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Abstract 

The paper reviews and extends the magnetic Aharonov-Bohm effect (persistent current, resistance oscillation) in normal- 
metal rings including spin-independent and spin-dependent hopping, Zeeman splitting, magnetic textures and wheels, ring 
rotation and weak coupling, as well as the electric Aharonov-Bohm effect ("persistent charge") in small metallic contacts. 
We then discuss dynamical screening effects in a surface charge in a metal. Energy dissipation due to motion of the surface 
charge has a singularity at the velocity of  motion equal to the phonon propagation velocity. Surface image of  an external 
charge inside the metal is strongly distorted at the velocity of  motion larger than the Fermi velocity. 

I. Introduction 

Small size conductors develop a number of peculiar 
effects at low temperature. These include ballistic electron 
transport through point contacts, surface charge accumula- 
tion, quantization of  electron charge and magnetic flux in 
small metallic loops. The subject of  this paper is related to 
Aharonov-Bohm effects in solids [1], the role played by 
magnetic vector potential (the "magnetic" effect) and by 
electrostatic scalar potential ("electric" Aharonov-Bohm 
effect), as well as to consideration of dynamical effects 
associated with the Thomas-Fermi screening of a surface 
charge (the "surface spectroscopy"). 

Magnetic Aharonov-Bohm effect manifests itself in the 
oscillation of  electrical resistance of  nanoscale loop or net- 
work as a function of  applied magnetic flux q~ M, and in the 
appearance of a persistent current in a closed-loop oscillat- 
ing versus flux with the period q~0 = hc/e [2, 3]. Disorder 
and inelastic scattering reduces the magnitude of  persistent 
current. A detailed shape of  J(@ M) dependence in a meso- 
scopic structure permits pattern recognition from a meso- 
scopic "fingerprint" because cusps in J(@M) are related to 
broken links in a network. 

t On leave of absence from B.Verkin Institute for Low Temper- 
ature Physics and Engineering, Acad. Sci. of Ukraine, 47 Lenin 
av., 310164 Kharkov, Ukraine. 

0921-4526/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 
SSDI 0921-4526(95)00607-9  

Rotation of a loop results in the appearance of a persistent 
current proportional to angular velocity of  rotation oJ, at 
zero magnetic field. The electric Aharonov-Bohm effect is 
a counterpart of  magnetic Aharonov-Bohm effect related 
to the "electric flux" q) E : c f E dx dt. Tunneling or point 
contact placed in an electric field, swept with period T, will 
develop electric polarization periodic in q~ E with period q~0. 
Another manifestation of the effect is in the oscillation of  
contact capacitance versus ~E. 

The paper also includes a discussion of non-quantum- 
mechanical effects associated with surface charges, or edge 
electronic states, in metals. Surface charge motion in a metal 
results in a specific energy loss mechanism. For the electron- 
ically driven motion of a surface charge with velocity V, the 
loss will have pronounced singularity at the Fermi velocity 
vF due to the crisis of the Thomas-Fermi screening at vF, 
thus providing for the determination of Fermi velocity. In a 
cylindrically shaped or disk geometry, magnetic moment of  
a surface current will also have a singularity at the velocity 
of a driven motion at V - v r. 

2. Magnetic Aharonov-Bohm effect 

The electron states in the conductors of  multiple con- 
nected geometry (rings, networks, etc.) are quantized with 
a magnetic flux serving as a control parameter for discrete 
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energies. As a result, the total energy E of  a system becomes 
flux-dependent resulting in the appearance of  a persistent 
current (@ = @ M ) 

J = -c~E/t3@, (1) 

which is a stable current in the equilibrium state, non- 
decaying in time for arbitrary long interval; nevertheless, 
the electron scattering and energy dissipation are taken into 
account. Such current was first calculated in a metal with 
long mean free path in Ref. [2] (and with arbitrary mean 
free path in Ref. [3]). The opposite case of  short mean free 
path l << L (L = 2nR is ring circumference) was considered 
by Altshuler et al. [4] in the context of disorder-induced 
electron interference phenomena in the conductivity of  met- 
als ("weak localization"). The latter effect manifests itself 
in the resistance oscillation with a twice smaller period, 
@~ = @0/2, and does not show up in the thermodynam- 
ics. Both types of  oscillation exist provided sample size is 
smaller than the characteristic length l~ = vvz~ where r~o 
is the phase-breaking time (% = r~ in the ballistic regime 
l > > L  and z ~ = ~  in the diffusive regime I<<L) .  
z = l/vv is the elastic scattering time and z~ the inelastic 
scattering time determined by electron-phonon interaction 
r~ v~'. hO~/kBT 3 and (specifically at temperatures below 
1 K) by electron-electron interaction zcf ~ hcv/k~ T 2. 

