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ABSTRACT 

1 

For modeling investment decision situations, we present a mathematical basis that 
views the cash flow sequences as growth processes. We first emphasize the pedagogi­
cal value of the basic model by showing that all traditionally established measures of 
worth (profitability) as well as the compound interest formulas of financial mathe­
matics can actually be derived from it by simple algebraic manipulations. Then, we 
argue that the traditional measures fail to recognize the particularities of certain deci­
sion situations and point out the need for developing tailor made measures for each 
specific problem. We demonstrate, using real life examples, our approach for devel­
oping new measures and, by incorporating decision variables, practical optimization 
models from this mathematical basis. 

INTRODUCTION 

A major group of investments utilizes capital resources. These investments, 
usually characterized by major cash outflows, are used to acquire production facil­
ities that, in turn, generate cash inflows. Furthermore, capital can be borrowed 
and excess cash can be lent, both for a fee called interest. This seemingly com~ 
plex process can be viewed as a simple growth process of cash {or capital) since, 
by its very nature, cash inflows exceed cash outflows. To represent this growth 
process, in this paper, we present a mathematical basis for modeling investment 
decision situations. 

In evaluating investment alternatives, the question of measure of worth 
{profitability) has always been a delicate and sometimes controversial issue, even 
under the assumptions of certainty. Difficulty arises from the fact that benefits 
obtained and resources expended take place at different points of time over a long 
stretch of time. This issue is usually introduced symbolically as the time value 
of money in financial analysis and engineering economy textbooks, meaning 
that time of acquisition {or spending) has an effect on the value of money ac­
quired (or spent) (see, for example, [121). The concept of present value is an in­
genious invention which opens up an avenue to resolve the issue. The roots of 
the concept can be traced back in the early works of Fish [9], Fisher [10], Grant 
[11], and Hirshleifer [13]. 
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In spite of the widespread use of the present value and other measures derived 
from it, controversy and discussion still continue on the consistency of these 
measures. See [2] for a comparison, and [16] for a recent review of this literature. 
The treatment proposed here is hoped to shed some light on the origins by estab­
lishing a common mathematical basis from which all these traditionally known 
measures as well as the compound interest formulas of financial mathematics can 
be derived. Such a development has a pedagogical value and provides an alterna­
tive viewpoint to the usual textbook derivations. However, through an innova­
tive use of this basis, the main contributions of the paper are: 

1. to construct investment decision models that incorporate the decision (or, 
design) variables whose values are to be optimized with respect to a cho­
sen measure, 

2. to derive nontraditional measures of worth for evaluating certain invest­
ment alternatives where traditional measures prove inadequate, and hence, 

3. to provide a unified framework for the mathematical modeling of invest­
ment decision situations. 

The plan of the paper is as follows. First, we introduce the general growth 
model and show that all the compound interest formulas of financial mathemat­
ics can actually be derived from it Next, by defining the concept of equivalence 
among growth processes, we derive all basic traditional measures of worth com­
monly used in the literature. Then, we extend the growth model to include some 
decision variables and present a prototype optimization framework. We illustrate 
the use of this framework on an example investment decision problem taken 
from the petroleum industry. We also discuss and demonstrate, using real life 
examples, how to develop new measures based on our proposed approach for 
some investment decision situations where traditional measures are not suitable. 
Finally, we give our concluding remarks. 

DEVELOPMENT OF THE GROWTH MODEL 

We conceive the growth process as composed of two interacting sub pro­
cesses: 

1. productive growth, and 
2. reproductive growth. 

Production can be positive or negative, i.e., production is either the cash inflow 
(positive production) or cash outflow (negative production) resulting from the 
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operation of the system. Reproduction also can be positive or negative in the 
sense that excess cash reproduces cash through investment (positive reproduc­
tion) or cash deficit financed by loans reproduces itself with accrued interest (neg­
ative reproduction). These reproductions correspond to interest earned or paid as 
typical examples. 

Now, let x be the cash position of the growth process at a point of time. 
The variation of x in time t can be represented by the following differential equa­
tion: 

dx 
dt=ax+a. (1) 

The left hand side of equation (1), derivative of x with respect to time t, is the 
rate of change in x. This rate of change is equated to the sum of two terms. The 
first is the rate of reproduction and the second is the rate of production. Here, a 
and a can both be functions of time. The reproduction rate ( a x ) is proportional 
to x, and its proportionality factor a can be termed unit reproduction rate. Its 
dimension is dollar per dollar per unit time (as x is measured in terms of dollars). 
Here, a can be interpreted as interest rate, and a as the rate of cash flow. Obvi­
ously, the dimension of a is dollars per unit time. 

