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Abstract. The analysis of electronic smctures has been carried out for lhe transition-metal 
compounds showing the corundum-type crystal symmetry using the suggested tighl-binding 
method for interacting bands. Wkh the self-consistent held approximation, the branches of the 
electronic spectra and energy gaps have been analytically calculated. The role of the electron 
correlations was found lo be decisive for the dielectrization of spectra for which no additional 
assumptions, e.g. the existence of spin- or charge-density waves, was necessary. The data 
obtained provide an explanation for the appearance of the insulator state in such compounds 
as '&@. VzOl. Crz@. u-Mnz@ and u-FezO,. The calculated values of band gaps agree 
reasonably with the experimental dataavailable. The Peierls problem is solved forthe corundum- 
smdure  d compounds. 

1. Introduction 

The nature of the insulator state in the ionic compounds of non-metals with transition metals 
(ms) with incomplete shells is thought to be among the central problems of modern solid 
state physics. In spite of the presence of unoccupied bands, most of these compounds are 
insulators, contrary to the predictions of the conventional one-electron band theory (compare, 
e.g., [l]). Extending the Hubbard [Z] model to the orbital degeneracy of electrons and using 
the sequential diagram technique to account for intra-atomic correlations, the method of 
strong coupling for interacting bands has been proposed [3] (see sections 2 and 3). This 
method generalizes the traditional Slater-Koster approach for non-interacting electrons. 
The proposed tight-binding method for correlated electrons suggests that insulating gaps 
at homogeneous paramagnetic phases of 'm compounds may result from the intra-atomic 
interactions of electrons, a problem formulated by Peierls in 1937. The Mott-Hubbard d 
compounds of rock-salt structure (space group, Oi(Fm3m)) act as insulators with half-filled 
e, and tz8 bands. The same is true for spinel-type compounds of the magnetite (Fe304) type 
in the mixed-valence state [4]. In the opposite case of the non-half occupation of classical 
Slater-Koster bands, the metallic state is observed (e.g. ScO and TiO). 

Another class of TM compounds, sesquioxides, which have a structure of the corundum 
(or-AlZ03) type of symmetry @zd(R3F)) is of practical importance. Most of them, e.g. 
Ti203 (3d'). V2O3 (3d2), ( 3 2 0 3  (3d3), or-Mn203 (3d4), a-Fez03 (3d5) and Rh203 (4d6) 
are insulators. At T > TN they are known to be present in the dielectric state of the non- 
magnetic phase up to the insulator-metal transition reported IS] for Ti203 and VzO3. In 
comparison with the cubic crystals, analysis of the insulator situation in the d compounds 
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of the corundum type seems to be more intricate in view of the fact that the Bravais cell 
of or-Alz03 has four cations and  not^ one as in the case of the NaCl structure. Besides 
the Sommerfeld-Bethe [6] splitting found for the strongly correlated d electrons [3,4], this 
results in an increased number of electronic bands due to the Davydov [7] splitting (cf 
section 3). The calculations of energy bands reported for Ti203 [&IO] and VzO3 [9-12] 
are, one way or another, on the level of the Hartree-Fock one-electron approximation with 
some additional assumptions and parameters to provide the formation of band gaps, bonding 
and antibonding orbitals, arbitrary band shifting and even their inversion [8, 111, electron- 
hole coupling in the presence of ‘nesting’ [9,1 I], and distortions of the corundum cell 
[ 10,11]. Computations of the low-temperature properties of V2O3 using the Hartree-Fock 
method with non-sphericity of the muffin-tin potentials. covalent bonding with anions, and 
orbital ordering of the ‘antiferromagnetic’ type taken into account, have been performed 
in a number of studies [12]. The one-electron calculations by the method of intersecting 
bands [I31 demand an unwarranted~number of fitting parameters. Indeed, modes of the 
exciton type, of charge- and spin-density waves, or types of orbital ordering may result in 
the formation of energy gaps in  the electronic spectrum. In the best case this approximation 
may be used to predict the Occurrence of antiferromagnetically andor orbit-ordered phases of 
sesquioxides. However, for the homogeneous paramagnetic phases above the temperatures 
of ordering, such approximations give no insight into the nature of the dielectric state. The 
effort involved in calculating the electronic structure of TM compounds of corundum type 
grow in proportion with the number of electrons in  the non-filled d shells of the cations, with 
no essential advance in the understanding of the nature of the dielectric state. Calculation 
of the band structures of Cr203, u-FezO3 and other oxides where the number of electrons 
exceeds two per cation are still lacking in the literature. On the contrary, the electronic 
systems under consideration are essentially correlated, and the positions of energy bands 
have been qualitatively analysed by Goodenough [I41 and by Brinhann and Rice 1151 and 
have been discussed in the monograph by Mott [ 161. 