The Hamiltonian of  an electron in the ring in the tight- 
binding approximation is 

H = - ~ ai,~[to + t l (ei ;o- - e i:t7_ )]~l~a,,+l,# e i° 

+h.c. + ~-'~ a+[V(tp,,) - #B-a- - e-ie"#(Br - iB,p)a+ 
nzfl 

- ei'p"#(B~ + iB~)cr-]~l~a,,/~ (2) 

with arbitrary 7 and real to, tl. 0 = 2n@,/N@0 where N is the 
number of sites in the loop, tp is the angular coordinate along 
the loop, and cr-k = (or, + ia;.)/2, a+= is an operator creating 
electron at site n with spin projection ~. The Hamiltonian (2) 
includes spin-independent and spin-dependent (spin-orbit 
coupled) hopping between sites interacting with magnetic 
flux due to the electron charge e, and to the external magnetic 
field B due to the electron magnetic moment p. The effect of 
radial magnetic field B,• ("magnetic texture") was considered 
by Loss et al. [5] and that of  the azimuthal magnetic field 
B~ ("magnetic wheel") by Stern [6]. 

V(q~) is a potential representing disorder in the ring. Ne- 
glecting the latter and the Zeeman coupling terms in Eq. 
(2), we obtain the electron energy independent of 7: 

_2n :1: 71] t V~02 + t~, E,, ~ 2 t cos k~-(m + v) , = 

tl 
71 = arctan --, (3) 

to 

where m is an integer and v = @/@o. 

The energy versus flux dependence is shown in Fig. I. 
The spin-orbit coupling splits minimum of E(@) but does 
not change the position of the maximum in the lowest-energy 
state. This results in the appearance of  strong second har- 
monics of  E(@) and can eventually lead to halving of  oscil- 
lation period from @0 to @0/2 [7]. 

If  we neglect the spin-orbit effects in Eq. (2), energy can 
be obtained in an exact form, 

1 ~-  E,,, = ~(~m "~ ~- Cm+l,l ) 

+[¼(~.,T - c.,_,.+ )~ + ~(B~ + B~)]  ','~, 
2n(m + v) 

Cml,rn I = -2t0 cos - -  T #Bz, (4) 
N 

shown in Fig. 1. It is interesting to note that radial and 
azimuthal fields have effect seemingly similar to that of  the 
Aharonov-Bohm flux (in particular, current does not vanish 
at @ = 0, see right panel of  Fig. 1 ). This however does not 
produce a nonzero total persistent current (contrary to the 
statement in Ref. [5] ) because, due to time-reversal symme- 
try, states m and - m  + 1 at @ = 0 correspond to opposite 
currents and cancel each other after averaging over the elec- 
tron distribution. 

A disorder in the system reduces the magnitude of the 
persistent current. For a one-dimensional ring, average cur- 
rent can be estimated as 

J ~,, eVFe-2~R"%-2~R"; sin 2n @ (5) 
R @0 

with ~ 4l and ( =- hvF,/2nT. Currents of such order of  
magnitude have been observed in the experiment [8, 9]. 

For a multichannel ring with a number of perpendicular 
conducting channels N± = k~£/'4n ( S  is the cross-section 
of a ring), coherence length ~ increases proportional to the 
number of  channels ~ ,-~ lN± [11]. In the metallic diffusive 
regime l << L << ~ appropriate to the experiment, the am- 
plitude of  a preexponential factor in Eq. (5) is of  the or- 
der of  l /L [12,13]. The magnitude of  a current observed in 
Ref. [8] is much larger than this value and therefore hard 
to interpret on the basis of  current understanding of  quan- 
tum transport in disordered conductors. The @0/2-periodic 
current has been calculated in Ref. [14] and observed in 

/ ', 
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Fig. I. Left panel: energy of a ring versus magnetic flux• 
Right panel: persistent current versus flux. (1)7 = 0, B = 0; 
(2)7=0.2.  B = 0 :  (3) , ,=0,  B,_ =0.#B±• = ~co.l 
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the experiment [15]. The observation of  such periodicity is 
simpler than the observation of  q%periodic persistent cur- 
rent because it can be done in an ensemble of large number 
( ~  107 in Ref. [ 15]) of rings, whereas q~o-periodic currents 
are random in magnitude and sign and therefore cancel each 
other in the large ensemble. 

