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Abstract 

The pure quantum model describing Rabi oscillations of exciton-polaritons (EP) in a micro-cavity with finite quality is 
considered. It is shown that the oscillations can be observed if the cavity damping rate does not exceed some critical value 
depending on the EP coupling constant and the detuning of the cavity mode. An explicit expression for the renormalized 
Rabi frequency is found. Comparison of the results with experimental data shows a good agreement. 
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1. Introduction 

The study of vacuum-field induced Rabi oscillations in various physical systems is now an active field of 
research due to its importance in the investigation of the spontaneous emission rate in a cavity and plays a 
crucial part in the development of new light emitting devices with special properties, as for instance narrow 
linewidth, low-threshold pump-rate, and low level of noise (see, e.g., Ref. [11X In recent years, it has become 
possible to observe the Rabi oscillations not only for trapped atoms [2-4] but also in a semiconductor 

micro-cavity [51. 
The simplest system showing Rabi oscillations as the process in which the emitter and radiation field pass 

energy back and forth periodically, is the Jaynes-Cummings model for a two-level atom in an ideal cavity (see, 
e.g., Ref. [6]). In the case of solids an important example of a two-level system is provided by two branches of a 
polariton formed by coupled modes of the radiation field and collective excitations of solids [7]. Unlike the 
Jaynes-Cummings model, the occupation number of any level of that two-level system can take an arbitrary 
integer value due to the bosonic nature of the polariton. An important example is provided by an exciton-polari- 
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ton (EP) [8]. The possibility of direct observation of the Rabi oscillations in an EP system has been 
experimentally confirmed in recent publications [9-121. 

The system examined in Refs. [9-121 represents a multiple-quantum-well structure placed in the center of a 
Fabry-Perot micro-cavity. The parameters of the micro-cavity were chosen to obey the resonance condition for 
the cavity and EP modes. Strong beats with the period of Rabi oscillations were observed for the pumping field 
tuned in resonance with the cavity mode while the detuning from resonance led to a strong reduction of beats 

[91. 
Because of the simplicity of the EP system described by a bilinear boson Hamiltonian, it is not hard to 

construct the theory of the process under consideration [8,13]. Here we turn our attention to the consideration of 

two important problems which in our opinion have not been examined in sufficient detail. Precisely, in Section 

2, we consider the pumping process and determine the state of the EP system formed by an external light pulse. 
Then, in Section 3, we examine the effects of damping due to the low-quality cavity. In this way we define the 

optimum conditions of observation of the Rabi oscillations in the EP system. 

2. Preparation of the exciton-polariton system 

As the EP system in a quantum-well micro-cavity is usually examined at low temperature [9- 131, it is natural 

to consider this system initially in the vacuum state of the exciton-polariton field. The excitons in the 
micro-cavity are created by an external light pulse. Since the period of the Rabi oscillation is of the order of a 
few hundred fs, the pulse duration should be considerably shorter. In a typical experiment, pulses with 80 fs 

duration are used [9]. As long as the pump-system interaction is stronger than the damping rate we can safely 
ignore the damping effects during the action of the pumping pulse on the system. 

In order to take into account the principal peculiarities of the EP system and not to go into detail let us 
restrict our consideration to the model Hamiltonian of the following form, 

H=H,,+H,(r), H,, = wa+u + Eb+b + g( a+b + b+a), HP(t) = .fil(t)(eiwf~‘b + e-‘wN1’bt). 

(1) 

Here for simplicity we chose the EP Hamiltonian in the rotating wave approximation. The operators a, at and 
b, hi describe the cavity photons and excitons, respectively, w is the frequency of the cavity mode, E is the 
exciton frequency, and g is the exiton-photon coupling constant. The second term in Eq. (1) describes the 
time-dependent pumping by a classical field with the frequency w,, and Rabi frequency 0(t). 

Using the standard procedure of the Bogolubov canonical transformation, 

C~ = u,a + u,b, u,,= /&. E,=w-;A+;& (2) 

one can transform the Hamiltonian (1) into the polariton representation, 

H& = CE&A. H;(t)=L+)~[~&)c~+h.c.], KA( t) = Au_Aeiw~l’. (3) 

A A 

Here the index h = + sets the EP branches with energy Eh, the Rabi frequency of the EP system L?a is defined 
as follows, 

A = w - E is the detuning of the cavity mode, and the parameters of the transformation (2) obey the condition 
u:+Ll,z= 1. 
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Consider for simplicity a rectangular pulse with amplitude go and duration tn. Then 

O(r) =@lJ, ifOgt<r,, 

= 0, otherwise. 

