PHYSICAL REVIEW B VOLUME 53, NUMBER 16 15 APRIL 1996-II

Ground-state description of quasi-one-dimensional polarons
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We consider the interaction of a confined electron with bulk polar-optical phonons in a cylindrical quantum

well wire with infinite boundary potential. Expressions for the polaron self-energy and mass are derived within

a variational scheme over reasonably broad ranges of the wire radius and the phonon-coupling strength. The
formulation is based on the standard canonical transformation of the strong-coupling ansatz and consists of a
variationally determined perturbative extension serving for the theory to interpolate in the overall range of the
coupling constant. Contrary to the general trend that the electron-phonon interaction is inherently stronger in
systems of lower dimensionality, our results indicate that, at weak coupling, the binding energy of the polaron
can be smaller and its mass less inertial compared with the bulk case when the wire is made narrow.

I. INTRODUCTION more convenient approach accounting for its weak- and
strong-coupling counterparts simultaneously. The formalism
Recent developments, in microfabrication technologythat we follow in this work consists of the usage of a
such as molecular-beam epitaxy and lithographic depositiorperturbative-variational approach used previously by
have created a variety of opportunities for the fabrication oDevreeseet al.,*? in their application to the bulk-optical po-
synthetic semiconductor structures with reduced dimensionaron bound to a Coulomb center. The procedure is struc-
ality. Of particular interest is the quantum well wif@®WW)  tured on basing the starting ansatz on the standard displaced
configuration, where the ultimate confinement effects quanescillator transformation of the Pekar-strong-coupling
tize the carrier motion in the directions transverse to itstheory** and then modifying the adiabatic polaron state by a
length. Since their early predictibnand subsequent variationally determined perturbative extension serving for
fabrication?™* there has appeared quite a large interest irthe theory to interpolate in the overall range of the coupling
phonon-coupling-induced effects and polaronic properties ofonstant.
one dimensionally confined electrons. Some considerable For the present, we refrain from including the coupling of
amount of the literature published within this context hasthe electron to the confined phonon modes, as well as inter-
been devoted to the interaction of electrons with bulk LOface surface-opticalSO phonons and adopt the so-called
phonons and the study of the relevant polaron propetis. bulk-phonon approximatigrwhere a laterally confined elec-
The common prediction led by these works is that, in quaniron is thought of as interacting via the Fiich Hamiltonian
tum wires where the electrons are fundamentally quasi-onewith the bulk LO phonons of the relevant well material. As
dimensionalQ1D), the polaronic binding is far much deeper such, the fundamental approach followed in this work is to
than in two dimensionally confined quantum well systemstake into account only the generic Q1D aspect of the dy-
Alternatively stating, high degrees of confineméas real- namical behavior of the electron confined in a free-standing
ized in thin wires lead to a pseudoenhancement in the effectubular geometry and leave out all the other effects; thus,
tive electron-phonon coupling, which in turn brings about thefocus our concern primarily to give a clear view of solely the
possibility that, in spite of weak polar coupling as in GaAs, bulk-phonon effects. Apart from ignoring the contributions
for instance, the polaron problem may show up as a stronghat may come from all other kinds of phonon modes, we
coupling aspect coming from confinement effects. This saalso omit the screening effects and further details, such as
lient feature can be more prominent in 11-VI compound semi-those due to the nonparabolicity corrections to the electron
conductors (e.g., CdTe, where the relevant coupling band or the loss of validity of both the effective-mass ap-
strengths are almost an order of magnitude larger than thog®oximation and the Fidich continuum Hamiltonian in thin
in 1lI-V materials. We thus feel that, for not too weak and microstructures. In view of these simplifying assumptions,
pseudoenhanced electron-phonon interaction, the strongve provide a broad interpolating overview to the one-
coupling polaron theory, though not capable of reflecting goolaron problem consisting of an electron perfectly confined
totally dependable quantitative description, may serve so taithin a cylindrical boundary with infinite potential. In the
provide some qualitative insight into the study of polarons innext section, we give the basic essentials of the variational
confined media consisting of materials of somewhat strongheory that we adopt in this calculation and derive analytic
polar crystals. On the other hand, a pure perturbation treaexpressions for the ground-state binding energy and mass of
ment may also be not perfectly appropriate, except for todhe Q1D polaron. In Sec. lll, we present our numerical re-
weak-phonon coupling. We are, therefore, tempted to formusults over reasonably wide ranges of the wire radius and the
late the Q1D-polaron problem within the framework of a electron-phonon interaction strength.
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Il. THEORY is an optimal fit toug and, therefore, the transformed Hamil-
tonian depends o implicitly.

