
Annals of Operations Research 50(1994)295-317 295

The interface of buffer design and cyclic scheduling
decisions in deterministic flow lines

Selcuk Karabati

Faculty of Business Administration, Management Department, Bilkent University,
06533 Bilkent, Ankara, Turkey

and

Panagiotis Kouvelis

The Fuqua School of Business, Duke University, Durham, NC 27706, USA

In this paper, we address some issues on the interface of buffer design and cyclic
scheduling decisions in a multi-product deterministic flow line. We demonstrate the
importance of the above interface for the throughput performance of the flow line. In
particular, we point out that the use of sequence-independent information, such as
workload distribution and variability in processing times among stations, is not adequate
to decide the optimal buffer configuration of the flow line. We formulate the buffer
design problem for a fixed sequence of jobs as a general resource allocation problem,
and suggest two effective heuristics for its solution. For the simultaneous buffer design
and cyclic scheduling problem, we suggest an iterative scheme that builds on the
effectiveness of the above heuristics. One of the side results of our extensive computational
studies on this problem is that the general guidelines of buffer design in single-product
flow lines with stochastic processing times are not directly transferable to the multi-
product deterministic flow line environment.

1. Introduction

Flow lines are the basic manufacturing processes for companies competing
on a high volume, low cost manufacturing task. The inherent efficiencies of f low
lines can only be achieved by thorough analyses of design problems, e.g. allocation
of buffers between stations, and operational decisions, e.g. scheduling of parts. In
this paper, we address some issues on the interface of buffer design and scheduling
decisions in a deterministic flow line. We consider a flow line with finite/infinite
capacity buffers between the stations which produces a set of products under a
cyclic scheduling policy.

The cyclic scheduling approach for flow lines is based on the idea of repetitively
producing a small set of items. Each set has the items to be produced in the same
proportions as the production requirements of the system over a planning horizon

© J.C. Baltzer AG, Science Publishers

296 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

or as the assembly requirements of an end product. We now sequence parts in a
rather small production set and then simply repeat the same part sequence (for a
detailed discussion of the cyclic scheduling problem, we refer the reader to McCormick
et al. [13], and Karabati and Kouvelis [10]). Some of the advantages of cyclic
scheduling policies over conventional scheduling techniques for such environments
are mentioned in the research literature (Matsuo [12], Lee and Posner [11]) and
include benefits such as better machine utilization, smoother finished goods inventory
levels, and implementation convenience due to the simplicity of cyclic schedules.

The problem of buffer design in flow lines has been extensively studied in
the literature. As surveyed by Sarker [17] and by Smunt and Perkins [18], researchers
have considered the buffer design problem in a variety of contexts. A major part
of the research has concentrated on lines with a single product and stochastic
processing times. Researchers normally have dealt with flow line systems where
station service time variability is described by normal or exponential distributions.
Although the exponential distribution is not a particularly good representative of
actual service time variability, it allows mathematical manipulation. Models using
exponential distribution and relying on a queueing theoretic approach have been
reported by, among others, Hunt [8], Hillier and Boling [3,4], Rao [16]. Recently,
Hillier et al. [5], and Hillier and So [6] have addressed the buffer allocation problem
in a single-product flow line with stochastically identical and independent stations.
Their results show that the "bowl-effect", whereby the center stations are given
preferential treatment through more storage spaces, is more pronounced with higher
variability in the processing times. This conclusion is in parallel with the simulation
results of Conway et al. [2] and Yamashina and Okamura [20].

The above literature (both analytical and simulation studies) has mostly
concentrated on single-product environments. For such environments, the source of
variability in processing times is the stochastic nature of the operations undertaken
at the various stations, and the presence of buffers helps to reduce the adverse
effects of stochastic variability of processing times on the throughput rate of the
line. In multi-product stochastic flow lines, the source of variability is not only the
stochastic variability of each job but also the variability in processing times across
the jobs. In other words, even in the absence of stochastic variability in processing
times, in a multi-product environment there exists variability of processing times
at each station due to the wide mix of jobs processed there. Therefore, the presence
of buffers can help in alleviating station starvation or blocking instances.

The difficulty in analyzing multi-product stochastic flow lines has led to the
development of models that assume, for the convenience of analytical tractability,
single-product environments, exponential distribution of processing times, and often
ignore the interface of buffer design/scheduling decisions on the throughput performance
of the flow line. However, the current flow line environments are multi-product,
and most of the operations are performed by numerically controlled machining
centers that exhibit almost deterministic processing time behavior. Even more,
current simulation studies of automatic flow line environments point out the significant

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 297

benefits in throughput performance from the simultaneous consideration of buffer
design and sequencing issues (see Park and Steudel [15]). As the cycling scheduling
approach allows the manager to extend the planning horizon of the sequencing
problem (a cyclic scheduling policy can be used to meet monthly or quarterly
demand requirements), and since the alteration of the buffer configuration for many
flow line environments involves only the use of additional space and storage bins
between stations, the use of buffer configurations that account for the decided cyclic
scheduling policy is within the implementation capabilities of the manager. The
usual hierarchical approach for solving the above problems, with buffer capacity
being determined without consideration to job sequencing and then an algorithm for
job sequencing being developed, leads to excessive capacity for a desired system
throughput rate (see Park and Steudel [15]). Motivated by the above described
trends in the operations of flow lines, and the suboptimality of the hierarchical
decision-making framework used for these environments, we proceeded to develop
a modeling framework that adequately captures the buffer design/cyclic sequencing
interface issue.

In this paper, we approach the buffer design problem using the modeling
framework of a multi-product flow line with deterministic processing times. The
exclusion of stochastic processing times reduces the complexity of the problem to
some extent; however, as we will discuss in the following sections of the paper, the
problem is still a very difficult one. We discuss the extent to which the results of
the previous research on single-product flow lines with stochastic processing times
apply to the multi-product flow line with deterministic processing times. We note
that in both modeling frameworks there exists a variability component in the
processing times; however, in the multi-product deterministic flow line problem,
the variability arises from the differences between the processing requirements of
different products. Within our framework, we suggest an effective iterative approach
for simultaneous determination of buffer design and cyclic sequencing of jobs over
a planning horizon.

