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We study the effects of screening on polaronic corrections to the effective band edge in a quasi-

one-dimensional GaAs quantum wire.

We find that the screening effects and finite well width

considerably reduce the polaron energy and oppose the polaronic band-gap renormalization. We
calculate the polaronic effective mass as a function of the carrier density and temperature. Effects
of the vertex corrections to the conduction- and valence-band edges are also discussed.

I. INTRODUCTION

Formation of a dense electron-hole plasma in a semi-
conductor under intense laser excitation is a well-known
phenomenon. Because of the exchange-correlation ef-
fects and the screening of the Coulomb interaction, many
single-particle properties in the system are renormalized,
of which the most dramatic one is the band-gap renor-
malization (also known as the band-gap shrinkage) as a
function of the plasma density. This is important to de-
termine the emission wavelength of coherent emitters as
being used in semiconductors.! Since a substantial car-
rier population may be induced by optical excitation, the
renormalized band gap can affect the excitation process
in turn and lead to optical nonlinearities. On the other
hand, the coupling between the charge carriers and LO
phonons in these systems also affects the band-gap en-
ergy and carrier effective mass. The gap between the
valence and conduction bands is renormalized by the
emission and absorption of LO phonons. In this pa-
per we investigate the density and temperature depen-
dence of the band-gap renormalization (BGR) in quasi-
one-dimensional photoexcited semiconductors due to the
phonon effects within the perturbation theoretical ap-
proach.

Under high optical excitation the band gap for two-
dimensional (2D) and three-dimensional (3D) systems is
found to decrease with increasing plasma density due to
exchange-correlation effects. The observed band gaps are
typically renormalized by ~ 20 meV within the range of
plasma densities of interest which arise solely from the
conduction-band electrons and valence-band holes. In
the quasi-one-dimentional structures based on the con-
finement of electrons and holes, the electron-hole plasma
is quantized in two transverse directions, thus the charge
carriers essentially move only in the longitudinal di-
rection. Recent progress in the fabrication techniques
such as molecular-beam epitaxy and lithographic depo-
sition have made possible the realization of such quasi-
one-dimensional systems.?'3 Band-gap renormalization as
well as various optical properties of the electron-hole sys-
tems have been studied for bulk (3D) and quantum-
well two-dimensional (2D) semiconductors,*® provid-
ing generally good agreement with the corresponding
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measurements.®

Two processes contribute to the band gap renormal-
ization. The interaction of the electron-hole pair with
the thermal phonons causes a decrease of the band
gap with increasing temperature, while the exchange-
correlation effects cause a decrease in the band gap
with increasing plasma density. The band gap between
the valence and conduction bands in GaAs is about
~ 1.5 eV. The exchange-correlation-induced BGR in
quantum wires may be as large as ~ 25 meV accord-
ing to recent measurements’ and calculations.®® Our
calculation of the renormalization due to LO-phonon
coupling is of the same order. The polaronic renor-
malization is always present and should be subtracted
from the total BGR. In a more complete theory,'?!!
of the band gap renormalization in photoexcited semi-
conductor structures, the effective interaction V(q, E),
which consists of the bare Coulomb and LO-phonon-
mediated carrier-carrier interaction including the dynam-
ical screening, should be used.

In this study our aim is to calculate the BGR due
to polaron effects using a statically screened approxima-
tion which is based on the random-phase approximation
(RPA). We employ the temperature-dependent, static,
RPA dielectric function and address also the question of
validity of using the plasmon-pole approximation to it.
We investigate the temperature and electron-hole plasma
density dependence of the BGR at various quantum-well
widths. Electron-hole-LO-phonon coupling in quasi-one-
dimensional systems depends on the well width, free-
carrier density, and temperature, which we discuss in
detail. Since the screening function &(q) determines
these quantities, we investigate different models and at-
tempt to include the vertex corrections in an approxi-
mate way. Although it has been shown that in semi-
conductors of reduced dimensionality, confined and inter-
face phonon modes have substantial effects,'? we ignore
them here and consider only the coupling of electron-
hole plasma to bulk phonons. Phonon renormalization
effects in two-dimensional (2D) quantum wells were stud-
ied by Das Sarma and Stopa, and Xiaoguang et al.}® The
screening of the electron-phonon interaction in quasi-one-
dimentional structures within a variational approach was
considered by Hai et al.'*
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The rest of this paper is organized as follows. In
the next section we give a brief outline of the model
of quasi-one-dimensional system we use, the electron-
hole—phonon self-energy at the band edges within the
static screening approximation, and mass renormaliza-
tion. In Sec. III we present our results for the LO-
phonon-induced band gap renormalization in quasi-one-
dimensional electron-hole plasmas and the changes in the
effective electron and hole masses. Finally, we conclude
with a brief summary of our main results.