Equation (1), which models the growth of cash due to investment, is based 
on the following assumptions. 

1. Products, services and inputs are measured with monetary units; i.e., 
these are represented by the net cash flow rate a. 

2. Any cash credit is reinvested and any cash debit is financed by loans. 

3. Both reinvestments and loans, earn and cost the same rate. 

Thus, equation (1) represents a continuous growth in time, therefore, we call 
it the continuous time growth equation. Its discrete growth equation can be readi­
ly constructed as follows: 

x1 =(l+a,)x,_1 +a,. (2) 

Here, x1 denotes the cash position at the end of time unit t (end of year cash posi­
tion, for example). This difference equation can be put to the following similar 
form as in equation (1) 

~, = a,x,_1 + a, (3) 
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where Ax, = x, - x,-1, the growth increment in time unit t. 
Equation (1) is a fmt order linear differential equation whose solution can 

readily be obtained as: 

(4) 

Equation (4) expresses the cash position of the investment situation at the point 
of time t where Xo is the value of x at time t = 0. In a typical investment situa­
tion, xo is negative and represents the initial investment, say /. This equation is 
what we call the continuous growth model of the investment situation. Here, 
cash flow rate a and unit reproduction raie a are taken to be functions of time in 
general. If a is constant, equation (4) becomes: 

For constant cash flow rate a, equation (5) becomes even simpler: 

We get the discrete time analog of equation (4) as a solution to 
equation (2) as: 

(5) 

(6) 

(7) 

This is the analogous discrete growth model. Similarly, for constant unit repro­
duction rate a, equation (7) becomes: 

x, = (xo + ±an(l + a)-n) (1 +a)'. 
n=l 

(8) 

Furthermore, for constant cash flow rate a, the following closed formula is ob­
tained: 

(9) 
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The continuous growth model represents a growth which talces place every 
moment of time, and discrete growth model represents a growth which talces 
place by discrete increments at discrete points of time. A graphical representation 
for a typical invesbnent situation is given in Figure 1 for both models (equa­
tions (6) and (9)). As it is seen in Figure l, for the same values of a= 0.1 and 
a= 2, x(t)>x,. It can be shown that this property holds in general. However, if 

we define Cl= ln(l+a) = ln(l.1) = 0 0953 and Q =(a/a) X a= (.0963/.1) 2 = 
1.906, where a and a are the values for the discrete case, and substibJte them in 
the continuous case, we obtain x(t) = x I for the discrete values oft. 

All formulas of financial mathematics can be derived from equation (4) and 
equation (7) which are solutions of equations (1) and (2). Therefore, we like to 
call them the fundamental equations of financial analysis. Let us demonstrate by 
deriving a couple. In the following examples, continuous and discrete versions 
are given side by side, continuous on the left and discrete on the right 

Cash 

15 

10 

5 

x0 = -10, c, = 10%, a= 2 

x(t) = (-10 + 20(1 - e-0-lt)J e0·1t -

x, = [-10 + 20(1-1.1-')] 1.1' -

position o 1----------------:::::::,,;;:=a;a=::lf---------i 

-5 

-10 

-15 '-----''-------'------'-----'---'-----'---.....___~~~~~ 
0 2 3 4 .5 6 7 8 9 10 

Time,t 

FIGURE 1. Graphical representation of growth processes. 
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ExAMPLE. Single payment, compound amount formula, with a = 0 and a = 
constant: 

x = x0e0fl, x, =xo(l+a)'. 

EXAMPLE. Uniform cash flow series compound amount formula, with .xo= 
0, a = constant, and a = constant: 

where the uniform cash flow series is spread over the closed interval [0,h ]. More 
familiar forms can be obtained by straightforward algebraic simplifications as 
follows. 

( (l+a)h-1) 
Xh=a . 

a 

These are well known future value formulas of uniform cash flows in continuous 
and discrete compounding. Note that, in all these derivations, discrete versions 
can be obtained from continuous versions by simply substituting (1 + a ) for 
ea and vice versa. 