This paper is organized as follows. In section 2, we present a brief overview
of the cyclic scheduling problem, which serves as a necessary background for our
further discussion. A formulation of the buffer design problem in a deterministic
flow line and for a fixed sequence of jobs is presented in section 3. In section 4,
through extensive numerical experimentation, we demonstrate the importance of the
buffer design/cyclic sequencing interface for the throughput performance of the
flow line. In section 5, we propose two effective approximate procedures for the
buffer design under a fixed cyclic sequence of jobs. These procedures serve as the
main building block for the development of an iterative solution procedure for the
simultaneous buffer design and scheduling problem. This iterative procedure is
discussed in section 6. The effectiveness of the procedure is demonstrated through
extensive numerical experiments. Finally, in section 7, we present our concluding
remarks.

298 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

2. Cyclic scheduling in flow lines

In this section, we present a brief overview of the cyclic scheduling problem
in a deterministic flow line. The flow line consists of m stations in series, Ml, • • •, Mm,
with finite or infinite capacity buffers between the stations. Let ri be the number
of units of item Ii, i = 1 , . . . , l, required to meet a production target of the line over
a planning horizon, and r = (r t rt) be the production requirement vector for all
l different items produced in the line over the same horizon. If q is the greatest
common divisor of the integers r 1 rt, then the vector

is referred to as the Minimal Part Set (MPS) (term introduced by Hitz [7]). MPS
represents the smallest part set having the same properties as the production requirement
vector. Under a cyclic scheduling policy, the flow line will repetitively produce
MPSs, using the same sequence of jobs, i.e. items that form the MPS, for all part
sets. We may also produce an integral multiple of MPS in a repetitive manner;
however, without any loss of generality, we are going to confine our discussion to
the production of MPSs.

Let n be the number of jobs in an MPS. We denote by Piy, i = 1 n,
j = 1 m, the processing time of job Ji on station My. The cyclic scheduling
problem is to find the optimal sequence of jobs in a prespecified part set in order
to optimize the throughput rate of the line, or equivalently its cycle time (i.e. the
reciprocal of the throughput rate of the line). We are restricting our analysis to the
operation of conventional flow lines (i.e. by-passing of stations by some jobs is not
allowed). For references on flexible flow lines, which allow station by-passing by
some jobs, see Hitz [7] and Wittrock [19].

Let us now consider the operation of the line under the cyclic scheduling
approach. The units of an MPS go through the system in a given order, followed
by a second MPS in the same order and so on. An MPS schedule will be represented
by permutation cr= (~r(1), or(2) or(n)), where n is the number of jobs in the
MPS and or(i) is the ith job in the processing order. Note that we restrict our
analysis to permutation schedules only, i.e. no job passing is allowed once
the MPS is released to the system. The ith job in the rth MPS is the rth repetition
of job ~r(i) and is denoted by CTr(i). Let us first consider a flow line with infinite
capacity buffers. In this environment, the completion time C(crr(i) , j) of job Crr(i)
on station Mj can be found using the following recursive relationship (for similar
representations of permutation schedules in flow shops, see Baker [1], and Monma
and Rinnooy Kan [14]):

C(CYr(i), j) = maxIC(CYr(i - 1), j) , C(CYr(i), j - 1)} + Pa(i),j, (1)

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 299

where C(ar(O),j) = C(Crr_1(n),j), r = 2, 3 j = 1 m and C(cq(0) , j) = 0,
j = 1 m, C(cyr(i), 0) = 0, i = 1 n, r = 1, 2 The recursive structure
(I) can be equivalently represented, as pointed out by M o n ma and Rinnooy
Kan [14], by the directed graph depicted in fig. 1. Vertices (cry(i), j) are defined for
each element a(i) of the permutation, for r = 1, 2 and each station Mj. Directed

a) a i
) ! 1 (

I 1 I i

1 st M P S

.

. ~ ~.m-~ 2nd M P S
u)) a

I i)
a o i

Fig. 1. Directed graph representation of completion times:
infinite capacity buffers case.

arcs are defined f rom each vertex (Crr(i),j) towards (CYr(i + 1) , j) and (ar(i) , j + 1).
For i = n, we use the convent ion (o'r(n + 1) , j) = (err+l(1), j) to depict the cyclic
nature of the schedule. A weight Pa(o,j is associated with each vertex. Given the
above def ined graph, the complet ion t ime C(c~r(i), j) of job err(i) on station Mj is
equal to the weight of the maximum-weighted directed path f rom (an(l) , 1) to
(err(i), j) in the graph, as follows immediately f rom the recursive relationship (1).

Next we would like to discuss how this framework can be extended to problems
with finite capacity buffers. First, without any loss of generality, we may assume
that all buffers have either zero capacity or infinite capacity, because we can represent
each unit buffer location by a station at which all processing times are equal to zero.
Thus, in order to extend the framework, we only need to find a way to handle the
case where the buffer capacity between station Mj and Mj+I is equal to zero. The
comple t ion t ime of C(cy~(i),j) of the r th repetition of job or(i) on station Mj is now
given by

C(Crr(i), j)

= max{C(CYr(i - 1), j + 1), max{C(crr(i - 1), j)C(Crr(i), j - 1)} + P~(i),j 1, (2)

300 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

where C(o 'r (O) , j) = C (o ' r - l (n) , j) , r = 2, 3 j = 1 m and C(O-I(0),j) = 0,
j = 1 m, C(o-r(i), 0) = 0, i = 1 n, r = 1, 2 The difference between
relationships (1) and (2) is due to the blocking of jobs in the presence of zero
capacity buffers. In order to account for this in our graph-theoretic model, we define
diagonal arcs f rom vertices (o-r(i) , j + 1), i = 1 n, to vertices (o-r(i + 1), j) , as
illustrated in fig. 2. This model ing approach allows C(o ' r (i) , j) to be found by

i i i i
I t i I
i i i I

1 st M PS

i t t i
i J t i J
t i t

Fig. 2. Directed graph representation of completion times:
zero capacity buffers case.

determining the weight of the maximum-weighted path f rom vertex (o'1(1), 1) to
(Or(i), j) . However, in comput ing the weight of a path between these two nodes, the
weight of a vertex which is entered via one of the diagonal arcs is taken to be zero,
as is required by relationship (2).

The performance criterion we want to optimize is the throughput rate of the
flow line, or equivalently its cycle time. To define the cycle t ime of a flow line in
our model ing framework, we need to introduce the notion of a cylinder formed by
the directed graph of a single MPS. The easiest way to introduce this notion is to
present a graphical equivalent of the cylinder. Figure 3 depicts the cylinder formed
by the directed graph of a single MPS. Then, the total weight of the maximum-
weighted path around a cylinder formed by the directed graph of a single MPS
equals the cycle t ime (see McCormick et al. [13]). The weight F(o', ~') of a path "t"
around the cylinder (i.e. a chain of vertices that starts at a particular vertex and ends
at the same vertex after complet ing one tour around the cylinder), with the cylinder
being formed using the permutat ion schedule o" (as in fig. 3), can be expressed in
the fol lowing way:

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 301

° • . . • . • •

." ; .."