II. THEORY

For the two-component quasi-one-dimensional system
consisting of electrons and holes, we consider a square
well of width a with infinite barriers. It may be built
from a quasi-two-dimensional quantum well (grown in the
z direction) by introducing an additional lateral confine-
ment. We assume that the effective mass approximation
holds and for GaAs take m. = 0.067m and my = 0.4m,
where m is the bare (free) electron mass. The effective
Coulomb interaction between the charge carriers in their
lowest subband is given by® the average over the subband
wave functions

V(g) = g;— /(; dzKo(gax) [2 — (1 — z) cos(27z)
+2—37; sin(27rm)] , (1)

in which Ko(z) is the zeroth-order modified Bessel func-
tion of the second kind and ¢y is the lattice dielectric
constant. We express the above equation as V(q) =
2¢%2F(q)/eo for subsequent usage. Optical excitation cre-
ates an electron-hole plasma, and due to the presence
of this two-component plasma, assumed to be in equi-
librium, the bare Coulomb interaction is screened. The
equilibrium assumption is justified since the laser pulse
durations are typically much longer than the relaxation
times of the semiconductor structures under study.

The self-energy (real part) due to electron-hole-LO-
phonon interaction for a quasi-one-dimensional system,
within the static screening approximation, is given by!®

F(q)

w[240 /°° d
vV 2menwro Jo 1 [e(q,0)]?

x n0+fe,h(k'—q)
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where ae p is the Frohlich coupling constant for electrons
or holes defined as

1 1 1 e?
Oeh = = (* - —) vV 2Mme hwLO - 3)
2 \ €x €/ wrLo

In the above equations, €., is the optical dielectric con-

stant, wpo = 36.5 meV is the bulk LO-phonon energy
in GaAs, and ng and f. (k) are the Bose (phonon) and
Fermi occupancy factors, respectively.

The main assumptions in writing the self-energy due
to electron-hole—phonon coupling in the above form are
as follows. First, the electron-phonon coupling is ex-
pressed in terms of the Frohlich Hamiltonian. The LO
phonons are treated without any dispersion. The bare
electron propagator Go(k, E) is used rather than solv-
ing the Dyson’s equation self-consistently. Along with
the Bose distribution functions ng, we have also retained
the Fermi surface effects through the Fermi distribution
functions fe n(k). We will show later that when the Fermi
energy Er < wro, the Fermi occupancy effects will not
be important, as in the case of two-dimensional (2D)
systems.!3 Finally, we assume the quantum size limit for
which both the electrons and holes remain in their re-
spective lowest subbands of the quantum well.

We work in the static screening approximation, and
employ the static RPA for the dielectric function

e(g, E =0,T)

=1- V(Q)[He(qu = OaT) + Hh(q’E = O’T)] ) (4)

where V(q) is the Coulomb interaction between the
charged particles and Il. (g, E = 0,T) are the finite-
temperature static polarizabilities for electrons and holes.
The form we use for (g, 0) is appropriate for a photoex-
cited intrinsic semiconductor since screening by electrons
and by holes are treated on an equal footing. In the case
of doped n- and p-type semiconductors, screening by elec-
trons and by holes should be considered separately. We
calculate the finite-temperature polarizabilities using the
Maldague'® approach starting from the zero-temperature
quasi-one-dimensional polarizability of an electron gas

e n(q, E =0,T)

1
cosh?(z/2—1t)’ (5)

=w/ dtln|y+ﬂ
T™q Jo y— Vi

where = pe /T and y = q/4y/me T (we take Planck’s
constant /A and the Boltzmann constant kg to be equal
to 1). Here p.p are the chemical potentials for each
species at finite temperature. In various applications,
the dielectric function £(g) was further simplified by the
plasmon-pole approximation. Here we use the full static
RPA at finite temperature without resorting to any ap-
proximations and discuss in Sec. III the validity of the
plasmon-pole approximation.