Obviously, formulas can be derived for any functional form of production 
rates a(t) (cash flow rate) or q (cash flow series) from equation (4) and equation 
(7), respectively. The main purpose of these equations, however, is to guide the 
construction of decision models for investment situations, by appropriately in­
corporating the so called decision variables. Methodology for this will be devel­
oped in subsequent sections. 

In the following developments, we assume continuous time growth since it 
provides a more powerful and convenient mathematical basis as well as it usual­
ly approximates real life situations better. Except investments in the capitai 
market, practically all systems work continuously, and result in both continuous 
cash flows and continuous reproduction; however, the determination of cash flow 
production rate and unit reproduction rate requires some subtle work. 

REMARK. In developing this growth model, assumption 3 stated above 
could be relaxed, i.e., different earning rates for reinvestment and loans could be 
allowed. This, however, would involve a more complex mathematical treatment 
which could make the application difficult in practice, since it would require 
distinguishing the time intervals when x > 0 and x < 0. 

EQUIVALENCE OF GROWTH PROCESSES 

We first define some seemingly familiar but contextually different concepts: 
horizon, equivalence of capital growth processes, and standard growth processes. 
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DEFINITION 1 (Horizon). A fixed arbitrary point of time, H, in the future. 

Now, consider the size of cash, F (a, H), reached at horizon H, generated 
by an invesbnent situation with constant unit growth rate of reproduction a, 

F(a,H) = (xo + J: ae-aldt)ea11. 

Call this F( a , II) future value of the growth process. 

DEFINITION 2 (Equivalence of two growth processes). A growth process G1 is 
called equivalent to another growth process G 2 relative to a and H if and only if 
their respective future values F1( a ,HJ and Fi( a ,HJ are equal; i.e., 

Fi (a, H) = Fi (a, H). 

Note that equivalence is a property which depends upon the pair ( a ,H); that 
is, two growth processes equivalent for a given ( a ,H) pair may not be so for 
another pair (we will see later that under special circumstances equivalence may 
be invariant). 

In order to define a measure of worth for every invesbnent alternative, we 
need a "standard growth process" equivalent to the one we wish to evaluate. For 
this purpose, we define two standard growth processes as follows. 

DEFINITION 3 (Standard Growth Process I, or Pure Reproductive Process). 
Growth process with a = 0, = constant, 

DEFINITION 4 (Standard Growth Process II). Growth process with a = constant, a 
= constant, and x o = 0, 

a (l -al) al x=- -e e . 
a 

Future values, F1 ( a ,HJ and F11( a ,H), of these growth processes can readily be 
obtained as follows: 

-e a11 -e a11 (1 -all) (1 -all} F11(a, H) = a a e = A a , 
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given the pair ( a ,H). 
In these growth processes, a single parameter -P for the first and A for the 

second- can be viewed as their respective measures of worth. We can use these 
real numbers as measures of worth for a given arbitrary growth process equiva­
lent to standard I or II. 

Now, consider an investment situation and its future value F( a, H ), where: 

and its equivalent standard I. By definition: 

F1(a, H) = F(a, H), 

(10) 

which leads to: 

(11) 

We call P, given by equation (11), the present value of the investment situation 

considered. It is a measure of worth since it is equivalent to having capital equal 
to P at time zero which grows to F (a, H ) at time H with a unit reproductive 
rate. 

Similarly, considering the equivalent standard II, by definition, we 
write: 

F/l(a, H) = F(a, H), 

A=P( a_uH)· 
1-e 

(12) 

(13) 

We call A, given by equation (13), the equivalent constant production rate (con­
stant cash flow rate) of the investment situation considered. It is a measure of 
worth since it is equivalent to earning A amount of money per unit time which 
grows to F (a, H ) with a unit reproductive rate over the time interval [0, H ]. 
The widely used term in the literature for A is "annual worth" assuming "year" 
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as the time unit, but for the sake of generality, we prefer "equivalent constant 
production rate." 

We regard P and A as measures of worth for the investment alternatives, 
since they are "order preserving." That is, an alternative with a larger Pis pre­
ferred to the one with a smaller P; similarly for A. These are good measures of 
worth since they also have intuitive appeal. 