\ . :

• . r

Fig. 3. Directed graph representation of the MPS cylinder.

w[H w~
F(cr, I :)= ,~ Ptr(l),k + ~ Pcr(2),k + " " + ~ Pa(n)Jc, (3)

k=w~n k=w[k=wfn_l

where w = (w~ r w~) is a unique set of integers. For any given path t, we can
determine the unique set of integers w r = (w[. w~) to represent the weight of
the path using the above functional form. We will illustrate this point using the
following example.

EXAMPLE

Consider a 3-jobs per MPS, 3-station problem, where the buffer capacity
between stations 1 and 2 is infinitely large and the buffer capacity between stations
2 and 3 is zero. The cylinder of this problem is presented in fig. 4. We now consider

~ (c(1),3) [

llll

1
Fig. 4. Directed graph of the example problem.

the path 7, which is given by the dark lines in fig. 4. The weight of path 1: is equal
to

302 S. Karabati, P. Kouvelis, Buffer design ~ d cyclic scheduling decisions

F(cr, z) = po~(l),2 + Pa(1),3 + Pa(3),2.

Now, let w~= (3, 2, 2); then

3 2 2

F(tr, Z) = ~ Pa(1),k + ~ Pa(2),k + ~ Pa(3),k"
k=2 k=3 k=2

3. Formulation of the buffer design problem for a fixed sequence of jobs

We now present a formulation of the buffer design problem for a fixed
sequence of jobs. Consider a flow line with m stations. Let N be the total number
of buffers to be allocated, and xi be the number of buffers allocated between stations
Mi and Mi+l, i = 1 m - 1. Also, let T be the set of paths around the cylinder
formed in the resulting (m + N) station problem, where we treat each unit buffer
location as a station on which all processing times are equal to zero. For a given
buffer allocation X, X = (xl, x2 x,,,_l), the length of path z, z E T, is denoted
by f(z, X) and is given by the following relationship:

w mfkI }
f (z , X) = ~ k~__lPl,kl i = ~ (x t + l) + l

i=wfn 1=1

wn ~ m f k-I }
+ ' " + X XPn,k l | i : X(Xl + 1) + 1 '

i=w~n_lk=l [/=1
(4)

where Pi,j is the processing time of job Ji on station My, and 1{i = Y.~Z~(x t + 1) + 1}
is an indicator function. This function is equal to I, if (Y~t~-~ xi) m ~ y buffers have
been allocated into locations before station Mk, and 0 otherwise. This representation
off(z , X), which is a direct extension of the framework presented in section 2, is
illustrated by the following example.

EXAMPLE

We consider a 3-station problem with a unit capacity buffer location. Let z
r = 1. If the buffer location is placed after the first be a path with w~ = 2 and w n

station, i.e. xl = I and x2 = 0, the contribution of the first job to the weight of path
z is equal to Pl. 1. On the other hand, if the buffer location is placed between stations
2 and 3, the contribution of the first job is equal to PI,I +Pl,2. In eq. (4), the
contribution of the first job is given by

k~=lPl,kl i = (X l + 1) + 1 .
i=l l=l

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 303

When xl = 1 and x2 = 0, the above quantity is equal to P1,1; similarly, when x 1 = 0
and x2 = 1, the above quantity is equal to Pl,l +Pl,2.

Since the throughput rate of the line is equal to the reverse of the cycle time,
and the cycle time is equal to the length of the longest path in T, the problem of
buffer allocation can be formulated as follows:

(BAL) f = min F(X)

m - I

subject to ~_~ x i = N,
i=1

x i > 0 and integer, i = 1 m - 1,

where F(X) = maxrerf(' r , X). (BAL) is a resource allocation problem with integer
variables. The general resource allocation problem with integer variables in NP-
hard (Ibaraki and Katoh [9]). The objective function F(X) is not separable in xi's,
and it is neither convex nor concave in X. Thus, (BAL) can be safely characterized
as a general resource allocation problem with the implied consequence of being NP-
hard. The following simple examples demonstrate the lack of any nice convexity
(or concavity) properties of F(X).

EXAMPLES

Consider the 3-job 2-station problems with processing times given in tables 1

Table 1 Table 2

Example problem. Example problem.

and 2.

Stations Stations
1 2 1 2

1 100 100 1 90 1
Jobs 2 1 3 Jobs 2 10 100

3 2 1 3 2 3

Let cr= (1, 2, 3) be the fixed schedule. The cycle time of the problem given
in table 1 is equal to 203 when we have a zero capacity buffer between the stations.
When the buffer capacity is equal to 1, the cycle time is 200. However, when we
have 2 buffers between the stations, the cycle time becomes 104. Therefore, F(X)
is not convex in X. Similarly, consider the problem given in table 2. The cycle time
with no buffers between the stations is 200. When we have a single buffer between
the stations, the cycle time is 110. With the allocation of another buffer, the cycle
time becomes 104; therefore, F(X) is not concave in X.

304 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

To further illustrate the ill-structured nature of this problem, we demonstrate
below through a simple example the lack of any reversibility property for our
problem. The reversibility property is an important, and handy, concept for single-
product flow lines with stochastic processing times, and it states that the production
capacities (i.e. throughput rates) of a line and its dual line (formed by using the
reverse sequence of stations) are identical (see Yamazaki and Sakasegawa [21]).
Unfortunately, for our multi-product deterministic flow line operated under a cyclic
scheduling policy, the dual (mirror image) line does not necessarily have the same
throughput rate as the original line. The following example demonstrates this point.

EXAMPLE

Consider the 2-job 3-station problem with zero capacity buffers given in
table 3 and its mirror image in table 4. The original problem has a cycle time of
14, whereas the cycle time of the mirror image problem is 12. Note that increasing
the mirror image problem, we reversed the sequence of jobs; however, since the 2-
job cyclic scheduling problem has the same cycle time for both possible sequences
of jobs, the result is sequence independent.

Table 3

Example problem.

Table 4

Mirror image of the example problem.