We make the usual assumption of parabolic bands,
taking the electron and hole single-particle energies to
be €cn(k) = k2/2me . This should be justified for the
GaAs example we consider in this work, but for certain
other semiconductors such as InSb, nonparabolicity ef-
fects would require higher-order corrections. In addition,
we evaluate the electron-phonon self-energies on the mass
shell (E = k2/2m. ) to obtain the polaronic corrections
at the band edge [Re X, 1(0,0)]
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The limit & — 1 (no screening) renders the above po-
laronic energy independent of the carrier density, if we
further neglect the Fermi occupancy factors. Unlike the
case of two-dimensional (2D) systems, a closed form ex-
pression for E, in the no-screening limit is not possible.

The definition of the polaron effective mass (in the
long-wavelength limit) is given by

1

*
me,h

1 10 )
= —— + I}’l_]"n %%Re Ee h(k,k /2m) . (7)

For low temperatures (T' < 50 K), we neglect the phonon
occupancy, take ng — 0, expand the remaining integrand
in powers of k, take the derivative, and let k — 0, thus
obtaining

1 1 Qe p | 2 ‘“1240 2
m:’h Me,h Me,h | T 4/2Me hWLO Me,h
F(g q°
/ dg 29 A . ®
(e(9)]? [wLo + ¢2/2me,]

The above expression yields in the weak coupling limit
(e, = 0) m?,, =~ men(l+ aC), where C is given by
the expression inside the large square brackets in Eq. (8).

III. RESULTS AND DISCUSSION

We begin by presenting our results for the band-edge
polaronic corrections at low temperatures. Since the di-
electric function (g) of a quasi-one-dimensional system
diverges at 2kr and T = 0, we choose a small but finite
temperature to work with. Figures 1(a) and 1(b) show
the electron and hole polaron energies, respectively, as a
function of the carrier density N for various well widths
at T' = 5 K. The solid curves in both figures, from top to
bottom, indicate widths of @ = 500, 250, and 100 A. In
order to see the influence of the Fermi occupancy factors
we also plot by dashed lines E,, calculated without fe .
In the density range of interest, they are negligibly small,
except close to N ~ 10° cm~! both for electrons and
holes. Since Ep ~ k% ~ NZ, it turns out that the con-
dition Fr < wio breaks down for N > 10% cm™!. Also
shown in these figures by horizontal dotted lines are the
unscreened energies. They are calculated using Eq. (6)
with €(g) — 1, no — 0, and f., — 0. The no-screening
limit depends only on the well width and typical num-
bers are E, = —3.879, —2.403, and —1.575 meV for well
widths of a = 100, 250, and 500 A, respectively, for the
case of electrons. The corresponding values for holes are
E, = —6.631, —3.773, and —2.340 meV.

In Figs. 2(a) and 2(b), we show the polaronic correc-
tion to the band gap as a function of plasma density at
a = 100 A. The solid lines indicate, from top to bottom,
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FIG. 1. (a) Polaron correction to the conduction-band edge
as a function of the carrier density N at T' = 5 K. Solid
(dashed) lines from top to bottom are for well widths a = 500,
250, and 100 A, with (without) Fermi surface effects. The
corresponding dotted lines indicate the unscreened limits. (b)
Same for the valence-band edge.

T = 5, 100, and 300 K. We note that as the temper-
ature increases, E,, also increases in magnitude. As a
general trend, the phonon renormalization decreases for
higher values of the carrier density, while its rate is tem-
perature dependent. The dashed curves in Fig. 2 gives
the BGR calculated within the plasmon-pole approxima-
tion to the dielectric function using the same parameters.
In the plasmon-pole approximation the static dielectric
function is expressed as®

2 .

14 pyi , 9

zXe:h (Ng?/miki) + (q2/2m:)? )
where the plasmon frequency for the quasi-one-
dimensional'” system is w2; (N/mi)V(q) (in the

long-wavelength limit) and t:he screening parameter is
K; = ON/Op;. The plasmon-pole approximation consists
of ignoring the weight of single-particle excitations and
assuming that all the weight of the dynamic susceptibil-
ity Ilo(g,w) is at an effective plasmon energy w,. It cor-
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FIG. 2. (a) Polaron correction to the conduction-band edge
as a function of the carrier density N for a quantum-well wire
of width a = 100 A. The solid lines from top to bottom indi-
cate T = 0, 100, and 300 K calculated with full RPA, whereas
the dashed lines are with the plasmon-pole approximation.
(b) Same for the valence-band edge.

rectly describes the static and long-wavelength limits of
the full RPA expression. We note that the temperature-
dependent plasmon-pole approximation to the dielectric
function yields considerably different results from the
RPA. Das Sarma et al.!° have found significant devia-
tions of the plasmon-pole approximation from the full
RPA results in two-dimensional (2D) quantum wells. Our
calculations suggest increasing discrepancies between the
full RPA and plasmon-pole approximation as T increases.
The temperature dependence in the plasmon pole ap-
proximation mainly enter through the screening parame-
ter k and it is conceivable that differences originate from
somewhat different temperature dependences.