In a one-dimensional ring, potential V influences persis- 
tent current not in exactly the same way as it changes the 
conductance of  the ring [10]. For a single barrier in the ring, 
V(~p) = V6(cp), current is easily calculated: 

m em2 
J,,, = ( - 1 )  ~ sin 2redo ° (6) 

and is proportional to square root of  the barrier transmissiv- 
ity D rather than to D (D ~ 1/V 2). Therefore, the persistent 
current in a "weakly coupled" mesoscopic ring scales with 
R ~2 rather than with R- t  where R is the ring resistance. 
( We mention that the ring, if  superconducting, has critical 
current proportional to R i which therefore decreases more 
rapidly with R than the persistent current; the former is how- 
ever much larger than the latter because it shows up as the 
effect of  a single electron, see Eq. (5), rather than the effect 
of macroscopic number of  electrons.) 

If mesoscopic ring is rotating with the angular velocity co 
along its axis of  symmetry, persistent current will he gener- 
ated without the external magnetic flux. Rotation is equiva- 
lent to the effective vector potential 

m c  
A = - -  o3R, (7) 

e 

which produces the phase difference O 2~eAR/Nhc be- 
tween the sites in Eq. (2). An estimate of  the induced mag- 
netic moment of  the ring is 

M '  m2FF 
"~ h~oR3,  (8) 

it-- ~ 

where I~B is the Bohr magneton. This moment is too small 
to be observed in a single ring. Consider however the crystal 
comprising of  large organic molecules like e.g. C60. Assum- 
ing that the number of  molecules per unit volume n ~ R 3, 
we obtain for the magnetic field produced by persistent cur- 
rents, 

H I e 2 UF 2mc 
"-~ ~c --~- H ..... H,,, - - o ~  (9) 

e 

(H,,, is a reference field of  a London moment [16] induced 
by the rotation of  a superconductor). 

The field (9) is of order H '  ~ 10 i~ G per revolution per 
second, and can in principle be detected in an experiment. 
We mention that the requirement that ring is metallic is 
not strictly necessary because as was shown in Ref. [17], 
persistent current in principle can exist in insulators. 

A levitating metallic ring (say, ring floating over the sur- 
face of  liquid helium supported by surface tension) can ex- 
hibit much more delicate quantum effects. Because the ring 
is comprised of positive ions interacting with the external 
flux, the Aharonov-Bohm arguments concerning the role 
played by vector potential in quantum mechanics, equally 
apply to both electronic and ionic subsystems. Assuming 
that ions are immobile in the frame of reference of  the ring, 
we conclude that their response to flux will be that of  a 
charge -Ne  (N is total number of ions equal to the number 
of electrons). As a result, the flux quantum corresponding to 
the lattice will be ~o/N rather than 40. Such effect requires 
much stronger restriction on the crystal purity and temper- 
ature than the electronic Aharonov-Bohm effect. Fractional 
Aharonov-Bohm effect was also predicted [18] for the im- 
mobile ring, as a consequence of  strong electron-electron 
correlation. 

In the above discussion, we considered electronic system 
in equilibrium. This requires that inelastic relaxation time 
is not too long to allow electrons to follow adiabatically af- 
ter slowly changing the magnetic flux. Specific relaxation 
of  electrons, that of inelastic electron backscattering [ 19], is 
operative in establishing the equilibrium between the elec- 
trons. If the corresponding relaxation time is too long, per- 
sistent current might change, or vanish. 

3. Electric Aharonov-Bohm effect 

The change of the electron phase due to electrostatic po- 
tential has not been so far detected in any experiment (the 
electric-field-induced shift in the magnetic Aharonov Bohm 
oscillation observed in Ref. [20] is not related to this effect 
and will be discussed elsewhere). To clarify the requirement 
for the observation of the electric Aharonov Bohm effect 
in solids, consider Fig. 2. Two metallic particles are placed 
above and below a thin capacitor with the electric field E 
confined within the capacitor. The effect of E on the tunnel- 
ing between the particles will in no way be changed when 
the distance between the plates of the capacitor increases, 
provided the potential between particles remains unchanged. 
This is also true when plates of the capacitor are outside the 
particles (Fig. 2(c)). Assuming that potential V(t) is peri- 
odic in time with a period To, introduce electric flux as q~E = 
, rT0 

c Ju V(t)dt. The problem is reduced to that of  a two-level 
system with a Hamiltonian 

eV 
H Tc~: + Tiza~, (10) 

where Ti2 is the transfer matrix element between the levels. 
For V(t) in the form of a periodic Kronig-Penney poten- 

tial 

v(O voE6(t-nro), (11) 
it 



L O. Kulik/Physica B 218 (1996) 252 257 255 

time evolution of  a two-component wave function t/, = 
(u, v) is easily found giving nonzero dipole momentum P = 
e(I. I z - I  t, I~): 

