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Abstract. Linear as well as non-linear contributions to the Zeebeck and Peltier coefficients of
a metallic film in contact with the equilibrium metal are calculated within a simple model. The
non-linear part of the thermoelectric response survives down to a very low temperature wiich 1n
principle permits thermoelectric cooling at these conditions. Thermal equilibrium in a metallic
constriction between dissimilar metals 1s evaluated in the non-linear current-carrying regime.

1. Introduction

Small metallic and semiconducting specimens develop a number of specific low-temperature
phenomena including flux quantization and persistent currents in normal-metal loops [1],
charge discreteness effects in tiny metallic granules [2, 3], non-equilibrium electron—phonon
states in metallic microconstrictions (point contacts [4, 5]), etc. Mostly these phenomena,
which are promising for novel microelectronic applications, are displayed at quite a lfow
temperature. In these conditions, the electron and phonon systems of a metal can be
casily driven out of equilibrium, which changes the state of the kinetic processes. Some
questions which have been the subject of controversy for years can be subjected to theoretical
investigation and experimental tests, for example why the resistivity is non-zero when
phonons are dragged after electrons (the Peierls problem), or how the Joule heating takes
place when scattering of electrons is purely elastic.. (The Drude formula gives a finjte
resistivity at & = ¢0.)

We shall partly answer the last question by considering the limit of large but finite
inelastic electron mean free path ;. The conductivity is not much affected by inelastic
scattering processes whereas thermoelectric coefficients are, provided that the current is not
small. In the non-linear regime, thermoelectric coefficients are strongly enhanced at Jarge
I;. The possibility of using this effect for thermoelectric cooling at very low temperatures
will be discussed in section 4.

2. Formulation of the model

We consider a degenerate electron gas interacting elastically with impurities (or other defects
-of the crystallipe lattice) and inelastically with phonons, electrons, etc. Inelastic relaxation

t On leave of absence from the B I Verkin Institute for Low Temperature Physics and Engineering, Academy of
Sciences of the Ukraine, 47 Leaun Avenue, 310164 Kharkov, Ukraine.
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provided by electron—phonon interaction becomes ineffective at low temperatares and low
excitation energies with the corresponding scattering rate

T (7% 1+ £%y/08 (1)

where @p is the Debye temperature and £ the energy of electron relative to the Fermi
energy.

We suppose that electrons in a metal film M (figure 1) can tunrel to a bulk metal M’,
the latter being considered as a thermostat for M. The interaction between M and M’ is
described by a tunnelling Hamiltonian

Hr=WY) (atbg+biay) @
p.g

where aj',“ {ap) creates (annihilates) an electron in M whereas b“;(bq) does the same in M’

J
——— -

/l"/ Mf/

Hl

Figure 1. Schematic diagram of a tunnelfing junction between 2 metal film and a bulk metal.
J is the current passing through the film,

Calculating perturbatively the occupation f, = {afa,) change due to (2), one obtains

d
(%) = =27 WZ Z(fp - fq)s(sp _— sq)_ (3)
coll 7

If we assume that electrons in metal M’ relax to their equilibrium by some inelastic
mechanism different from (2} and stronger than the latter, such that we may consider f; to
be the equilibrium distribution, then (3} becomes the collision integral

1
Ii=—j£';(fp_f£) (4)
with
7 =27 WAN(0) (5
and
1
f,? — Ep =&p — It ©)

- explep/T)+1 )

T is the equilibrium temperature of M. The inelastic relaxation time 7; can be related
to the tunnelling resistance between M and M’ according to

Ry = eZN(O)%‘E - : N
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where N(0) is the density of electronic states at the Fermi energy, and S and d are the
surface area and the thickness of a film, respectively.
Elastic scattering can be written as (e.g. see [6])

L==3 Wopfo— fy)Slep — 1) (8)
-

where Wpy is the electron—impurity scattering amplitude.