Having established the insignificance of the Fermi oc-
cupancy factors in the polaronic correction to the band
gap renormalization in the density range of interest
(10* < N < 10% cm™!), we now turn to the temperature
dependence of E,. Self-energy increases in magnitude as
the carrier temperature is raised. At low temperatures,
E, is due mainly to virtual phonons, since ng (the av-

erage number of real phonons in the system) becomes
vanishingly small as 7' — 0. At higher temperatures, the
average phonon number increases and emission and ab-
sorption of phonons contribute to E, through the factors
ng and no + 1 in Eq. (6).

Figure 3 shows the effects of finite temperature on the
polaronic energy. In Fig. 3(a) we display the conduction-
band correction as a function of T, for various carrier
densities, in a quantum wire of well width a = 200 A.
Solid lines from top to bottom are for N = 10%, 10%, and
10% cm ™!, respectively. In Fig. 3(b), the same quantity is
plotted for the valence band. The dashed lines in Fig. 3
are calculated without the phonon occupancy factors ng,
but we retain the dielectric function €(g). The difference
between the dashed line and the corresponding solid line
is a measure of the thermal phonon effects, which seem
to be rather important for T > 100 K. The dotted lines
in Figs. 3(a) and 3(b), are calculated by setting e(q) =1
while keeping the phonon occupancy factors. In the no-
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FIG. 3. (a) Temperature dependence of the polaron cor-
rection to the conduction-band edge for a quantum-well wire
of width @ = 200 A. The solid lines from top to bottom indi-
cate N = 10°%, 10°, and 10* cm™'. The dashed lines show the
effects of thermal phonons (no = 0). The dotted line is calcu-
lated in the no-screening limit. (b) Same for the valence-band
edge.
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screening limit this quantity is independent of the den-
sity.

The foregoing results for the polaronic corrections at
the conduction- and valence-band edges imply a total of
~ 10 meV renormalization in the density range 10* <
N < 10° cm™!, which is comparable to the exchange-
correlation corrections.””® The phonon renormalization
effects become negligible for densities N > 108 cm™! ir-
respective of the quantum wire well width. We observe
these effects also for a quantum wire of width a = 500 A
in Fig. 4. The solid lines in Fig. 4 are calculated with
the RPA dielectric function, whereas in the dashed lines
vertex corrections are included.

We now discuss the effects of local-field correction to
the BGR due to polaronic effects in quantum wires. Writ-
ing the dielectric function as e(q) = 1 — V(¢)II(¢)v(q),
where v(q) = 1+ V(¢)G(¢)II(q) is the vertex function
in which G(q) is the static local-field factor and II(q) is
the static Lindhard polarizability, we account for the ver-
tex corrections to II(g) in the mean-field sense. We use
the equivalent of Hubbard approximation for G(g) in one

a=5004
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FIG. 4. (a) Polaron correction to the conduction-band edge
as a function of the carrier density N for a quantum-well wire
of width @ = 500 A. The solid lines from top to bottom indi-
cate T = 0, 100, and 300 K. The dashed lines are calculated
with a dielectric function which includes the vertex correc-
tions. (b) Same for the valence-band edge.

dimension!®

G(q) ~ 1V(Ve® + k%) (10)

2 V(e
The physical nature of the Hubbard approximation is
such that it takes exchange into account and corresponds
to using the Pauli hole in the calculation of the local-
field correction between the particles of the same kind.
Coulomb correlations are omitted. In this simple form,
the static local-field factor G(g) is temperature indepen-
dent. Inclusion of the vertex corrections in the dielec-
tric function through the local-field factor brings about
considerable changes in the theory of metals.'® Figure 3
shows the BGR for a quantum wire of lateral width
a = 500 A, with the local-field corrections (dashed line)
at T = 100 K. We observe that within the simple Hub-
bard approximation to G(gq), the BGR deviates only
slightly from the RPA result. The difference in F, with
and without G(q) is largely independent of temperature.
We have also found good agreement for other values of
the well width. These results suggest that the RPA is
valid (in the range 10* < N < 10° cm™?!) provided that
the local-field factor we use is correct. In order to assess
a more reliable measure of corrections beyond the RPA,
better approximations to the local field factor G(g) are
needed.