A small change in temperature (T z TN), which results in the breakdown of the AFM 
long-range ordering in the compounds of interest, mostly does not lead to disappearance 
of the band gap. Ordering vanishes, but the insulator gap remains. This energy gap may 
be eliminated in Ti203 and V ~ 0 3  by the action of pressure. Conservation of the insulator 
gap in the homogeneous spin- and orbit-disordered state of matter may be caused by strong 
intra-atomic Coulomb interactions of electrons; this problem has been formulated by Peierls 
in 1937 for a number of TM compounds (e.g. [l,  161). 

In the present work, it is shown how the electronic structure of TM sesquioxides may 
be obtained within the framework of models for strongly correlated electrons [Z, 171. The 
band gap at the Fermi level is formed owing not only to the interaction of electrons of one 
orbital (Ti203 and or-MnzOs), but also to the interorbital interactions (in V2O3, CrzO3 and 
or-FezOs). Using the proposed tight-binding method for interacting electrons, the electronic 
structures of Ti203. V203, CrzO3, or-MnzO3 and a-FezO3 are calculated analytically for the 
orbitally disordered paramagnetic insulator phase. The alternative mechanisms [4,18] of 
the insulator-metal transition discovered [5,16] for Ti203 and Vz03 are not discussed here. 

2. Formulation of the problem 

The strong octahedral crystal field in the corundum lattice removes the fivefold degeneracy 
of the 3d orbitals of electrons localized at cations, which are two thirds of the total number 
of octahedral vacancies. The trigonal component D$ of the crystal field reduces in turn 
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the threefold degeneration of the split tzP orbitals to doublets and singlets. Within the 
(x’ ,  y’, z‘} reference system of the ‘oxygen’ sublattice of corundum, the basic functions for 
the one-dimensional ar,(c) and two-dimensional e,(n)(a, b) irreducible representations may 
be written as follows: 

= fif(r)[x’zf + i(x’ + z’)y’~ $b = [ j ( r ) / ~ ” ]  (x‘  - z‘)y’ 

where 

j ( r )  = m e x p ( - r 2 / r i ) / 2 r 2 ,  

Writing the $-values in the invariant vector form and changing to the reference system 
[ x ,  y ,  z )  related (figure 1) to the sublattice of metal ions, we obtain the basic functions 

The same result may be obtained conventionally (compare, e.g., [12]) where the invariant 
vector form of the elementary cell of corundum is now represented as a skewed hexagonal 
prism (figure 1) instead of the well known I191 hexagonal configuration. In figure 1, two 
of its six layers are shown. Each metal ion is surrounded by six oxygen ions (not shown 
in figure 1) thus inducing the octahedral crystal field. Along the z axis, the 0-4 pairs of 
cations are alternating. Using the translation vectors 51,  52 and r3. all 28 cations of the 
corundum elementary cell may be obtained from two positions 0 and 1. and not from four, 
as is widely accepted [19]. 

Of the TM sesquioxides, VzO3 shows the largest and Ti203 the smallest c/a-ratio, while 
CrzO, and u-FezO3 have intermediate c/a-ratios [12]. For this reason, using the notation 
of (2) and following the qualitative considerations of Goodenough [14], the ground state 
of the 3d ions in the compounds under consideration may be represented as Ti203 (a!,), 
V203 (e:@)) and Cr203 (a&ei(rr)). According to one classification [2&22], both holes 
and electrons in these oxides are heavy and move in d bands. The nature of the insulator 
gap in these compounds is of the Mott-Hubbard (d-d) type rather than the charge-transfer 
(2p3d) type. These conclusions are borne out by estimates in [23-251. 