We note that both P and A are dependent on the pair ( a JI). In other words, 
they are relative to ( a ,II). Therefore, they should be understood as functions of 
( a ,II), such as P( a ,H) and A( a ,H). We also see that, 

A=P( ':@1)• 
1-e 

F(a,H)= Peall. 

Hence, we can ~so consider F( a ,H) as a measure of worth. Since every one of 
these measures can be expressed in terms of the others, to consider one is equiva­
lent to considering any other two. Present value, however, is more popular. 

At this point, it may be useful to notice some properties of these 
measures. 

REMARK 1. Consider a production (or cash flow) function a(t) such that 
a(t) = 0 fort> T. In this case, it is easy to show that P( a ,H) is invariant with 
H > T. For A ( a ,H), however, such a property does not hold. In fact, under this 
condition 

is independent of H, but 

is not. Note, however, that A( a ,H) converges to a P, the reproductive growth 
rate of capital P, as H tends to infinity. 

REMARK 2. All these developments imply the following useful and easy-to­
prove property: Two growth processes are equivalent if and only if their respec­
tive present values are equal. We utilize this property in the subsequent section 
to derive new measures. 

Two other traditional measures, payback period, Ho, and internal rate of 
return, a 0, can readily be obtained as the solutions to 
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F(a, II) = 0 or P(a, H) = 0, 

if they exist. The payback period is used as a surrogate measure for evaluating 
the risk and the liquidity of the investment alternative rather than a measure of 

profitability and is not at all consistent with the above measures [6]. 
Weingartner [19] suggests it to be used as a measure constrained from above for 

the acceptability of an investment It is a "satisficing" upper bound in the A. H. 
Simon sense [17]. Internal rate of return, on the other hand, is consistent with 

the above measures if used properly. However, its proper use requires a priori 
knowledge of the invesbnent type for resolving the multiple root problem and 
calls for incremental analysis in case of mutually exclusive alternatives. The 
reader is referred to the references for more details [5, 8, 14, 15]. 

A PROTOTYPE INVESTMENT DECISION MODEL 

In this section, we present a most elementary investment decision model, a 

mathematical structure, to enable the decision maker to evaluate investment al­
ternatives which are represented by decision variables. The model considers the 

single pfoject case. A composition of the values of the decision variables consti­
tutes an investment alternative. For notational convenience, let d = ( d1, d2, 
d3, ... ) denote an invesbnent alternative, as an element of the cartesian product 

D = IJi X Dz X D.3 X ... ; d E D 

where D; denotes a set of alternatives, and d; (decision variable) an element of it, 
for a given characteristic (attribute) of the system to be created by the investment 

concerned. AD; can be a set of technologies, or a set of locations, or a set of 
capacities, etc. The nature of the growth process established by the system creat­

ed is based on: 

](d) - the invested capital disbursed at time t = 0 as a function of d, 
a(d,t) - production rate as a function of d and obviously may be varying in 

time t, 
a (t) = unit reproduction rate which may be varying in time t, 

T = time of abandoning and scrapping the system, and 
S(d,T) = salvage value of the system at time T, usually decreasing as Tin­

creases. 

Here, T can be a decision variable to be optimized (as in the replacement prob­
lems), or a priori determined, or imposed by the nature of the system concerned 

so that it becomes a parameter. Note that most of the decision variables can be 
viewed as design variables (parameters) to be optimized. Therefore, invesbnent 
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decision making can be viewed as designing a system to be created by the invest­
ment concerned 

The growth model of this investment (design) situation, assuming a (t) = 
a (constant) is 

x-{ (f~a(d,z)e-~dz-I(d)) 

- (f: a(d,z)e-~dz-I(d)+S(d,1)e-aT)eat 

Figure 2 illustrates such a growth process. Here, 

fort< T 
fort~ T 

(14) 

represents the growth for t<T, i.e., before abandoning the system, therefore it 
does not include S(d,T). On the other hand, the second line of (14) represents the 
growth after scrapping the system, i.e., fort;;? T. After time T, only pure repro­
ductive growth process of the capital generated by the system takes place. 

X 

T 

-I 

FIGURE 2. Illustration of the growth process 
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Also note that 

therefore, 

fort~ T. 

