Schematic diagram of a tunnelling junction between B mw1 film and a bulk metd 
J is the current passing through the film. 

Calculating perturbatively the occupation fp = (upp) change due to (2) ,  one obtains 

If we assume that electrons in metal M' relax to their equilibrium by some inelastic 
mechanism different from (2)  and stronger than the latter, such that we may consider f, to 
be the equilibrium distribution, then (3) becomes the collision integral 

1 

exp(e,/T) + 1 fi = f p  = E p  - /L. 

T is the equilibrium temperature of M'. The inelastic relaxation time zi can be related 
to the tunnelling resistance between M and M' according to 
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where N(0)  is the density of electronic states at the Fermi energy, and S and d are the 
surface area and the thickness of a film, respectively. 

Elastic scattering can be written as (e.g. see [6]) 

where Wpp, is the electron-impurity scattering amplitude. 
The purpose of this term is to redistribute electrons over the Fermi surface once they 

are driven out of equilibrium by the electric field. We shall simplify equation (8) to the 
form 

f p  - f-p 

2re 
le = - 

thus providing for the scattering p + - p  only. This is enough to establish the time- 
independent electron distribution in the current-cawing state. We do not think that selection 
of the simplified electron-impurity scattering may change qualitatively the conclusions 
concerning the non-equilibrium current-carrying state to be discussed in the next section. 

The kinetic equation for the electronic distribution function is 

Inelastic scattering (4)  does not ensure automatically charge neutrality (as for example 
the electron-phonon scattering does) in the continuity equation following from (IO): 

an 1 - + d i v j  + - z(fp - fi) = 0. 
a t  Ti 

This can be improved if we suppose that, instead of (4), 

where p‘ is the renormalized chemical potential derived self-consistently from the charge 
neutrality condition 

The shift in appears because of the voltage between M and M’. In the homogeneous 
time-independent state, equation (13) is always satisfied with the unperturbed chemical 
potential p owing to the condition (11). 

Conventional scattering theory [6] based on the linear-response expansion 

f p  = f,” + f; (14) 

with fi - E has a puzzling feature that the current j remains finite at I; = 0. However, 
if we try to take into account the next terms in (14) proportional to E’, E’, etc, we find 
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that non-linear corrections are divergent. Therefore, the non-perturbative solution of the 
Boltzmann equation is required. This can be achieved within the model adapted 

A similar model has been considered by Saker et al [7] who introduced, in the 
elastic collision term, an unknown (isotropic) distribution function to be determined self- 
consistently. These workers, in their study of the non-linear conduction regime, have not 
considered thermoelectric effects. 

Choose f, in the form 

fp = f i  + Fp + GP (17) 

where Fp is an even and G, an odd function of p, and calculate the electric current density 
j and the heat current density q according to [SI 

j =2e dr,vG, q =  2 ds,v$,G, (18) s s 
where the factor 2 is due to spin degeneracy and dr, = dp/(27r)?. Solution of the kinetic 
equation at T = 0 gives 

and 

where T is the relaxation time given by 

y 1  = re - I  +& I '  (21) 

Simple calculation gives j = (ne2r/m)E,  whereas for the electron distribution function 
we obtain 

and 

Therefore, the Drude formula is exact at ri + 00 whereas the distribution of electrons 

Note that Fp is not small at e, = 0 even at si + CO. The electron distribution is 
is strongly different from the conventional linear-response drift state. 

narrowed in the energy interval 
~~ 

S E z e E f i  1 = u p  (24) 

which can be considered as an effective electronic temperature T" of the current-carrying 
state. 
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3. Non-linear transport coefficients 

Suppose that an electric field E and a temperature gradient V T  exist in a metal. Transport 
equations for the even and odd parts of the distribution function (17) read, according to 
(15~ 

and 

If E, and V T are space and time independent, G, is determined from the second-order 
differential equation 

The solution to equation (27) is achieved through the Fourier transformation 

G(R) = d7, G, exp(ip . R) (28) J 
which gives 

1 + ssie2(E. T)*  1 dr,, ( F V T  - eE J (29) 
exp(ip. r )  

G,=r d r  

and 

Substituting equation (29) into equation (18) and performing an integration over the 
momentum p,  one obtains 

and 

11 af; a 1 a 2  exp(-ip. T) 
q = -2 /” d7, ( $ V T  - .E) .U- at, - ar [ (-- 2m ar2 + p) ( 1 + 77ieZ(E. T ) ~  r=O 

m 

(32) 

The non-linear term does not appear in equation (31) after taking the limit r + 0, and 
we obtain for j 
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Therefore, the conductivity is expressed by the conventional Drude formula, at least for 
the simplified collision integral in the form of equations (4) and (9). The second point is 
that the weak inelastic scattering does not change the current density and the conductivity 
of a metal appreciably. 