Therefore it is primarily essential to take into consideration the effects of intra-atomic 
d-d correlations: one-orbital-type interactions I (Hubbard), interorbital-type interactions U 
(Coulomb) and J (Hund). The effects of covalency and ionic polarizability or the motion of 
the atoms in the ionic Mz& crystals under consideration are not included in this approach. 
With multi-electronic terms of the ground state, the one-call Hamiltonian (for 0 and 1 atom 
from the elementary cell unit in figure 1) may be diagonalized: 

Here ~k are the energy levels of them lowest Bose states (with an even number of electrons) 
and of the R lowest Fermi states (with an odd number of electrons), and XkP are the 
X-operators projecting a cell from the p to k energy state. The essential intra-atomic 
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Figure 1. Two cation layers from six layers of the 
elementary cell of c m d u m  structure. The vectors 
of lattiee translations are rl = [$,d7/2.0]0, n = 
[$.-fi/Z.O)a andn=(a.O,cl. 

3 

Figure 2. The cation packing in the basal plane. 

electronic interactions (Hubbard, Coulomb and Hund) enter the problem at the energy levels 
eh. Application of the Hund rule and the Pauling principle of electric neutrality makes it 
possible [31 to consider elementary excitations within the convenient basis of the spl(m. n)  
superalgebra. thus avoiding application of the superalgebras of higher ranks. Expansion 
of the oneelectron operators of creation and annihilation over the Hubbard X-operators is 
determined by the genealogical coefficients g,: 

a, = Cg,xu*.P'. (4) 

Further we confine ourselves to the translations between the degenerate ground and 
polar states. For the half-filled bands the chemical potential has to be chosen so that the 
polar states would have the same energy. 

The tunnel part of the Hamiltonian is represented via all possible products of the X- 
operators for neighbouring cells: 

(5) HZ = :=p(r - r')xyx,,. B 
* . f l u '  

The t,&)-matrix is determined by the matrix of effective interaction hopping integrals: 

t$P) = Lt"*(P)s; (6) 

where tab(p)  = E, P6(r )  exp(ipr), rab(r) is the effective interaction hopping integral of 
electrons from orbital b to orbital a at distance r via the intermediate oxygen anions: 

tGb = 1 @L(r)V(r)@j& - a)dr. (7) 
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3. The tight-binding method for interacting bands: general consideration of the 
electronic spectra 

The diagram method for X-operators is based on the generalized Wick theorem [26], which 
has been repeatedly proved for spI(2,Z) superalgebra of X-operators in the Hubbard model 
[27-291. The diagram technique for Hubbard operators has been worked out analogously 
to that for Heisenberg operators [30] and can therefore be easily adapted to superalgebras 
of higher rank [3,311. 

The desired spectrum of the one-particle excitations is determined by the poles of the 
appropriate Green function 

~ ~ . 

Dap(rr, r't') = - ( f~;( t )~;F(t ' ) ) .  (8) 

~ 2 i , ~ ) ( w ~ )  = (np + nk)(-iw, + cp - Q)-' 

The initial (zeroth) Green function has the form 

(9) 

where np and nk are the Boltzmann populations of the p and k energy levels, and a(k, p )  
(root of spl(m, n ) )  denotes the atomic transition between them, accompanied by a change in 
the number of electrons by unity. The small parameters of the diagram technique consists 
of 

(1) the inverse number of nearest neighbours, 
(2) the particle concenhation near correlation band edges (gaseous approximation), and 
(3) the hopping integrals (equation (7)) rendered dimensionless by inha-atomic 

correlations I ,  U and J .  

In higher orders of perturbation theory the scattering of excitations at the spin, charge and 
orbital fluctuations results in the disappearance of the correlation gap and in the occurrence 
of the Moa-Hubbard phase transition. Here these effects are not taken into account because 
traditional Slater-Koster [32] equations (LCAO method) describe bands of non-interacting 
elechons in the first order of hopping integrals. The sequential diagram technique for 
generalized X-operators may be followed to yield the different ordered states of realistic 
models similar to [4,33,341. 

When the necessary transformations iw, + E +i8 have been performed in equations (8) 
and (9), the Dyson equation for inverse Green function (8) within the first-order perturbation 
theory leads to the following secular equation: 

det Il[D~o)(~)l-'&p + ~ , B ( P ) I I  = 0. 