Equation (14) assumes, as a typical single project invesbnent situation, two 
discrete cash flows, a) initial invesbnent, -I(d), at time t = 0, and b) salvage val­

ue, S(d,T), at t = T. By a little more generalization, we may take into account 
many other discrete cash flows, a; (d) at t;. In this case, it can be shown that the 

solution of differential equation (1) becomes: 

x = [I~ a(d,z')e-w.dz+ 7a;(d)e-a11 -I(d)+ S(d,T)e-ar }at (15) 

fort~ T. 
For a fixed H ~T. two measures of worth are readily determined as 

follows. 

A= p( a_aJI)· 
1-e 

If the abandonment time Tis predetermined, an optimal invesbnent decision 

is found by, 

max P or max A 
d d 

which are equivalent. 
One may want to determine T optimally as well as d. In that case, it is 

logical to take H=T. The optimal invesbnent then is determined by, 

maxP 
d,T 

maxA=max . 1 a ) 
d,T d,T 1-e-ar 

(16) 

(17) 
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In this case, as it is seen from the models, optimal solutions from (16) and (17) 
are different 

Next, we demonstrate that this simplest prototype model can be used for 
some practical and useful results on an example problem in the petroleum indus­
try. This example is a simplified version of what is reported in [1]. 

EXAMPLE (WELL SPACING PROBLEM) 

Briefly, the well spacing problem is to determine the optimal number of oil 
wells that should be drilled in a newly discovered petroleum reservoir (field). The 
term spacing refers to the portion y of the reservoir area allocated to a well. Here, 
the primary decision variable is the design parameter y. As the natural sequel, the 
abandonment time T needs to be considered as the second decision variable. 
Thus, to construct the model, we define: 

y = number of acres (of the reservoir area) allocated to a well, 

T = time when the reservoir is abandoned (stops producing oil), 
R = amount of recoverable oil per unit area (acre) of the reservoir, 

Y = total area of the reservoir in acres, 

q0 = production (flow) rate of a well at time t = 0 

(the rate observed at the test well), BbVday, 
I = initial investment per well, 

p = sale price of oil, $/Bbl, 

m = rate of operating cost of a well, $/day. 

Assumptions: 

1. The reservoir is homogeneous; i.e., R and q0 are uniform over the reser­
voir area 

2. Both p and m remain constant over time. 

3. Oil produced from the reservoir can be sold without limit 

Ifwe let: 

q(y,t) = production rate of the well as a function of y and time t, and 

a(d,t) = pq(y,t)-m, 

the present value of the net profit obtained from the reservoir over [0,7] per unit 
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area (acre) is: 

I: £pq(y, r>- mie-"' dt -1 
P(y,1)= . 

y 
(18) 

It is assumed here that S(T) = 0 at the time of abandonment T. If we accept the 
present value as our measure of worth, 

max P(y,T) 
y,T 

(19) 

detennines optimal spacing y* as well as optimal abandonment time T*. In order 

to make (19) operational, we have to obtain the functional fonn of q(y,t). For 
this purpose, we use the property of the behavior of petroleum reservoirs ob­
tained through reservoir engineering studies, which tell us that the production 
rate is monotone decreasing with cumulative production Q and. for some types 

(solution gas drive) of reservoirs, a linear decline is a good fit as given in Figure 
3. This linear decline with cumulative production, Q, leads to an exponential 

decline with time t, q = q0e-li as derived below. 
Hence, the production rate q can be expressed as a linear function of Q, 

q=qo- Qo Q Ry . 
(20) 

Substituting Q = L' qdz in (20), we obtain the following simple integral equa-
tion: 0 

(21) 

Ry Q 

FIGURE 3. Approximation of the production rate, q, as a linear decline 

of cumulative production, Q. 
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Solution to (21) gives: 
(22) 

where r = qo IR. This is the decay function mentioned above with 8 = qo I Ry. 

Substitution of (22) in (18) yields: 

(23) 

An optimal solution defined in (19) then can be obtained sequentially by 
utilizing (23), as follows: 

max P(y, n = max(max P(y, n) . 
y,t y t 

It can be shown that P(y, T) is concave in T and quasi-concave in y. Thus, differ­
entiating (23) with respect to T and equating to zero gives, 

T* = : In( P!o ) = Dy (24) 

to maximize P(y,T) over T, where 

D=In(P!o ),r, 
Let Po(Y) = maxr P(y, n. By substituting (24) in (23) for T and integrating, 

we get: 

In order to obtain y * now, 

maxP0(y) 
y 

must be solved. This can be done most easily by plotting Pfl.y) over y, as illus­

trated in Figure 4. 