However, the heat conductivity is strongly affected by inelastic scattering and acquires 
non-linear contributions in E and V T .  Evaluation of equation (32) results in 

nZnt T Z E  - -TVT + q' rzne5 q=- 
P:' 3m (34) 

where 

The linear part of the kinetic coefficients satisfies the Onsager reciprocity relation 

According to the above expression, the Peltier coefficient n is determined as 
T a j / a ( v T )  = -aq/aE [61. 

Comparing this with equation (24) we see that the second contribution resembles a 
contribution due to an effective temperature T* proportional to the electric field: T' ci 
eE&. At low ambient temperatures, this contribution becomes dominant. 

4. Is non-linear thermoelectric cooling possible? 

The main reason for failure of thermoelectric cooling at low temperatures is the fast 
disappearance of the linear Peltier coefficient il as T + 0. The phonon drag increase 
in il [9] does not help much as it also disappears at low temperatures. (However, in small 
resistors, electron-phonon interaction may result in the important phonon-drag contribution 
[IO].) The question arises naturally of whether the non-linear temperature-independent part 
of n (equation (36))  may help. As we increase E,  the Joule heating increases, thus reducing 
the effect of thernioelectric cooling. Let us estimate whether this is always the case. 

Consider a thermoelectric circuit between two metallic films with different inelastic 
mean free times si and equal elastic mean free times re. (We assume that 9 > re; therefore 
the total relaxation time 5 is the same in both films.) This can be done by changing the 
thickness of a tunnelling barrier between a film and the bulk metal slightly, thus providing 
for the corresponding change in q. Parts of the film with different barrier transmissivities 
can be considered as different metals A and B in the thermoelectric circuit in figure 2, 
resulting in a heat release (or absorption, depending on the direction of the current) at the 
point of connection according to 

&eltier = ( n ~  - n B ) j .  (37) 
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1 

Figure 2. (a) Cross section and (b) in-plane view of n thermoelectnc constriction. 

This heat is released within the characteristic length of the order of a. The .Joule 
heat at the same region will be 

An estimate of the ratio Qpe~tieJQ~ou~e on the assumption that In, - l7,l N l7 gives 
according to (36) 

This may in principle be larger than unity at very strong electric fields. If we assume 
that the constriction length L in figure 2 is larger than the energy relaxation length A = a, 
then this means practically that the bias at the microconstriction should be greater than the 
Fermi energy. This corresponds to an electron drift velocity of the order of 

Ud - Lp(1/li)’’Z (40) 

which is still much smaller than the Fermi velocity. 
Let us make some numerical estimates. For a tunnelling junction of size 1 mm x 1 mm 

and film thickness d N cm, one obtains, according to (7), ti N sa t  RN N S2. 
With the realistic assumption 1 N cm. Therefore, very-high- 
transmissivity junctions are required to obtain reasonable values of A, and therefore of the 
contact length. The possibility of thermoelectric cooling in a device of the type shown in 
figure 2 appears to be questionable; however, it is not completely ruled out. 

If the constriction size is smaller than A, the right-hand side of (40) will acquire an extra 
factor L/A because the Joule heat is then released mainly at the banks of the constriction 
where it produces a negligible effect. However, our formula (36) does not apply directly to 
this ‘diffusive’ regime of the constriction current-canying state (according to the definition 
in 141). For small drift velocities U < ~ p ( l / l i ) l ’ ~ h / L ,  the thermoelectric effect will manifest 
itself in the asymmetry of the current-voltage characteristic of the contact [lo]. 

cm, this gives A _Y 
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The experimental situation in studying non-linear transport in metals is not clear. 
Electron heating in the strong-current regime has been observed in metal films [ I ] ,  121 
and metallic microbridges [13]. However, thermoelectric effects have not been detected. In 
very narrow metallic constrictions (point contacts), the thermoelectricity shows up in the 
dependence of resistance on the direction of the current [14-16]. 
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