This equation determines the single-particle energies forming correlated energy bands. The 
determinant consists of 1 x I blocks numbered by degenerate orbitals I = m + n, the size 
of each square block equalling the number of components in the decomposition (4). By 
decomposing this determinant along diagonal elements, which are linear relative to energies 
E ,  according to the procedure in [3], we obtain the following system: 
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Here the effective transfer integral ~ ( p )  is the solution of the 1-dimensional ( I  is the orbit 
degeneration factor) secular equation (1 1) to which in its turn the Schriidinger equation in the 
Slater-Koster [32] approach may be reduced for non-correlated electrons. The off-diagonal 
elements (7) in the matrix (11) determine the well known splittings for non-interacting 
electrons governed either by the number of orbitals in an atom (the Sommerfeld-Bethe 
splitting) or by the number of atoms in a cell (the Davydov splitting). The matrix elements 
in (1 1) have been calculated previously; they are known as the so-called integrals of Slater 
and Koster. In the first equation of the system (lOt(ll), the effects of the intra-atomic 
electronic interactions I (Hubbard), U (Coulomb) and J (Hund) are manifested in the 
correlation splitting of every Sommerfeld-Bethe or Davydov subband of the Slater-Koster 
method into the correlated bands. For the conventional orbitally non-degenerate Hubbard 
121 model, equation (10) can be reduced to the simple equation 

(no + n+)/(-E + E+O) + (n-  + nz)/(-E + E-2)  = - I / s ( p )  

where ~ ( p )  is the dispersion law for non-interacting s electrons [2]. 
Within the framework of the considered model (3)+(5) of the real crystal with orbital 

degeneracy, the branches of the electronic spectrum E ( p )  derived from (10) and (11) 
determine the band gap 

(12) 

where ELuB and EHoB are the lowest unoccupied band and highest occupied band energies 
of correlated electrons. 

The TM compounds under consideration represent ionic crystals in which the 
wavefunctions of the cation are localized on a scale of the magnitude of rB (the Bohr 
radius or ionic radius), which is small compared with the lattice parameter a.  For this 
reason in the determinant equation ( 1  1) the remaining transfer integrals are of the same 
small magnitude as the parameter rB/a. This parameter ensures narrow energy bands, high 
intra-atomic energies I ,  U and J and an ionic character of solids under consideration. 
The small parameter rs/a gives us the opportunity to evaluate the hopping integrals as 
proposed in [3], suitable for our strong-coupling-like approach. The product of radial parts 
f ( r )  of the wavefunctions is maximal at half the interion distance, which makes a perfect 
origin of coordinates for use in equation (7). The radial parts f ( r )  decrease exponentially 
with increasing distance and can be approximated by Gaussians as f ( r )  - exp(-r2/rg). 
We can therefore arrive at the hopping integral (7) of any required accuracy in the form 
of the power series of (rela)'. For the main crystal Bravais lattices we can probably 
calculate all matrix elements for the tight-binding method in [35] for hydrogen-like parts of 
d wavefunctions, if in equation (7) we restrict ourselves to term of the order ( r ~ l a ) ~ .  Non- 
spherical wavefunctions of electrons ensure anisotropy in layer-structured high-T, cuprates 
[361. 

In the present work, the off-diagonal transfer integrals (7) for the e,(ir) and alg orbitals 
along the c axis are of the order ( r ~ / a ) ~  and may therefore be neglected. It is essential that 
the overall non-diagonal elements (with transfer within the basal plane taken into account) 
for the e&) and alg orbitals are of the order ( r ~ / a ) ~ ,  i.e. comparable with the diagonal 
elements. Within the basal plane of the corundum structure, the cations are packed into the 
two-dimensional lattice of the honeycomb structure, as shown in figure 2. In calculating the 
hopping integrals (7), we confined ourselves to tunnelling only to the nearest neighbours 1, 
2 . 3  and 4 from the centre 0 (see figires 1 and 2), owing to the exponential decrease in the 
radial wavefunctions (1). 