The temperature-dependent behavior of the mass
renormalization is also a consequence of the dielectric
function e(g,7T), its main effect being to reduce the
electron-phonon coupling. In the no-screening limit
le(g) — 1], the effective mass (renormalized mass) is in-
dependent of temperature and carrier density

1 1 aen|2 wis 2
My,  Meh Meh |T 4/2MehWLO Meh

oo q2
x /0 dq F(q) [wLo + q2/2me,h]3] ’ (11)

which we write as 1/m* = (1 — aB)/m. In the opposite
limit of infinite screening (¢ — o0o) the electron (and hole)
no longer couples to the phonon and there is no mass
renormalization, i.e., mg p, = Me,p. Thus m* is bounded
between the values 1/(1 — aB) and 0.07 (0.4 for holes
and in units of bare electron mass). In Figs. 5(a) and
5(b) we display the percent change in the band masses
for electrons and holes, respectively, as a function of tem-
perature. To illustrate the density dependence, we show
(by solid lines) from top to bottom N = 108, 10%, and
10 cm~! for a quantum wire of well width a = 200 A.
Indicated by the dotted lines are the no-screening limit
results discussed above. We observe that mass renor-
malization is rather large for both electrons and holes,
~ 6% and 10%, respectively. We are not aware of any ex-
periments to compare our results in quantum-well wires
where the temperature dependence of the polaron mass is
measured. In the case of two-dimensional (2D) systems,
Das Sarma and Stopa!® found the mass renormalization
to be rather small compared with the cyclotron resonance
data. Since our analysis is along similar lines, we do not
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FIG. 5. (a) Effective mass renormalization at the conduc-
tion-band edge as a function of temperature for a quan-
tum-well wire of width @ = 100 A. The solid lines from top to
bottom indicate N = 10%, 10°, and 10* cm™*; the dotted line
gives the no-screening limit. (b) Same for the valence-band
edge.

expect to obtain good agreement with the cyclotron res-
onance experiments. It remains an open problem to de-
velop an adequate theory of screening of electron-phonon
coupling in high magnetic fields.

It has been noted!®2° that the static screening has a
stronger effect in the renormalization than the dynamic
screening, because in the static approximation only the
long-time response of the system is taken into account.
Similar conclusions are drawn by Hai et all? in their
calculation that takes the dynamic screening effects into

account for quasi-one-dimensional systems. We have not
attempted a perturbative calculation which includes dy-
namical screening because of the computational difficul-
ties involved, but expect the polaronic corrections Ej, to
increase in magnitude if such an approach is considered.

For the quasi-one-dimensional electron system we have
used the model developed by Hu and Das Sarma,® which
introduces an additional confinement to an infinite square
well. There are various other models of the quantum-
well wire structures using parabolic confining potentials,
and geometric reduction of dimensionality. The general
trends obtained here for the plasma density and tem-
perature dependence should be valid irrespective of the
details of the model chosen.

IV. SUMMARY

We have calculated the polaron self-energy in a quasi-
one-dimensional GaAs quantum-well wire and found that
its magnitude is comparable to the exchange-correlation
effects. Owur calculation is appropriate for a photoex-
cited semiconductor structure in which both electrons
and holes take part in the screening. The coupling of
the charge carriers to the LO phonons leads to a shrink-
age of the band gap, which decreases as the plasma den-
sity is increased. We have found that a temperature-
dependent plasmon-pole approximation to the dielectric
function yields results qualitatively different from the
RPA approximation, especially at high temperatures.
Within our perturbative, on-shell approximation to the
self-energies we have estimated the polaron effective mass
and investigated its dependence on the temperature and
carrier density. A simplified attempt is made to include
the vertex corrections to the screening in the spirit of
mean-field approximation. We find that the local-field
corrections tend to not change the magnitude of the po-
laronic corrections significantly. Our analysis may be ex-
tended to doped p- or n-type semiconductors in which
either type of carrier is screened separately. Similarly,
band gap renormalization due to the confined phonons
would also be interesting.
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