Hence, the numerical value of r can be obtained as r= Dy•. It is easy to 

see from (25) that P<J.y) tends to - oo as y goes to zero, which can be visualized 
intuitively as well. It is also obvious that the total area Y of the reservoir con­

stitutes an upper bound for y. Furthermore, the optimum number of wells is 
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given roughly by Y/y*, truncated to the closest integer. (Or, it can be precisely 
determined by evaluating P<f.y ) for the smallest and largest integer of Y/y*.) 

Let us illustrate the method by a numerical example. Suppose: 

q0 = 3,000 BbVday R = 1,500 BbVacre 

Y = 18,000 acres I= $80,000 

p = $20/Bbl m = $40/weWday 
y = 3, 000/1, 500 = 2 D = In(60, 000/40/2 = 3.66 
a= 0.0005$/$/day = 0.0005x365 = 0.1825 = 18.25% per year 

Substituting these values, equation (25) becomes: 

60,ooo(1-e-3.66(2+0.000Sy>) 40(1-e-<>.OOIB3y) 80,000 

Po(Y)= 2+0.0005y 0.0005y y 

Po(y) 

I 
y 

I 
y• 

FIGURE 4. Plot of Po(Y) over y. 
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We now tabulate and plot P<fy) over y (fable l, Figure 5). Optimal values 
are found as follows. 

y* = 107.14 acres 
n* = 168 wells 
T* = 3.66 x 107.14 = 392.1 days 

max Pr/. y) = $28,321.88 

Total net present value= 18,000 x 28, 321.88 = $509,793,840. 

OTHER MEASURES OF WORTH 

In the previous sections, we redefined traditionally established measures of 
worth and discussed associated optimization criteria with the proposed approach. 
These measures are quite suitable for handling a variety of problems. There are, 
however, many other simations where they are inadequate for arriving at good 
solutions. In this section, we show that it is possible to derive other measures to 

suit the particularities of various problem situations by using the concept of 
"equivalent growth." 

While the equivalent growth concept plays a crucial role in our approach, it 
is not new. It is the same as the concept of "equivalence of cash flows," dis­
cussed in any standard engineering economy book (see, for example, [12, Chap­
ter 2]). Its power, however, has not been fully exploited. Below, we discuss its 
versatility and illusttate our approach with an example from equipment replace­
ment. 

One typical and simple situation where none of the measures defined before 
can be used is the case where the production rate a(d,t) is not established opera­
tionally; i.e., the functional form of a(d,t) cannot be determined. More specifical­
ly, in most practical situations, a(d,t) being the difference between cash inflow 
(revenue) rate, r ( d t), and cash outflow (expense) rate, m(d,t), is: 

a(d, t) = r(d, t)- m(d, t). 

In many cases, m(d,t) can be determined, but r(d,t) cannot. In that case, if r(d,t) 

is assumed independent of the decision variables (alternatives) d, then 
minimization of the present value of costs, Pc, or annual worth of costs Ac are 
used. This has been a common criterion in the literablre, and is very well 
known. If abandonment time T is a decision variable, this approach may not 
work as exemplified below. 

Now consider a situation where: 

1. manufacturing rate, q(d,t), for the products (services) produced by the 
system can be determined, but the sales price is unknown, or not mean­
ingful (as in garbage collection, for example), and 
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2. it is assumed that all of q(d,t) are sold (utilized). 

In this case, neither min Pc nor min Ac is appropriate, since the present 

value of revenues (benefits) is not independent of d and time t. To resolve this 
difficulty, we ask for what price the revenues will pay all cash outlays. Let this 

price be c. Hence, the equivalence between the growth of revenues and the 
growth of expenses gives: 

(26) 

Solving (26) for c yields: 

J: m(d,t)e-"' dt + l(d)-S(d, T)e-ar 
c--"-------.....-------------~ - J: q(d,t>e-"'t1t 

(27) 

Here, c can be termed as the time averaged unit cost, since the present value of 

cq ( d,t) over the life T of the system is equal to the present value of the operat­
ing expenses, m(d,t), plus investment outlay, l(d), minus the salvage value, 