A - ELUB LUB HOB HOB 
g - (%io (PI) - E (Ema (P)) 
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4. Electronic structure of the a!g compounds of transition metals (Ti203) 

The electronic ground state of cations with a half-filled a], shell is the singlet state. The 
alg electrons are described by the wavefunction $ c ( r )  (equation (2)). The expansion (4) of 
the one-electron operators over atomic X-operators is coincident with the expansion for the 
non-degenerate Hubbard [2] model [3]. Dividing the two-dimensional honeycomb lattice 
in figure 2 into two sublattices of the 0 and 1 type, we find that equation (1 1 )  acquires the 
simple form of a 2 x 2 determinant with enumeration of rows 0 and 1 (cf figures 1 and 2): 

Here 

t ( p )  = $[I + 2exp(-i~)cy + t 'exp(i~)] 

are the elements of the transfer matrix in (11) and X = ;up,, Y = a f i p , / 2 ,  2 = 
-up, + cpI = -%X + cp, and c, = cos a. In further discussion, all the electron branches 
will contain the invariants with respect to rotation at the $ 7 ~  combination of the mgonometric 
functions: 

2 

rl = 2CYC(X+Y)/ZC(X-Y)/2 

Ei,z(p) = $(l t (p) l  f Jlt(p)lz +4A2) = -E4,3(p) 

5 = cz + CX-Y+Z + C X + Y + Z .  (14) 
Substituting the effective transfer integral from (13) into (10) the following four branches 
of the electronic spectrum are obtained: 

(15) 
where A = I f 2  is half the Hubbard energy of electrons from the non-degenerate orbital 
ai,. The absolute value of the transfer integral in solution (15) is given via the invariants 
(14) and the amplitudes of the transfer integrals I and t C  within the basal plane and along 
the c axis respectively: 

It(p)l = f t J 1  +4q + 3 t c < / t  + (3tc/2t)z = ~ i , ~ ( p ) .  (16) 
Dimerization of the titanium ions along the c axis of the hexagonal elementary cell leads 
to the Davydov dimeric splitting of energy bands: 

D = min[&(p) - = min It(p)I = tc - 2t(rc z 2t) 

at the Z(0, 0, n / c )  point of the Brillouin zone. For li2O3, let the typical hopping integrals 
have the following values [9]: IC = 0.9 eV; t = 0.15 eV. Then the dimeric gap is 
D = 0.6 eV and is independent of the correlation energy A = 1/2. The role of the 
correlation gap is reduced here to splitting the empty branches of the electronic spectra 
E l ( p )  and E?@). Therefore, when fc > 2t, separation of the bonding and antibonding 
orbitals (the Davydov splitting of the non-interacting electrons) may cause the dielectric 
state of the non-correlated spectrum (16) to occur. The bonding and antibonding orbitals 
have already been used [13,37] to take into account qualitatively the insulator properties 
of Ti203. Under conditions of strong correlation (A # 0), two electrons of cations 0 and 1 
(see figure 2)  occupy the two isolated branches of the electronic spectrum, &(.U) and E4(p) 
(equation (15)). Other branches are empty and separated by a band gap of correlation type. 

It should be noted that in Ti203 the observed [SI activation energy E,  = 0.02-0.06 eV 
is smaller than the dielectric gap derived from solutions (15) .  For crystals of high purity, 
this is probably because, for Ti203 above EF = 0, in the vicinity of the calculated band 
energies &(p) and E&) there exist unoccupied levels of the e, doublet that are separated 
by a weak crystal-field distance of 200 cm, which is close to Es in magnitude. 
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1 {  b 

AE = -max[y(p)] + ,/{max[~&~)]]~ + 4A2 = 2 (,/- - 3 t )  . (19) 

E l*"P) P(P)  =o, 
0 

0 
(tYP))* (tbYP))* E 

(tob(p))' (tb(p)Y 0 E 

In (18) and (19). A = $(U 4- 3) .  where U and J are the Coulomb and Hund integrals, 
respectively. Taking the typical values of U = 1.3 eV, J = 0.1 eV and t = 0.8 eV [lo], the 
energy gap Ag = 0.2 eV is obtained from (19). which is in agreement with the experimental 
data available [16] for Vz03. 