The time-dependent perturbation of the initial vacuum state of the EP system due to the pumping is described by 

the following expression, 

where IO), denotes the vacuum state of the corresponding EP branch and DA formally coincides with the 

Glauber displacement operator with 

q(t) = A ;-*J,” <(e i(h - o&r _ 1 )* 
A 

In other words, the Hamiltonian (3) describes the evolution of a two-mode displaced harmonic oscillator. 
Therefore, taking into account that the pulse duration t, is sufficiently small with respect to the period of Rabi 

oscillations [9], we can suppose that by termination of the pulse the EP system is prepared in a two-mode 

coherent state described by the following wave function, 

Let us return now to the transformation (2). It can be represented as follows, 

c+=Z+( <+>aZ( r+>1 (5) 

c_= z+( l_)bZ( s-) (6) 

where Z(&)= exp[-i&(a+b - b+a)] and l+= i arctan(u+/u+), l_= l+- ir. 
Representation (5) permits us to establish a relation between the EP states and the states of the photon- 

exciton system. First of all, it follows from Eq. (5) that the EP vacuum state IO)EP defined by the stability 

condition 

VA c,lO)EP=O 

exactly coincides with the photon-exciton vacuum state I O&J, = IO), 8 IO),. Consider now the EP state with 
given numbers of polaritons in two branches I n, m) EP. Employing relation (5) then gives 

xlk+j, n+m-k-j)ab. (7) 
Thus, the EP number state is a linear combination of a finite number of photon-exciton number states with 
weights taking into account the correlations between photons and excitons in the EP system. However, the 
coherent state of EP system corresponds to the coherent states of both photons and excitons with parameters 
LY, = a+~++ (Y-U_ and (Ye = (Y+u+ + (Y-U_, respectively, where (Y * is the parameter of the coherent state of 
the corresponding EP branch. Therefore, the light state immediately after the pulse finishes, which should be 
considered as the initial state due to our supposition, is exactly the coherent state described by the parameter LY,. 
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The time-dependent number of photons is described by the relation 

(a+a),=~~(c++~+>,+~!(~tc_>,+2u+u_ Re((c\c-h). (8) 

Therefore, one can easily see that under the condition 

Rabi oscillations do not occur in the system under consideration and the mean photon number is independent of 

time, 

<a+a>,=u2, la+(tfJ2 if S - 34 + $0, = 2kr/t,, 

=uz I”-($))I2 if 6 - iA - iii?, = 2kT/t,. ( 10) 

The general expression for the mean photon number has the form 

(a+a’f = (6 _ ;A + ffi,)’ 
2u2g282 [l -cos(&+A+fR,)r,] 

2u’g282 [l -cos(S-;A-$$&,] 
+ (&~A+,)* 

- g~U1*GUisR~~~sin[(6+fA+~n,)r,] sin[(6-iA-ffl,)t,] cos[O,(r-it,)]. 

(11) 

One can see that unlike the Jaynes-Cummings model expression (11) does not describe the collapse-revival 
phenomena in spite of the initial coherent state of light. Calculating the coherence rate, it is not hard to see that 
for any time t the coherence of radiation is conserved. 

The above obtained results are valid for an ideal system without losses. We now turn to the case of a damped 
EP system in a cavity. 

3. Radiation damping 

In order to take into account the radiation damping, we use the Heisenberg-Langevin approach [ 141. Then, 
for the time-dependent EP operators we get 

c*(t) =r(t)(A*(r)c+,D+B*(t)c-,D) +F,(r), (12) 

where F’(t) is the operator of the Langevin force and r(t) = ey1/2ei(o-A/2)‘. 
The time-dependent coefficients in EQ. (10) are functions of the damping rate y which is defined as follows, 

Here A, denotes the eigen-frequencies of the “oscillators of losses” [14] and kj is the coupling constant 

describing the mechanism of losses. As usual, we neglect the small shift of Eh [ 141. There are three qualitatively 
different cases: 6) weak damping, when y < OR; (ii) critical damping, when y = flR; (iii) strong damping, 
when y> OR. 
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Time (ps) 

Fig. 1. Dynamical behavior of the cavity photon intensity for different values of the cavity field-exciton detuning. 