Stations Stations
I 2 3 1 2 3

Jobs 1 2 6 6 Jobs 1 1 2 6
2 6 2 1 2 6 6 2

. The importance of the interface of buffer design and scheduling decisions in
deterministic flow lines

The (BAL) formulation of the previous section clearly indicates that the
sequencing decisions affect the selection of the throughput maximizing buffer
configuration of the flow line. The importance, however, of the interface of buffer
design and cyclic scheduling decisions is not immediately apparent from the above
formulation. Does this interface constitute a second-order effect for the throughput
performance of the line, and as such it can be ignored, with the immediate implication
that the two decisions can be treated independently? Or, is the impact of this
interface on the flow line's throughput significant enough to justify an attempt of
handling the two decisions simultaneously? To answer the above questions, we
pursued the following three avenues:

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 305

(a) We examined whether sequence-independent information, such as workload
distribution and processing time variability at each station, would be adequate
to identify the optimal buffer configuration.

(b) We examined the average throughput performance of specific buffer configurations
for a variety of schedules.

(c) We examined the degree of transferability of the results found in the stochastic
buffer design literature to the deterministic flow line environment. Our
performance measure for evaluating the buffer allocation rules is the throughput
rate of the flow line.

We discuss the results of our investigation in the next three subsections.

4.1. USE OF SEQUENCE-INDEPENDENT INFORMATION TO SELECT THE OPTIMAL BUFFER
CONFIGURATION FOR DETERMINISTIC FLOW LINES

In single-product flow lines with stochastic processing times, the characteristics
of the flow line under consideration (i.e. information on workload distribution and
variability in processing times) play an important role in developing guidelines for
optimal buffer design. For example, in flow lines with identical stations, i.e. stations
with similar workloads and variability in processing times, the inverted "bowl-
shaped" buffer allocation has been shown to be very effective (Hillier et al. [5]).
Similarly, in flow lines with balanced stations, i.e. stations with equal workloads and
unequal variability in processing time, the stations with large variability in processing
times should have large buffers for both input and output (Conway et al. [2]).

In this section, we will attempt to answer the questions whether similar
guidelines can be developed for multi-product deterministic flow lines using the
information on workload distribution among stations and processing time variabilities.
The workload of a station is equal to the sum of the processing times of the
operations that are going to be performed on this station. The processing time
variability in our case is the variability due to the mix of jobs processed at a station.
The processing time variability parameter used is the squared coefficient of variation.
The squared coefficient of variation (scv) of a station is equal to the unbiased
estimate of the variance of processing times divided by the square of the mean
processing time on this station. These above two parameters are schedule independent,
and therefore, if we can develop optimal buffer design rules based on these parameters,
we do not have to consider the interface between the buffer design problems and
scheduling decisions. In order to shed some light on this particular issue, we created
8- and 12-job, 6-station problems with a total of 4, 5 and 6 buffers to be allocated.
In table 5, we report our results. We looked at 6 different problem classes, with each
class being characterized by the workload distribution pattern and the squared
coefficient of variation of the stations. Within each problem class, we looked at
three different problem sets, with each set being characterized by the total number

306 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

Table 5

Number of instances that a buffer design was optimal over 50 different problems.

Problem Class No. of Optimal designs

class description buffers 8-job problems 12-job problems

llll0(10) 01120 (7)
4 02101 (7) 02020 (7)

Balanced 02110 (6) 02110 (6)
workloads 11111 (14) 11111 (12)
scv= l.OO 5 11120 (6) 02111 (7)

forall 01121 (5) 02120 (4)
staUons 21111 (6) 12111 (9)

6 11121 (6) 11211 (8)
11211 (5) 11121 (7)

IIII0(II) 01111 (14)
4 II011 (11) III01 (7)

Balanced III01 (8) llll0 (6)
workloads 11111 (21) 11111 (29)
scv=0.50 5 11120 (5) 02111 (5)
for all 21020 (4) 11120 (4)

11121 (13) 11211 (16)
6 11211 (I!) 11121 (12)

12111(11) 12111 (9)

C

11110(15) 01111 (12)
4 01II1 (10) 111t0(12)

Balanced 10111 (10) 11011 (11)
workloads I l I l l (40) 11111 (42)
scv=0.25 5 10121 (2) 11120 (2)

for all 21101 (2) 11201 (1),
stations 11211 (12) 11121 (15)

6 11211 (12) 11211 (13)
21111 (10) 12111 (8)

IIII0 (13) 02110 (13)
4 11200 (6) IIII0 (9)

Inverted bowl- 01201 (5) 01210 (6)
shaped workloads 12110(10) 11210 (8)

scv=O.50 5 I1210 (4) 11111 (7)
fo~all IIIII (4) 02120 (6)

stations 21111 (6) 21210 (5)
6 12210 (6) 12120 (5)

12111 (5) 11220 (5)

01012 (15) I0111 (12)
4 10012 (9) 11011 (9)

Bowl-shaped 10111 (7) 01012 (7)
workloads 11012 (11) 10112 (8)
scv=0.50 5 10112 (7) 21011 (6)

for all 01013 (6) 11012 (6)
smfions 11112 (17) 21012 (11)

6 20112 (16) 11112 (11)
10122(14) 20112 (10)

Balanced
workloads

increasing scv's
0.25, 0.40 0.85, 1.00

O l l l l (21) 01111 (23)
4 10111 (8) 01021 (6)

01021 (7) 01120,(4)
I I I I I (16) 01121 (17)

5 01112(12) 01112(11)
01121 (8) 02111 (9)
11121 (16) 11121 (9)

6 11211 (9) 11112 (8)
11112 (6) 02031 (7)

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 307

of buffers to be allocated. For each problem set, we generated 50 problems using
the parameters of the problem class and for each problem, we first randomly chose
a schedule of jobs and then determined the optimal buffer allocation for this schedule
by complete enumeration. For each problem set, we report the three most common
optimal buffer designs and the number of problems for which each particular design
has been the optimal buffer allocation. For example, in problem class A with
balanced workloads and unit squared coefficients of variation, and for a total of 4
buffers to be allocated, buffer allocation X = (1, 1, 1, 1, 0) has been the optimal
allocation in 10 problems out of 50 8-job problems. Similarly, buffer allocation
X = (1, 2, 1, 0, 1) has been the optimal allocation in 7 problems out of 50 problems
in the same problem set. The results of table 5 clearly indicate that, for most of the
problem classes, no particular buffer design dominates other designs. This observation
strongly suggests that the solution of the buffer design problem in multi-product
flow lines depends also on information other than the schedule-independent information
we have used in identifying the problem classes, and it constitutes a first indication
that the buffer design and cyclic scheduling interface is important.