It should be emphasized that the results (18) and (19) obtained concern the completely 
disordered homogeneous paramagnetic phase, in which the band gap is determined 
exclusively by the intra-atomic interorbital interactions of electrons U and 3.  

Contrary to &Os, the electronic spectrum (17) of the non-interacting electrons turns 
out to be gapless and degenerate at the points Q(4a/9a, 4zfi/9a), r(0,O): 

E ~ ( Q )  = E~(Q) = o = = - E m  = -E4(r) = -6t. 

In view of e&)-electron tunnelling within the basal plane, the separate consideration of 
only the bonding and the antibonding orbitals in the absence of interelectronic interaction 
could not provide an adequate description of the dielectric state. 
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6. Electronic structure of the ei(r)a& transitionmetal compounds (CrZO,) 

The parameter c/a for the crystal Crz03 of corundum type has some intermediate value 1121 
between those for Z z O 3  and V z O 3 .  For this reason, the electronic ground state of the C?+ 
cation is the quartet state. The intra-atomic situation is the same as for tzg cubic crystals. 
Electronic excitations are considered in the basis spl(l8,4). Let the basis functions (2) 
describe the a&.(c) and ei(rr)(a, b) electrons. Then equation (11) for the effective transfer 
integral is the following (i.e. for the spectrum of independent electrons ~ ( p ) ) :  

O l %  

where t" (p ) ,  tb (p )  and tab@) are defined in section 5, t'(p) in section 4, and 

i2t 
3 

tQc(p )  = $-1/Zt[1 - exp(-i~)cyl rbc(p)  = --1/Zexp(-iX)sy. 

For the non-interacting non-correlated electrons, we obtain the six-band spectrum with two 
non-dispersing bands ~ 3 . 4 :  

E I , Z ( P )  = Ft  4 + (tc/3t)[3tc/2t + 2t + J16(2 - 17) + (3tc/2t  + 25)'] 

83.4 = w (20) 

EJ&) = q44+ (te/3r)[3tc/2t + 2t - J16(2 - 17) + (3re/2t + 2()21, 

Substituting these branches into equation (lo), the desired occupied bands of the correlated 
electrons are found: 

E d p )  = --$.t(p) - ~ l ~ & a ( p ) l Z  + Az ( k  = 1,2,3,4,5,6). (21) 

Note that there are two dispersionless bands among these six bands which are centred at 
&3 and ~ q .  Only the interacting bands are given in (Zl), which are situated below EF = 0. 
According to (U), the band gap is given by 

Assuming that A = 2 eV and r = 0.8 eV [ l l ]  and taking tC = 1.4 eV [lo], for the energy 
band we obtain Ag = 2 eV which is in agreement with the reported 1381 experimental value 
for CrzO,. 

The electronic spectrum for the non-interacting electrons (20) has some particular 
features due to the presence of the Davydov splitting. At re = 0, the spectrum (20) is triply 
degenerate; the bands &1,3,5 and q4.6 are centred at &j = -2t and &q = 2 f ,  respectively. 
There is always twofold degeneration within the Brillouin zone at the line k = 0 = k,. At the 
same line at re < 4t, there is a point of threefold degeneration (O,O, (a/c) cos-'(-rc/4t)), 
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at which E , , Z  = ~ 3 . 4 .  At t C  > 4t, the dimeric gap appears between the local and lower 
bands: 

At tC < 6t, the Fermi level for non-correlated electrons would be expected to occur in 
the middle of the dimeric gap: 

0 5 - 6  = 21 4 + ;(tc/t)’  - 2tc/3t - (tc/3t)J6t/tc + 3tc/8t - I .  (24) 

According to (24), the dielectric phase CrzO3 would seem to be expected within the 
system of non-interacting electrons. However, since the value of f c  was estimated [ 1 I] as 
equal to 6t, the energy band (24) is much smaller than the observed [38] activation energy: 
0 5 - 6  << 2 eV. On the other hand, for.Cr203 it cannot be excluded that the band gap (24) 
for the non-interacting electrons disappears owing to degeneracy of the spectrum (20) at a 
point. This is why the only reason for the appearance of the dielectric paraphase in Cr203 
may be to account for correlation of the 3d electrons in the C? cation according to (21) 
and (22). and the energy gap (23). 