The purpose of this term is to redistribute electrons over the Fermi surface once they
are driven out of equilibrium by the electric field. We shall simplify equation (8} to the
form

fo— fp

27,

©

I, =—

thus providing for the scattering p — —p only. This is enough to establish the time-

independent electron distribution in the current-carrying state. We do not think that selection

of the simplified electron—impurity scattering may change qualitatively the conclusions

concerning the non-equilibriurn current-carrying state to be discussed in the next section.
The kinetic equation for the electronic distribution function 1is

3 3
o .2 g Yoy L (10)
ot ar ap

Inelastic scattering (4) does not ensure automatically charge neutrality (as for example
the electron—phonon scattering does) in the continuity equation following from (10}:

on 1

— +divj+— - M=o 11

m+NHq§% =0 (1
This can be improved if we suppose that, instead of (4),

1
L= ——1fp = ;)] -(12)

where i’ is the renormalized chemical potential derived self-consistently from the charge
neutrality condition

S == fp- (13)
r D

The shift in @ appears because of the voltage between M and M, In the homogeneous
time-independent state, equation (13) is always satisfied with the unperturbed chemical
potential ¢ owing to the condition (11). )

Conventional scattering theory [6] based on the linear-response expansion

fo=Ffo+ s (14)

with f; ~ F has a puzzling feature that the current § remains finite at [; = 0. However,
if we try to take into account the next terms in (14) proportional to E?, E*, etc, we find
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that non-linear corrections are divergent. Therefore, the non-perturbative solution of the
Boltzmann equation is required. This can be achieved within the model adapted

of _ of of _ fo—fp S L)
'3_'+U-E‘H+EE-§;_" 7 - 77 (15}
and
Y- =0 (16)
p

A similar model has been considered by Sarker et a! [7] who introduced, in the
elastic collision term, an unknowa (isotropic) distribution function to be determined self-
consistently. These workers, in their study of the non-linear conduction regime, have not
considered thermoelectric effects.

Choose fp in the form

fp= f;? + Fp+ Gy a7

where F, is an even and G, an odd function of p, and calculate the electric current density
7 and the heat current density g according to [8]

i= Zefdr_,, vGp g= Zfdtpvngp (18)

where the factor 2 is due to spin degeneracy and dz, = dp/(2r)*. Solution of the kinetic
equation at 7 = 0 gives

Gp=2 [ar —EBD [ an, - phsteexpi-iz’ 1) (1)
and
Fp=—1¢E - -a—Gp (20)
op

where T is the relaxation time given by
= g, @1

Simple calculation gives § = (ne’z/m).E, whereas for the electron distribution function
we obtain

- 1 /< |§p|
Gp = W exp ( eE /e Uzl) sgn(v;) (22)
and
e Loxp(——tiol
Fp=sexp ( F frjlvzi) . (23

Therefore, the Drude formula is exact at 7; — o0 whereas the distribution of electrons
is strongly different from the conventional linear-response drift state.

Note that F, is not small at & = 0 even at ; — oo. The electron distribution is
narrowed in the energy interval

8E ~ eEJIi ! =vpT N (24)

which can be considered as an effective electronic temperature T of the current-carrying
state.
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3. Non-linear transport coefficients
Suppose that an electric field & and a temperature gradient VT exist in a metal. Transport

equations for the even and odd parts of the distribution function (17) read, according to
(15),

3 3\ 1
c— teE-— —F,=0
(v 3r+e Bp) Gp+tin (25)
and
) a+eE 9 F+IG = gf’vr eE fig 26
87‘ ap » T P Ep‘ ( )

If E and VT are space and time independent, G, is determined from the second-order
differential equation

32 s afﬂ
el R —— = PTT — cy—E2
(I + e E; 3p,'3pj) Gp=t ( eE) ‘Uagp. 27)

The solution to equation {27) is achieved through the Fourier transformation
GR)y = f drp Gpexplip - R) (28)

which gives

_ exp(ip - 1) b By
Gp_z[drl_l_nez(E r)ﬁfd ( VT — ) ”asp exp(—ip' - 7) (29)

and
d
Fp = —Tel - %GP (30)

Substituting equation (29) into equation (18) and performing an integration over the
momentum p, one obtains

o et dz, (EEVT—eE)- ofp 3 (—_e"p(_ip"") ) (1)
m T

3&, or \1+ r1e(E - (L
and
2ir £ 3fy 8 5 exp(=ip - ) )]
=== /% (FVT - eE) '“agp ar 2m Froited B Gurnemyers ey | N

(32)

The non-finear term does not appear in equat:on (31) after taking the [imit  — 0, and
we obtain for J

TVT. (33)
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Therefore, the conductivity is expressed by the conventional Drude formula, at least for
the simplified collision integral in the form of equations (4) and (9). The second point is
that the weak inelastic scattering does not change the current density and the conductivity
of a metal appreciably.