4.2. THROUGHPUT PERFORMANCE OF BUFFER CONFIGURATIONS FOR A VARIETY OF
JOB SEQUENCES

In this subsection, we explicitly consider the effects of scheduling decisions
on optimal buffer design and attempt to quantify the relative importance of the
scheduling decisions in terms of the throughput rate of the flow line. In table 6, we
report our computational results. We looked at 6 different problem classes, with
each class being characterized by the workload distribution pattern and the squared
coefficient of variation of the stations (see table 5 for descriptions of problem
classes). We concentrated on 8-job problems with a total of 6 buffers to be allocated.
Our aim was to observe the throughput performance of the flow line for buffer
configurations when 50 randomly generated sequences of 8 jobs are performed on
it. For a specific job sequence and buffer configuration, we calculated a normalized
throughput rate. In order to normalize the throughput rate of a problem, we divided
it by the maximum throughput rate of the flow line with infinite capacity buffers
between the stations. Note that in a flow line with infinite capacity buffers, all
schedules have the same throughput rate (see Karabati and Kouvelis [10]). The
information reported in the segment of the table that corresponds to a specific
problem class is the following. The first row documents the throughput performance
(normalized throughput rate) of the flow line when the optimal buffer configuration
is implemented for each job sequence. The values in columns 1 to 3 are the maximum,
minimum, and average normalized throughput rate of the optimal buffer configurations
over the 50 random schedules. The observed standard deviation of the throughput
rates over the 50 schedules is reported in column 4. In balanced workloads, unit
squared coefficients of variation problem (problem class A in table 6), the maximum
and minimum throughput rates achieved by 50 different schedules are 0.778 and

308 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

Table 6

Throughput performance of buffer configurations for a variety of job sequences
(50 sequences).

Problem Throughput Deviation
class Design Max Min Mean S.D. Mean S.D.

Optimal 0.778 0 . 6 5 1 0.714 0.029 - -
21111 0.765 0.577 0.663 0.041 7.07 5.97

A 11121 0.773 0.577 0.667 0.041 6.58 5.30
I 1211 0.756 0.577 0.672 0.039 5.94 4.74

Optimal 0.899 0.756 0.825 0.039 - -
11121 0.877 0.694 0.787 0.044 4.16 3.24

B 11211 0.864 0.694 0.790 0.043 4.24 3.49
12111 0.864 0.694 0.789 0.042 4.33 3.29

Optimal 1.000 0.835 0.923 0.043 -
21111 1.000 0.744 0.864 0.053 6.35 3.63

D 12210 0.956 0.772 0.852 0.048 7.63 4.89
21210 1.000 0.744 0.873 0.056 5.39 3.98

Optimal 1.000 0.864 0.935 0.034 - -
11112 1.000 0.804 0.904 0.051 3.36 4.11

E 20112 1.000 0.809 0.900 0.047 3.76 4.03
10122 0.981 0.787 0.876 0.048 6.32 4.26

Optimal 0.895 0.702 0.784 0.046 - -
l 1121 0.822 0.629 0.732 0.054 6.51 5.31

F 11211 0.876 0.609 0.738 0.061 5.84 5.36
11112 0.881 0.609 0.742 0.060 5.34 4.51

Optimal 0.869 0.720 0.793 0.040 - -
Mirror 21111 0.843 0.654 0.747 0.039 5.74 4.36

image of F a~ 12111 0.867 0.622 0.755 0.056 4.87 4.62
11211 0.850 0.618 0.737 0.057 7.06 5.03

a~ Mirror image of a problem class is obtained by reversing the order of stations.

0.651, r e spec t ive ly , when the op t ima l buf fe r des igns for each schedule are used. A

c o m p a r i s o n o f m a x i m u m and m i n i m u m throughput rates under op t imal buf fe r des igns

in table 6 c lear ly demons t r a t e s the s ignif icant e f fec t o f schedul ing on the t h r o u g h p u t

rates.

For each p r o b l e m class s e g m e n t in table 6, we also p resen t the p e r f o r m a n c e

o f the m o s t c o m m o n buf fe r des igns o f a p r o b l e m class, which are ob ta ined us ing

e x p e r i m e n t s s imi la r to the ones p resen ted in sect ion 4.1. For e x a m p l e , in 8- job, 6-

buf fe r , ba l anced w o r k l o a d s and unit squared coef f ic ien t s o f var ia t ion p r o b l e m s ,

bu f f e r des igns X = (2, 1, 1, 1, 1), X = (1, 1, 1, 2, 1), and X = (1, 1, 2, 1, 1) (p r o b l e m

c lass A o f table 6) have been the mos t c o m m o n , and their p e r f o r m a n c e o v e r 50

schedu les are t abu la ted in rows 2, 3, and 4, r e spec t ive ly . In c o l u m n 5 o f t ab le 6,

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 309

we present the percentage deviations of the throughput performances of these designs
from the flow line performance when optimal buffer designs are used for the
corresponding schedules. These results show that we may end up with considerably
inferior throughput rate performances (more than 5% in most cases) if we do not
take the scheduling decisions into account in allocating the buffers.

4.3. BUFFER DESIGN GUIDELINES FOR SINGLE-PRODUCT STOCHASTIC FLOW LINES
AND THEIR APPLICABILITY TO MULTI-PRODUCT DETERMINISTIC FLOW LINES

As a last test on the importance of the interface of buffer design and scheduling
decisions, we looked at the extent to which simple buffer design rules developed
in the single-product stochastic flow line literature are valid (i.e. near optimal in
terms of throughput performance) in our multi-product deterministic flow line
environment. One of the most recent and comprehensive studies on buffer design
rules for stochastic flow lines is the Conway et al. paper [2]. All of their design
rules use sequence-independent information on average workload and coefficient of
variation at the various stations. Among the most well documented rules in the
above work were the rules for allocating buffer capacity in flow lines with identical
stations (i.e. equal workloads and coefficients of variation). We tested the validity
of these rules in our environment by using the reported examples in Conway et al.
[2, p. 236, table V]. Validity of these rules in our environment would have implied
a very weak interface of buffer design and scheduling decisions, with the opposite
result indicating the significance of such an interface.