7. Conclusion 

In the present study in the framework of the strong-coupling approach for correlated 
electrons, the predominating part played by the intra-atomic correlations in determining the 
physical properties of the TM metal-non-metal compounds has been demonstrated according 
to Peierls’ idea [ I ,  16,221. 

The energies obtained for the one-particle excitations (17), (18) and ( Z I ) ,  determining 
the energy bands for the TM compounds of the corundum structure, are independent of the 
amplitudes of the effective  interaction^ hopping integrals along the c axis and within the a-6 
plane, as well as of the values of 7 and < (14). Using the notation in ( IZ) ,  it may be shown 
that, upon rotation at $I, 

X + Y +  -(X’-Y’) X-Y-tZY’ Z - t  fX’-Y‘+ck,. 

In other words, the values of 7 and < are invariant with respect to rotations around the 
trigonal axis and, as could be expected, show D& symmehy of the corundum crystal 
structure. Cubic crystals of the NaCl type with half-occupancy of the 3d bands are insulators 
because of splitting due to the crystal field. A similar statement holds true [4] for the spinel- 
type shucture. The present data prove the validity of this statement for hexagonal crystals 
of the corundum type as well: Ti203 (S = i: 3d’ e@)), 
Cr2O3 (S = i; 3d3 = at,ei(n)). 

The position of the hole levels at the MnSt in u-Mn203 (S = 1) is coincident with 
the position of the electronic terms in V3+ (VzO3). For this reason, the conclusions in 
section 5 for Vz03 are valid in view of the electron-hole symmetry and the homogeneous 
paramagnetic phase u-Mn~O3 (TN = 80 K). 

The electronic spectrum of the high-spin haematite a-Fe203 (S = -$; 3d5 E 
e@r)ei(u)a&) under the conditions of electron-electron correlations is determined by the 
half-occupied algr e&) and e&) bands. According to the present theory, haematite is 
also a dielectric. However, in view of the high N4el temperature TN = 963 K, the analysis 

a&): VzO, (S = 1; 3d2 
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of its paramagnetic phase (T  =. T N )  is merely of abstract academic interest. The electronic 
structure of the low-spin paramagnetic phase of haematite ( S  = i; 3dS = el(a)a!,) is 
determined by the half-occupied alg band, as is the case for Ti203 (section 4). 

The electronic structure of RhzO3 in its Rh3+ low-spin state (S = 0; 4d6 = atge;(n)) 
is formed by the completely filled alg and e,@) bands. That is why the insulator state of 
F&03 is evident and was not analysed by us. 

An attempt to calculate the electronic spectrum of V203 in its paramagnetic phase 
was undertaken by Nebenzahl et al 1111 within the framework of the ei(n) band model. 
They used the strong-coupling method for non-interacting electrons. Their results may be 
obtained by neglecting in the formulae in section 5 the interaction of electrons (A = 0). 
In such a case, the band gap between the branches cZ(p)  and a ( p )  is absent, and thus we 
obtain the metallic phase. To avoid metallization, Nebenzahl e t a f  [ I  I ]  admit the unjustified 
assumptions about the distortion of the lattice in figure 2. However, the lattice of this oxide 
is not actually distorted in the high-temperature paramagnetic phase. 

It was shown that the primitive cell in the corundum structure may be chosen so that 
the minimal number of atoms within the elementary unit cell of the cations sublattice turned 
out to be equal to 2. All 28 cations of the elementary cell may be obtained from these two 
positions by translation. The presence of several atoms in a cell defines the appearance of 
the calculated dimeric gaps arising from the Davydov splitting. The correlation splitting of 
each of the orbit subbands occurs in such a way that the paramagnetic phases of all the 
sesquioxides of TMS with half-filled orbital subbands tum out to be insulating. 

The data obtained may be applied to the analysis of the electronic structure of the 
hexagonal TM borides. In the framework of the suggested tight-binding approach for 
correlated electrons it is possible to describe insulators and metals on the basis of the 
mother substances LaTiO3 (3d'), CaVO3 (3d'), YTiO3 (3d'), LaVO3 (3d2), SrCrO3 (3d2) 
and CaCrO3 (3d2) with crystal structures of the cubic perovskite. 
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