S(d,T). Then, the optimi7.ation criterion is: 

mine. 
d,T 

A good example for the application of this measure is the determination of 
the economic life of equipment with decreasing productivity but increasing oper­

ating expenses with age. Traditionally, supposing any equipment would be re­
placed repeatedly with identical equipment in the future, the economic life is 

obtained as the solution to the following surrogate problem [4, 18): 

min(J~ m(t)e-"' dt - I+ S(T)e-ar \( a_ar ). 
T \1-e 

(28) 

A tacit assumption is made in this approach: operating expense rate m(t) is 

monotone increasing with age but productivity remains the same. If productivi­
ty deteriorates, (28) is not valid. This situation has been experienced in a research 

project involving garbage trucks ([7], see also [3]}, where: 

1. operating expense rate increased exponentially with age, and 

2. availability (consequently productivity) of a truck, as it gets older, de­
cayed due to more frequent breakdowns and higher percentage of down 

time for repair with aging. 
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TABLE 1. Computations for the well spacing example. 

(a) Net present value per acre 

y 
acres 

5 
25 
50 
100 
110 
120 
150 
200 
500 

1,000 
1,800 

$29,000 

$28,000 

$27,000 

$26,000 

Po(Y) $25,000 

$24,000 

$23,000 

$22,000 

$21,000 

Po(y) 
$/acre 

13768.20 
26451.70 
27871.82 
28318.37* 
28321.39* --+ 

28312.62* 
28239.75 
28035. il 
26403.68 
23850.28 
20601.91 

,,. ~ 

I -........ 1---...._ 

(b) Refinement of optimization 

y Po(Y) # of wells 

acres $/acre n = 1s.ooo 
~ 

101 28319.30 
106 28321.79· 
107 28321.88* 
108 28321.84· 
107.78 28321.86 167 
107.14 28321.88 168* 
106.50 28321.85 169 

j 

I 
--............ "-. 

! r---,...._ 
I r-- ...._ 

I 
I 

0 l 00 200 300 400 500 600 700 800 900 1,000 
y (acres) 

FIGURE 5. Plot of Po ( y) over y for the well spacing example. 
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In that research, the only decision variable considered was the abandonment 
time (replacement age), T. All other decisions such as size, technology, and 
make of the vehicle were assumed a priori made or imposed. In this case, in order 
to talce into account all peculiarities of the problem situation, we developed a 
measure, g, defined as the time averaged cost per unit quantity of service provided 
(per truck load of garbage collected and disposed). Derivation of the functional 
form of g as a function of Tis summarized below. 
Let 

v = truck availability index, defmed as the fraction of time that the truck is 

available for service, 

f = fuel cost required for collecting and disposing a unit load of garbage, 

r = repair and maintenance cost of a truck per year, 

l = labor cost for operating a truck per year (assumed independent of truck 
availability), 

K = total number of trips that a truck can make annually with 
100% availability, 

I = purchase cost of a truck, and 
S = salvage value of a truck when replaced. 

From the above notation, it is readily seen that 

m=fvK+l+r, 

where the first term is the fuel cost, the second term is the labor cost, and the 
third term is the repair and maintenance cost per year. Thus, the present value of 
expenditures over the truck's life (until it is replaced) is: 

(29) 

Consider now the time averaged cost per unit load ofgarbage collected and 
disposed, g. Then, annual cost can be expressed as g K v. The present value of 
all annual cash flows can be simply given as: 

(30) 

Using the concept of equivalent growth, C must be equal to C'. Thus, equating 
(29) to (30) and solving for g~ we obtain: 

J: (/vK + l + r)e-at dt I - Se-di' 
g= +~=-~~ 

Kf: ve-atdt. Kf: ve-atdt. 
(31) 
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Here, the first term is the share of the operating cost and the second term is the 
share of the capital (amortization) costing. Thus, these terms can be called the 
time averaged operating cost and the time averaged capital cost per truck load of 
garbage. 