According to the Conway et al. [2] study, for a six identical station flow line,
the appropriate buffer designs for throughput maximization, depending on the total
number of buffers to be allocated, are the following:

Total number of buffers Optimal buffer design(s)

4 (0, 1, 1, 1, 1) or (1, 1, 1, 1, 0)

5 (1,1,1,1,1)

6 (1,1,2,1,1)

To examine the performance of these rules in our environment, we experimented
with 8-job and 12-job cyclic scheduling problems on six identical station flow lines
for various (but equal across stations) squared coefficients of variation. In table 7,
we report our results. For a specific squared coefficient of variation at the stations
and a given total number of buffers, we computed the average throughput performance
of the suggested buffer design in Conway et al. [2] over 50 randomly generated
problems (i.e. the job sequence for each problem was chosen randomly). This
performance was then compared with the average exhibited performance when the
optimal buffer design was used for each problem. The optimal buffer design was

310 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

Table 7

Throughput performance of the suggested design rules in the stochastic buffer design literature
for six identical station determinist ic flow lines.

No. of scv of No. of No. of problems Average performance % deviation in
jobs stations buffers Conway et al. design is optimal Conway et al. Optimal design TH performance

4 10 0.629 0.673 7.3
1.00 5 14 0.671 0.694 3.6

6 5 0.678 0.722 6.6

4 11 0.714 0.754 5.8
0.50 5 21 0.778 0.785 1.0

6 11 0.783 0.821 5.0

4 15 0.792 0.828 4.8
0.25 5 40 0.856 0.863 0.8

6 ! 2 0.881 0.906 2.9

12

4 4 0.611 0.642 5.2
1.00 5 12 0.647 0.666 3.0

6 8 0.657 0.696 6.0

4 14 0.701 0.732 4.6
0.50 5 29 0.751 0.762 1.5

6 16 0.772 0.799 3.6

4 12 0.786 0.809 3.0
0.25 5 42 0.843 0.845 0.3

6 13 0.860 0.879 2.2

obtained through complete enumeration. As documented by the numbers in the last
row of our tables, the suggested buffer designs in the stochastic literature exhibited
significant suboptimality, which in some cases was on average greater than 5%, and
it became increasingly worse as the squared coefficient of variation became larger.
In other words, as the variation in the processed product mix increases, the worse
the above design rules perform.

5. Heuristic solution procedure for the buffer design problem

Our discussion in sections 3 and 4 established the importance of the interface
of buffer design and cyclic scheduling decisions. In our presentation so far, whenever
it was needed, for the small size problems we dealt with, we generated the optimal
buffer design for a specific job sequence through complete enumeration. Due to the
difficult combinatorial nature of (BAL), the manufacturing system designer needs
effective heuristic procedures to handle large size problems. In this section, we
present two approximate solution procedures for the buffer design problem for a
fixed sequence of jobs.

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 311

The first approximate solution procedure is a greedy approach. In the resource
allocation problem with integer variables, the greedy approach generates an optimal
solution if the objective function is convex and separable in the decision variables.
However, as we have discussed earlier, the objective function of the buffer allocation
problem is not convex, and therefore the greedy approach can only be used as an
approximate solution procedure. We now present the greedy heuristic.

HEURISTIC

Step 0:

Step 1:

Step 2:

GREEDY

L e t x i = 0 , i = l m - 1 a n d n = l .

F o r l = l t o m - 1 do
Lety~=xi , i = l m - l , i # l and y~ = x l + l .
Compute the cycle time gt with buffer allocation y[, i = 1 m - 1.

Let k = arg m i n l ~ t ~ m _ l f t t . Let xi = yi k, i = I m - 1.
Let n = n + 1, if n <N, go to step 1, otherwise X = (x l, x 2 Xm_1) is
the resulting buffer allocation.

The second approximate solution procedure we propose is a variation of the
dynamic programming formulation of the resource allocation problem with integer

k,n k,n variables. Let y k (n) = (y l , Y2 yk, n) be an allocation of n buffers into the
first k locations, i.e. the segment of the flow line between stations M: and Mk÷ i.
We define the following recursive relationship to determine yk(n) :

y k (n) =(yki,n = y k - l ' n - t i : l , . , k - l , yk,n : l)

where l is chosen such that the cycle time of the problem determined by the first
k + 1 stations and the buffer allocation y k (n) is minimized. (As variations of this
approach, we may consider more than k + 1 stations in determining the cycle time,
assuming zero capacity buffers between the remaining stations, i.e. stations after
station Mk+ l in the line.) The above procedure generates the optimal solution if the
objective function is separable in the decision variables; however, it can be easily
shown that, for the buffer allocation problem, this approach may result in non-
optimal solutions.

We have performed computational experiments with different problem classes.
Each problem class is identified by the distribution of workloads among stations
and the variability in the processing times of stations. For each problem class, we
created a new set of 50 6-station problems. In table 8, we report the average
deviations of approximate solutions from the optimal throughput rates as a percentage
of the optimal throughput rates. Our combined heuristic is a combination of the
greedy procedure and two versions of the dynamic programming heuristic (we
consider k + 1 and k + 2 stations in determining the cycle time in minimizing l~k(n)),
where the best cycle time value of these three heuristics is taken as the cycle time
of the combined heuristic.

312 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

Table 8

Performance of heuristic procedures for the solution of (BAL).

% deviation from optimal
Problem No. of No. of

class buffers jobs Greedy DP Combined

4 8 1.68 1.70 0.26

12 0.80 1.70 0.17

A 5 8 1.92 0.41 0.08

12 2.13 0.86 0.23
6 8 1.66 0.39 0.18

12 2.06 0.51 0.25

4 8 2.16 0.83 0.18

12 1.44 0.80 0.25

B 5 8 1.77 0.52 0.27

12 2.22 0.52 0.16

6 8 0.48 0.03 0.01
12 1.12 0.82 0.10

4 8 0.60 0.01 0.01

12 1.68 0.10 0.05

C 5 8 0.81 0.12 0.05

12 1.02 0.18 0.04

6 8 0.07 0.00 0.00

12 0.38 0.06 0.00

4 8 0.86 0.87 0.18

12 0,73 1.36 0.16

D 5 8 1.79 0.84 0.I4

12 1.17 1.28 0.14

6 8 1.90 0.51 0.29

12 2.09 0.98 0.28

4 8 1.22 0.60 0.21

12 0.94 0.75 0.10

E 5 8 2.16 0.33 0.09
12 1.06 1.05 0.29

6 8 0.87 0.25 0.07

12 0.90 0.64 0.11

4 8 1.80 0.60 O. 19

12 2.07 1.03 0.42

F 5 8 1.24 0.33 0.06

12 2.39 0.83 0.29

6 8 1,16 0.28 0.14

12 1.80 0.72 0.22

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 313

As the results indicate, the performance of the approximate solution procedure
is very good. For most problems, the greedy procedure exhibits a deviation from
the optimal throughput rates of less than 2%, while the dynamic programming
approach exhibits a deviation of less than I%. The combined heuristic has an
impressive performance of less than 0.5% deviation from optimality for all problems.
All approximate solution procedures are computationally very efficient, with problems
of up to 20 buffers to be allocated between 10 stations being solved in less than
10 CPU seconds on a multi-user IBM 3081-D. Table 9 reports results on small to
medium size problems because these were the ones that we could obtain the optimal

Table 9

Throughput performance of the iterative procedure for simultaneous
buffer design and cyclic scheduling decisions.