We have respectively 

A+(r) = cos( [r) - i( J&/25) sin( [r), 

= 1 - +iflaf, 

= cosh( tr) - i( L&/25) sinh( tr), 

(13a) 

(13b) 

(‘3c) 

B+(r) = k$sin( tt), 

u- yr =-- 
V+ 2 ’ 

= : $sinh( &t), 

( 14a) 

(14b) 

and A_(r) = (u:/u!>B+(r>, B_(r) =A;(r). Here, if= $/m. 
We are now in a position to examine the Rabi oscillations in the system under consideration described by the 

periodical change of the mean number of cavity photons (7). In view of Es. (7) we get 

Cc:+= IT(r)l’[ IA,(r)?< c!+c+),,+ IB,(r)/*(~t~_),~+2Re(A;(r)B,(r)(c~c-),,)], 

2Re((c\c_),)= 1~(?)1*(2Re[A:(r)A_(r)(c~c+),,+R;(~)B-(t)(c~c-),, 

+A;(r)K(t)( ct,c_>,,+B;(r)A-(t)(ct~+>,~]}. 

According to the choice of the initial state we have 

(&AD = I a*( r& I *, (+A,= qr&r_(rD>. 

From the definition of coefficients A,(r), B,(r) it is not hard to 
conforms to the weak damping case (13a), (14a) only. In this case, 

see that the oscillating behavior of (ata), 
periodical change of (ata>, is described by 
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Fig. 2. Same as Fig. 1 for different values of the cavity field-pumping field detuning. 

the functions sin’( (r), cos2( tr), sin(2tt) multiplied by the corresponding coefficients and the damping factor 

eey’. Thus, the period of Rabi oscillations is determined by the frequency /T which plays the role of L& 
“renormalized” Rabi frequency (RRF) in the system with damping. This RRF is less than the vacuum Rabi 
frequency L& and tends to zero when y + flR (critical damping, (13b), (14b)). Hence, the period of Rabi 
oscillations in a damped cavity exceeds the period of vacuum-field-induced Rabi oscillations in an ideal cavity 
(3). In the case of strong damping, (13c), (14c), Rabi oscillations do not occur in the system at all. 

The dependence of (~‘a), on time in the case of weak damping, (13a), (14a), for different values of A is 
shown in Fig. 1. For numerical calculations we choose the parameters according to Ref. [9] as follows: 
g = 4.62/ps, t, = 0.08 ps, E = 23OO/ps, gZO = 104/ps, y = 2/ps. In Fig. 2 we show the same as in Fig. 1 for 

different S (detuning of the pumping field) at A = 0. One can see that our theoretical results show good 
agreement with the experimental curves [9]. Comparison of Figs. 1 and 2 shows that the detuning of the cavity 
mode A is a more critical factor for the observation of Rabi oscillations than the detuning of the pumping field 
6. Increase of A leads to a decrease of the period of the Rabi oscillations and a strong damping of the amplitude 

of oscillations as well. 

4. Conclusion 

Summing up our results, we should stress that the simple quantum model under consideration permits us to 
describe the temporal behavior of Rabi oscillations in an EP system in a quantum micro-cavity. The period of 
oscillations defined by the inverse value of the RRF depends on the detuning of the cavity mode and damping 
rate but does not depend on the detuning of the pumping field. It exceeds the period of Rabi oscillations in an 

ideal cavity. If the damping rate exceeds a critical value y, = J4g2+d2, the Rabi oscillations cease. At the 

same time, increase of y leads to an increase of the period of Rabi oscillations. Therefore, application of a 
high-quality cavity leads to an increase of the time resolution and a reduction of the duration of the pumping 
pulse. 
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At the same time, according to condition (8) the special choice of parameters S, A and r, can lead to a 
non-oscillating behavior. 

The above considered model involves the most important features of the process under consideration such as 

photon-exciton interaction, pulse pumping, and damping. Of course, it can be supplemented by consideration of 
some second-order physical processes such as phonon-exciton scattering, which is important for the formation 
of stable states of exciton modes in a quantum well micro-cavity [13]. Inclusion of the phonon degrees of 

freedom can also lead to a change of the statistical properties of light emitted by the EP system [ 15,161. 
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