However, the heat conductivity is strongly affected by inefastic scattering and acquires
non-linear contributions in ¥ and VT, Evaluation of equation (32) results in

7inet nint
g= 2 TE — T VT 4+ 4 (34)
F
where
A i T
q = —l:;i (L-HE[ZVT +2E . VT)E] - 3|E|2eE) _ (35)

The linear part of the kinetic coefficients satisfies the Onsager reciprocity relation
Taj/(VT)=—8q/0F [6].
According to the above expression, the Peltier coefficient TI is determined as

) 2T2 3 2 .
Il = (_q) = T — —RﬂLEEz. (36)
87 Jyr—a  2en m

Comparing this with equation (24) we see that the second contribution resembles a
contribution due to an effective temperature T'* proportional to the electric field: 7 o
eE./IL. At low ambient temperatures, this contribution becomes dominant.

4. Is non-linear thermoelectric cooling possible?

The main reason for failure of thermoelectric cooling at low temperatures is the fast
disappearance of the linear Peltier coefficient [T as T — 0. The phonon drag increase
in T1 [9] does not help much as it also disappears at low temperatures. (However, in small
resistors, electron—-phonon interaction may result in the important phonon-drag contribution
[10].) The question arises naturally of whether the non-linear temperature-independent part
of TI {equation (36)) may help. As we increase FE, the Joule heating increases, thus reducing
the effect of thermoelectric cooling. Let us estimate whether this is always the case.

Consider a thermoelectric circuit between two metallic films with different inelastic
mean free times 7; and equal elastic mean free times 1.. (We assume that 7; 3> 7.; therefore
the total relaxation time 7 is the same in both films.) This can be done by changing the
thickness of a tunnelling barrier between a film and the bulk metal slightly, thus providing
for the corresponding change in 7;. Parts of the film with different barrier transmissivities
can be considered as different metals A and B in the thermoelectric circuit in figure 2,
resulting in a heat release (or absorption, depending on the direction of the current) at the
point of connection according to

Opetiier = (I1a ~ IB)j. ’ (37



Non-linear thermoelectricity in metallic constrictions 9743

S —

NI TR R —

@ f ) | f

. U

Figure 2. (2) Cross section and {b) in-plane view of a thermoelectric constriction.

This heat is released within the characteristic length of the order of +/77;. The Joule
heat at the same region will be

2
ne°r
Ojoule 22 —'EI"'EZ\/E (38)
An estimate of the ratio Qpetier/ @ioue O the assumption that |1, — ITy| ~ TT gives
according to (36}

QPe!tier —~ _eﬂ

aaT* » T. - (39
Croute 22

This may in principle be larger than unity at very strong electric fields. If we assume
that the constriction length I in figure 2 is larger than the energy relaxation length A = /T7;,
then this means practically that the bias at the microconstriction should be greater than the
Fermi energy. This corresponds to an electron drift velocity of the order of

vg ~ v/ 1) (40)

which is still much smailer than the Fermi velocity.

Let us make some numerical estimates. For a tunnelling junction of size 1 mm x 1 mm
and film thickness 4 ~ 10~% cm, one obtains, according to (7), 5 ~ 107 ¥sat Ry =~ 10°° Q,
With the realistic assumption I ~ 10~% cm, this gives A =~ 10~* cm. Therefore, very-high-
transmissivity junctions are required to obtain reasonable values of A, and therefore of the
contact length. The possibility of thermoelectric cooling in a device of the type shown in
figure 2 appears 10 be questionable; however, it is not completely ruled out.

If the constriction size is smalfer than A, the right-hand side of (40) will acquire an extra
factor L/ because the Joule heat is then released mainly at the banks of the constriction
where it produces a negligible effect. However, our formula (36) does not apply directly to
this ‘diffusive’ regime of the constriction current-carrying state (according to the definition
in [4]). For small drift velocities v < ve({/}/?A/ L, the thermoelectric effect will manifest
itself in the asymmetry of the current-voltage characteristic of the contact [10].
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The experimental situation in studying non-linear transport in metals is not clear.

Electron heating in the strong-current regime has been observed in metal films [11,12]
and metallic microbridges [13]. However, thermoelectric effects have not been detected. In
very narrow metallic constrictions (point contacts), the thermoelectricity shows up in the
dependence of resistance on the direction of the current [14—16].
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