Initial TH a) Final TH
Problem No. of No. of

class buffers Mean S.D. Mean S.D. iterations

4 0.751 0.024 0.856 0.022 2.3
B 5 0.803 0.035 0.901 0.027 2.0

6 0.829 0.030 0.921 0.021 2.1

4 0.818 0.033 0.909 0.022 2.1
C 5 0.863 0.032 0.954 0.024 2.0

6 0.911 0.029 0.982 0.016 2.1

4 0.826 0.048 0.936 0.035 2.1
E 5 0.868 0.032 0.971 0.031 2.1

6 0.897 0.040 0.990 0.011 2.1

a) Throughput rate.

buffer design through complete enumeration for comparison purposes. We will
employ these approximate solution procedures in the development of an iterative
approach to solve the buffer design and scheduling problems simultaneously. This
iterative approach is discussed in the next section.

6. Simultaneous buffer design and scheduling problem

We now present a simple iterative solution procedure to find local optimal
solutions for the simultaneous buffer design and scheduling problem.

PROCEDURE ITERATIVE (PI)

Step 0: Choose an arbitrary schedule tr.

Step 1: Solve the buffer allocation problem for schedule tr.

314 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

Step 2: Solve the scheduling problem with the buffer allocation obtained in step 1.
Let y be the optimal schedule. If no improvement has been achieved,
stop; otherwise, let tr= yand go to step 1.

Procedure iterative is guaranteed to converge to a local optimal solution within a
finite number of iterations because, upon completion of steps 1 and 2, the objective
function value, i.e. the cycle time (or equivalently the throughput rate) of the
problem is smaller than or equal to that of the previous iteration.

In table 9, we report on our computational experience with 8-job, 6-station,
and 4, 5, and 6 buffer problems. We consider problem classes B, C, and E, and 20
randomly created problems in each class. For these problem sets, we have used an
enumeration scheme to solve the buffer allocation problem in step 1, and the optimal
cyclic scheduling algorithm of Karabati and Kouvelis [10] in step 2.

In table 9, we first present in columns 2 and 3 the average and standard
deviation of the normalized throughput rates after step l of the first iteration is
completed. Similarly, in columns 4 and 5 the average and standard deviation of the
normalized throughput rates at the completion of the procedure are tabulated. In
column 6, the average number of iterations is documented. (The average CPU time
for an iteration was equal to 4.3 seconds on a multi-user IBM 3081-D.) The results
indicate that Procedure Iterative improves considerably upon the performance of the
initial buffer design-schedule combination within a few iterations. In some cases,
the throughput improvement over the initially generated buffer design is greater
than 10%. The performance of the above suggested iterative procedure is sensitive
to the selection of the initial schedule. Based on our computational experience, we
suggest that 2 - 3 randomly selected schedules be used as initial seeds to the procedure.
This is adequate in most cases to obtain a very good buffer design. A variant of
the iterative procedure is to start from a buffer design, determine the optimal job
sequence for the resulting flow line configuration and then, based on this new job
sequence, determine the optimal buffer design. This process is repeated until a local
optimal is reached. To start this variant of the iterative procedure (we refer to it as
Iterative Procedure with Initial Buffer Design (IPIB)), we used buffer design suggested
by the stochastic flow line literature. In table 10, we present a comparison of the
two procedures over 3 problem classes with 20 randomly generated problems in
each class. The IPIB procedure was outperformed by the PI procedure, when initialized
by three different schedules, as the results of table 10 indicate (due to the similar
nature of results on all problem classes, we report results only for three problem
classes).

We have also developed a heuristic version of Procedure Iterative to find
approximate solutions for large size problems. We have employed the combined
heuristic presented in section 5 to solve the buffer allocation problem in step 1, and
in step 2 we have used the approximate solution procedure of Karabati and Kouvelis
[10] to find a good solution for the cyclic scheduling problem. Other heuristic
procedures for the cyclic scheduling problem, such as the McCormick et al. [13]

S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions 315

Table 10

Comparison of the PI and IPB iterative procedures.

PI (3 initial schedules)
Problem No. of

class buffers Final TH No. of iterations

IPIB

Final TH No. of iterations

4 0.854 2.05 0.846 1.25
B 5 0.895 2.10 0.891 1.15

6 0.924 2.20 0.925 1.50

4 0.927 2.15 0.914 1.20
C 5 0.970 2.20 0.969 1.00

6 0.991 2.20 0.989 1.I0

4 0.776 2.15 0.746 1.70
E 5 0.780 2.40 0.762 2.10

6 0.859 2.00 0.847 1.55

Table 11

Throughput performance of the heuristic iterative procedure for simultaneous buffer design
and cyclic scheduling decisions.