Data analyses showed that/ and l are practically constant, but v decreases 
and r increases with the truck's age. More precisely, v and r have the following 
functional forms: 

v=v0e-~. (32) 

(33) 

for p, r > 0. Substituting (32) and (33) in (31), and assuming S = 0, we obtain 
the following form: 

l (l -at) ro ( <r-a)T l) - -e +-- e -
I a r-a 1(/J+a 

g= + + ( )' (34) ~K(1-e-<fJ+a>T) voK 1-e-<a+fJ)T ' 
P+a 

Hence, the solution to the replacement problem becomes: 

ming 
T 

where g is defined by equation (34). 
As it is seen in this example, this particular replacement problem could not 

be solved appropriately by minimizing the annual worth of cost, but only by 
minimizing the measure given in (34). 

ExAMPLE. The following parameters were estimated for a particular truck. 
All monetary figures used are in 19851Ls (Turkish Lira). 

v(t) = 0.95e-0.09t 

r(t) = 126, 325e0·27' 

/(t) = 3,376 1L/trip 

l(t) = 2 M 1L/year 

a=10% 
/=10M1L 

K = 2 trips/day x 365 = 730 trips/year 
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TABLE 2. Computations for the truck replacement example. 

Truck's Time averaged Time averaged Time averaged 
age operating cost • capital cost 6 total cost, g 

(years) (TL/load of garbage) (TL/load of garbage) (TL/load of garbage) 
1 6,607.40 15,832.83 22,440.23 
2 6,778.61 8,666.22 15,444.83 
3 6,956.46 6,305.84 13.262.30 
4 7,141.93 5,146.63 12.288.56 
5 7,336.37 4,467.49 11.803.86 
6 7,541.45 4,027.94 11,569.39 
7 7,759.35 3,724.87 11,484.22 

8 7,992.73 3,506.68 11,499.41 
9 8,244.90 3,344.66 11,589.56 
10 8,519.87 3,221.57 11,741.44 
11 8,822.50 3,126.42 11,948.92 
12 9,158.66 3,051.89 12,210.55 
13 9,535.36 2,992.88 12.528.24 
14 9,960.98 2,945.78 12,906.iG· 
15 10.445.51 2,907.93 13,353.44 

• First term of equation (31) 
b Second term of equation (31) 

As the trucks replaced are donated to smaller municipalities, salvage values 
are considered zero. Substituting all model parameters, one can solve (34) by 
simply tabulating g for varying values of T. Since g is a convex function of T, 
the minimum g identifies the optimal replacement age, T. The computations are 
shown in Table 2. The optimal replacement age for this particular truck is seven 
years. 

CONCLUSIONS AND ExTENSIONS 

In this paper, we introduce a point of view that investments are growth pro­
cesses, or more explicitly, investments are for growth. Interestingly, this reem­
phasis of the basic purpose and goal of investment opens up another avenue for 
the mathematical modeling of investment decision situations. In addition, it 
provides another insight into understanding the nature of investment economic 
analysis, especially for newcomers to the field. The simple basic mathematical 
growth model developed here can be viewed as a unifying instrument for deriving 
all traditional as well as new measures of worth. In that respect, we believe that 
equations (1) and (2), and their solutions (4) and (7) deserve the label the funda­
mental equations of financial analysis. 

The conceptualization of the set of decision (investment) alternatives as the 
Cartesian product, f? = D 1 x D2 x D 3 ... , in modeling opens up a possibility to 
cover as many design parameters of the system as deemed appropriate, and en­
ables one to conceive the investment decision process as a system design pro-
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cess. This viewpoint brings in an additional dimension, a proper economic anal­
ysis, into the design process, which is usually overlooked. 

We also bring into focus the potential use of a well known concept, cash 
flow equivalence, to derive new measures of worth when the traditional measures 
are not suitable or convenient. In particular, we exploited the idea of time averag­
ing within the context of equipment replacement. This idea can be generalized as 
follows. Let: 

w = time averaged unit measure, and 
a(w,t) - production rate as a function of w and time. 

From equivalence, solving the following equation for w yields the measure to be 
optimized: 

J~ a(w,t)e-atdt = P(a,n 

Other interesting and useful measures can be developed. A few proposals are 
as follows. 

1. Time averaged unit profit, profit 1t per unit quantity of product (or 
service) produced and sold equivalent to the net present value, can be 

computed as: 

P(a,n 

2. Time averaged unit revenue can also be expressed similarly. 

3. Profitability ratio: the ratio of the measure in item (1) into the time 
averaged unit cost by equation (27). This ratio can possibly be used 
instead of the internal rate of return. 
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