P ( t )  - 4 e T I 2 T  Re(u~ vo) Im  ~(t),  ( 12 ) 

where 

e2r~iv  - -  e 2 r d N v  - k  Fe  2~i'&' e V0 
~(t) - I - -  e 2 ~ i ' '  , V = h ' 

(,3, 

Ix] and {x} are integer and fractional parts of x, respectively. 
v in Eq. (13) is the ratio of  electrical flux to flux quantum, 
v = qgE/dPO. P(t) is proportional to the first order of  the 
tunneling amplitude T~2, similar to the first-order tunneling 
current in a weakly coupled mesoscopic ring (6). 

Assume that @ E slowly changes in time and average (13) 
with respect to fast oscillation, and with respect to random 
variation of q~ E, with a characteristic Gaussian width 7 
Aq~E/~b0. This gives at T = 0, 

fli t)  ~ ( - l ) ' A . , e  ~-'~-~;:sin 2rcs ~E . (14) 

The effective charge difference between particles oscil- 
lates as a function of  the average electric flux q~E with the 
period of  a flux quantum q~0. The amplitude of  the sth har- 
monics of  the oscillation at zero temperature equals 

~ 2  

A, = -4 f cotxsin(2sx)dx. (15) ' 
8 

The effect of such oscillation can only be observed for a 
time interval smaller than the inelastic relaxation time r~ at 
temperature smaller than h/To. It is also required that the 
voltage be larger than Vc e2/C to eliminate the effect of 

. . . . . .  . . . . . . . . . . . . .  . . . . . . .  ii:ii t t t t t  

. . . . . . .  • . . . . . . . . .  O . . . .  

Fig. 2. Gedankenexperiment of the Aharonov Bohm effect in a 
tunneling junction with capacitor inside (a,b) and outside (c) of 
the junction. (d) Schematic of an experiment intended to search 
for the persistent charge. 

a Coulomb blockade in small tunneling junctions (e.g., Ref. 
[21]). The latter effect can be reduced if metallic dots are 
placed near the bulk metallic electrodes, as schematized in 

Fig. 2(d). 

4. Surface spectroscopy of conduction electrons 

Consider metallic semispace in the near vicinity of  an 
electrode (a tip) biased, say, positively with respect to the 
surface (Fig. 3). The electron charge is induced inside a 
metal near its surface making a surface image of a tip. We 
now investigate dynamical screening effects associated with 
the motion of tip along the metal surface. 

The Fourier harmonics qSk = q5 of  an electrostatic poten- 
tial inside a metal satisfies the equation 

k 2 ~ b  - -  d 2 ~  - -  --41"ceN(~v)(Z), (16) 
dz 2 

where Z is the correction to the electron distribution function 

~J{' (17) / p  = f 0  + z (x  - vt) ~,e " 

By Poisson transfomaation, ~ is represented in the form 

1 "+~~ p~(O) + 0 ' (o)  + f ~  d,o ,4,o p+i;,,, 
~b(z) = ~ i  f dpee: p2 _ k  2 _ 1 - S ( p )  

with 

( 18 )  

dcp kV 
S(p)  = -* 2n (7,p - ip)s in  9 '  7,o - 

k(cos 9 - V) 
sin qo 

(19) 

~0 is azimuthal coordinate at the cylindrical Fermi surface 
(we use dimensionless units such that vv = 1 and N(cv) = 
1 ). The boundary condition for the electrostatic potential at 
the metal surface takes the form (p0 is the pole of  denomi- 
nator of Eq. (18)) 

d(p A,o ~'(o) g (20) 
~ 2~ p0 +-i7,o' 

where the prime denotes the derivative with respect to z, 
and A,p is a function satisfying an integral equation 

? d9 A,o 
kI ,  4,,, , 4,0 4 , ( 0 ) +  , = , ,  

sin 9 Y,p - ip0 -~ 2rt P8 + 77,, 

(2 l )  
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where q is the coefficient of diffuse reflection of electron at 
metal surface and 

rc 

[A~ : (1 - q)A~, + f A ~  sin ~pdqz (22) 
o 

The analysis of the above formulas shows that dynami- 
cal surface sheet of a metal has the same thickness ).vr = 
(4zte2N(cF)) -E/2 as in the case of static Thomas-Fermi 
screening if the velocity is smaller than the Fermi velocity 
vv. At V > vr, there appears a component of 4) penetrating 
inside the metal at a distance k-~ of the order of surface-tip 
distance (or tip size). Such anomalous penetration vanishes 
if the corresponding potential component ~bk is equal to zero. 
Self-consistent solution for the potential distribution inside 
and outside the metal shows that the potential outside the 
metal will be substantially distorted compared to the static 
potential distribution. For a cylindrical Fermi surface, sur- 
face image elongates in the direction of the tip motion, as 
shown schematically in Fig. 3. 