Problem Problem Initial Final Benchmark No. of Final buffer
class no. TH TH TH iterations design

1 0.718 0.836 0.781 2 121111210
2 0.757 0.830 0.807 2 111112111
3 0.743 0.827 0.806 3 111211210

B 4 0.735 0.802 0.798 2 111111220
5 0.773 0.831 0.798 2 111111211
6 0.712 0,806 0,799 2 112111210
7 0.732 0,809 0.794 2 101103220
8 0.733 0.813 0.789 2 111121210

1 0.723 0.846 0.821 3 111211021
2 0.734 0.843 0,824 2 301111120
3 0.767 0.817 0.819 2 121111120

E 4 0.765 0.848 0.828 2 211110112
5 0.848 0.880 0.844 2 211111111
6 0.780 0.884 0.858 2 211011121
7 0.789 0.840 0,854 2 111220120
8 0.770 0.843 0.840 2 111112111

1 0.707 0.806 0.787 2 111112111
2 0.691 0.779 0.769 4 011121220
3 0.738 0,800 0.762 2 110112121

F 4 0.734 0.813 0,784 2 111111121
5 0.712 0.754 0.762 2 120102211
6 0.752 0.804 0.771 3 211211101
7 0.694 0.780 0.774 3 111101221
8 0.717 0.790 0,756 2 001022311

316 S. Karabati, P. Kouvelis, Buffer design and cyclic scheduling decisions

heuristic, could be used at this stage. The heuristic version of Procedure Iterative
is not guaranteed to converge to a local optimal solution, because we may now have
an increased objective function value upon completing steps 1 and 2. Therefore, as
a stopping rule, we have terminated the procedure whenever the objective function
value has deteriorated upon completion of an iteration. In table 11, we report on
our computational experience with 15-job, 10-station and 10-buffer problems for 3
different problem classes (for other problem classes mentioned in previous sections,
we observed similar results). In columns 3 and 4 of table 11, we present the initial
(after step 1 has been completed in the first iteration) and final (after the procedure
has been terminated) normalized throughput rates for different problems. In order
to measure the relative effectiveness of the proposed heuristic procedure, we considered
an alternative method to develop good schedule-buffer design combinations. For
each problem we randomly created 100 schedules, and for each schedule we deter-
mined a buffer design using the combined buffer allocation heuristic presented in
section 5. In column 5 of table 11, we report the best throughput rate obtained by
the alternative method. (The average computational requirement of this approach
was 350 CPU seconds per problem.) In column 6 of table 11, we document the
number of iterations for each problem. (The average CPU time for each iteration
was equal to 5.0 seconds on a multi-user IBM 3081-D.) Finally, in column 7 of
table 11, we present the final buffer design for each problem. A comparison of
columns 4 and 5 clearly demonstrates the effectiveness of the proposed heuristic
for large size problems in terms of generating a good schedule-buffer design
combination with a reasonable amount of computational effort.

7. Conclusion

The determination of the optimal buffer configuration for a multi-product
flow line with deterministic processing times is a difficult problem. As our discussion
demonstrated, the use of sequence-independent information, such as workload
distribution and squared coefficient of variation of processing times at the various
stations, is not adequate to generate buffer design rules to maximize the throughput
performance of the flow line. Simple design rules developed for single-product
stochastic flow lines are not transferable to this environment. The interface of
buffer design and sequencing decisions has important effects on the flow line
performance and should not be ignored. Our proposed modeling framework of
section 2 and 3 adequately captures this interface. For a prespecified cyclic scheduling
policy, our simple heuristic procedures (greedy heuristic and dynamic programming
approximation scheme) can be used to generate near optimal buffer configurations.
For simultaneous decision making of buffer design and cyclic sequencing our suggested
iterative procedure is adequately effective for all practical purposes. This research
is one more step towards understanding the complex behavior of buffered flow line
systems. Further research on the topic is needed, particularly for multi-product
stochastic flow lines.

S. Karabati, P, Kouvelis, Buffer design and cyclic scheduling decisions 317

References

[1] K.R. Baker, A comparative study of flow shop algorithms, Oper. Res. 23(1975)62-73.
[2] R. Conway, W. Maxwell, J.O. McClain and LJ. Thomas, The role of work-in-process inventory in

serial production lines, Oper. Res. 36(1988)229-241.
[3] F.S. Hillier and R.W. Boling, The effect of some design factors on the efficiency of production lines

with variable operations times, J. Ind. Eng. 17(1966)483-492.
[4] F.S. Hillier and R.W. Boling, Finite queues in series with exponential or Erlang service time, Oper.

Res. 15(1967)286-303.
[5] F.S. Hillier, R.W. Boling and K.C. So, Toward characterizing the optimal allocation of storage space

in production line systems with variable operation times, Working Paper, Department of Operations
Research, Stanford University (March 1990).

[6] F.S. Hillier and K.C. So, The effect of coefficient of variation of operation times on the allocation
of storage space in production line systems, liE Trans. 23(1991)198-206.

[7] K.L. Hitz, Scheduling of flexible flowshops, Technical Report, MIT, Cambridge, MA (1979).
[8] G.C. Hunt, Sequential arrays of waiting lines, Oper. Res. 4(1957)674-683.
[9] T. lbaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches (The MIT Press,

Cambridge, MA, 1988).
[10] S. Karabati and P. Kouvelis, Cyclic scheduling in flow lines: Modeling observations, effective

heuristics and an optimal solution procedure, Working Paper, Management Department, University
of Texas at Austin (1991).

[11] T.-E. Lee and M.E. Posner, Performance measures and schedules in periodic job shops, Working
Paper 1990-012, Department of ISE, Ohio State University (1991).

[12] H. Matsuo, Cyclic sequencing problems in the two-machine permutation flowshop: Complexity,
worst-case and average-case analysis, Naval Res. Log. Quart. 37(1990)679-694.

[13] S.T. McCormick, M.L. Pinedo, S. Shenker and B. Wolf, Sequencing in an assembly line with
blocking to minimize cycle time, Oper. Res. 37(1989)925-935.

[14] C.L. Monma and A.H.G. Rinnooy Kan, A concise survey of efficiently solvable special cases of the
permutation flowshop problem, RAIRO 17(1983)105-119.

[15] T. Park and H.J. Steudel, The need to consider job sequencing policy when determining buffer
capacity for fmc flow lines, in: Proc. 3rd ORSA/TIMS Conf. on Flexible Manufacturing Systems
(Elsevier, 1989).

[16] N.P. Rao, Two stage production systems with intermediate storage, AIIE Trans. 7(1975)414-421.
[17] B.R. Sarker, Some comparative and design aspects of series production systems, l ie Trans. 16(1984)

229- 239.
[18] T.L. Smunt and W.C. Perkins, Stochastic unpaced line design: Review and further experimental

results, J. Oper. Manag. 5(1985)351-373.
[19] R.J. Wittrock, Scheduling algorithms for flexible flow lines, IBM J. Res. Rev. 29(1985)401-412.
[20] H. Yamashina and K. Okamura, Analyzing in-process buffer for multiple transfer line systems, Int.

J. Prod. Res. 21(1983)183-195.
[21] G. Yamazaki and H. Sakasegawa, Properties of duality in tandem queueing systems, Ann. Inst. Sat.

Math. 27(1975)201-212.