The energy dissipation related to the tip motion can be 
calculated from the boundary condition at the surface (22). 
For a spherical Fermi surface, we obtain an expression for 
the dissipated energy 

V 2 1 -_q/2 [ ~  12 
: k~l ~ ( 0 )  W 4~e2N(cF )vv q J I )~ 

( C, C2 ) (23) 
× In I k, I ;~T~ + ,1 In I k~ I ;-T~ ' 

where Ct and C2 are constants of order of unity and r/ is 
V-dependent quantity showing large increase as a function 
of velocity between vv and critical velocity Vo satisfying the 
relation 

vc 
,~-, Vc 0.8335vv. (24) tanh 

UF Vc 

Above Vc, W has singularity as a function of velocity. At 
larger velocity, linear regime of screening breaks down, and 
surface layer becomes reconstructed. This will be investi- 
gated elsewhere [24]. 

The coefficient of diffuse reflection is expected to be de- 
pendent on the electron energy. If the velocity of motion is 

© . v  O . v  

:i. ) x " ::Y" '"":" 

L t 

V < V  
F V > V  F 

Fig. 3. Surface image of a moving tip at the velocity of motion 
smaller and larger than the Fermi velocity. The axis of cylindrical 
Fermi surface is directed parallel to metal surface perpendicular to 
the direction of tip motion. 

equal to the phonon propagation velocity s, q in Eq. (23) will 
increase due to the allowance for the surface phonon emis- 
sion. Therefore, we may expect that the dependence W(V) 
will have singularity near the phonon velocity similar to that 
in the conventional point-contact spectroscopy [22, 23]. 

Unlike in conventional conductivity measurements in 
metals in which the drift velocity of electron is extremely 
small, the velocity of surface sheet motion V can in prin- 
ciple be made arbitrarily large in the linear regime (small 
qS). It is supposed that large values of V can be achieved 
by propagating either charged particles or small charged 
bodies parallel to the metal surface. Another possibility 
is that charged solitons move in the semiconducting film 
overlaying (but not in direct electric contact with the metal 
surface), e.g. in the Gunn effect. Velocities of the Gunn 
domain motion in GaAs can be of the order of 107cmJs 
(e.g., Ref. [25]). 

5. Conclusion 

The Magnetic Aharonov-Bohm effect is now a well- 
established phenomenon for systems with spatial peri- 
odicity of order 103A (nanostructures). The oscillating 
hc/e-periodic behavior in the conductivity of such struc- 
tures is perfectly understood both theoretically and on 
experimental basis. However, the thermodynamics of small 
systems in the presence of the AB flux is less clear. 
Persistent current, an equilibrium lossless current in the 
ground state of normal metal, decreases dramatically in 
its magnitude with the increasing disorder and is ex- 
ponentially small in non-metallic or insulating regimes. 
Experimental values of the current have unexpectedly 
proved to be larger than that based on theoretical cal- 
culation appropriate for a disordered metal. The study 
of persistent currents in disordered metallic systems rep- 
resents the most direct way of testing the localization 
theories. 

The electric Aharonov-Bohm effect has so far never 
been observed in an experiment. We have addressed this 
issue and showed the condition at which it shows up 
in a nanoscale metallic system. The hallmark of the ef- 
fect may be analogous to the hc/e-periodic oscillation 
on magnetic flux, in the hc/e-periodic variation, as a 
function of electric flux of the "persistent charge" (and 
corresponding dipole moment) in double-well metallic 
systems. 

Strongly correlated electronic models show hc/e and 
hc/2e periodicity in the dependence of their thermodynamic 
potential and the persistent current versus magnetic flux. 
The second effect is similar to superconductivity but not like 
the latter decreases in amplitude with the increasing system 
size. Mesoscopic (random in sign) and sign-conserving 
behavior of the current in the ring can be considered as a 
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criterion for distinguishing between strongly corre- 
lated models proposed e.g. for the explanation of  high- 
temperature superconductivity. 
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