Scaling energies by the phonon quantu, o and Under the transformatiofd), the Hamiltonian conforms

lengths by (/2m* w o)*?, the Hamiltonian of an electron

confined in a wire and interacting with the bulk LO phonons

is given by - L.
H =—V2+V(p)+% ué—% TouglexpiQ-r)+c.cl

H=—V2+V(p)+% agaQ+% FQ(aQeid‘F+aae‘id'F),
1) +§ aéaﬁ% {[ToexpiQ 1) —uglag+H.c}. (6

in which aq (aQ) is the phonon annihilatiofcreation op Since the Hamiltonian is invariant to translations of the elec-

erator, andr =(p,z) denotes the electron position in cylin- o together with its concomitant lattice distortion, the total
drical coordinates. With the normalization volume set t0yomentum along the wire axis

unity for notational convenience, the interaction amplitude is

related to the phonon wave vect@®=(q,q,) through 1 =—ii+2 ala @
o= V4malQ, wherea is the dimensionless coupling con- z iz G 92808

stant. We assume that the electron is perfectly confined to a b d. Th iation. theref .
cylindrical wire with infinite potential boundary gi=R, must be CO?S?VG .I € vana 'S?Ir," erhg (;]re, _rgqqlresHan Op-
and takeV(p) =0 inside the wire. timization of the polaron state>¥y, which minimizes

We set the electron wave function as separable in th ubject to the_ constraint t_hzﬂz Is a constant of motion.
transverse and longitudinal coordinates in the form hus, minimizing the functional

F(B,vlug,k)=(¥gle”S(H—vIl,)ed W), )

Do(p,2)=o(p)Z(2)€", @ _
with respect tox andug yields

wherein the exponential factet*? (with  to be determined

variationally) sets the system in motion, thus enabling one to 1 q D=T
trace the polaron mass along the length of the wire. k=5v and ug(Pe)=T'gSorq. ©
A. Displaced oscillator transformation where
The variational approach that we adopt, in this paper, is sQ=<<I>e|exp{ti(ﬁ-5+ 9,2)} ®e), (10
based on utilizing the usual canonical transformation of the .
strong-coupling formalism and then extend the adiabatic po- po=(1-v0,) ", (13)

laron state, by including an approximate first order perturba
tive correction, by which it is possible to interrelate the ,aron velocity along the wire axisee, e.g., Ref. 15In
strong- and weak-coupling counterparts of the couple g. (8), the symbolB stands for the variational paramegr
electron-phonon system. Regardless of the strength of the ® =~ . -

coupling constant, the starting step in the foregoing theory igontalned D e(p,2). . . ,

to assume a highly rapid charge density fluctuations for the . In cor_nplete form_, W't.h the o_ptlmal fits foe anduQ_ sub-
electron, to which the lattice responds by acquiring a relaxe&t'tuu?d in, the Hamiltonian which we shall be refering here-
deformation clothing the entire extent of the electron. Theafter IS

adiabatic polaron ground state thus formed is given through a

in which the Lagrange multipliey is to be identified as the

product ansatz consisting of the electron and phonon parts, H = —V2+V(p)+% agaQJr% I'3sops
i.e.,

V=D(p,2)|0), 3 =2 Tgsqpq(e " +e )
together with the Hamiltonian subjected to the displaced os-
cillator transformation, +§ ' o( 7020+ ﬂ’éaTQ). (12)

' _ oSS

H—H =e >He>, (4) where

where iS5
ﬂQ:eIQ.r_SQpQ . (13)

Similarly, for the total momentum transformed accordingly,

_ ot
S exp%: Ua(Pe)lag—agl. ®) I1,—e SI1,eS, we have

Here,ug(®,) is the lattice variational parameter, which will

depend orr, since it is via this parameter an interrelation
establishes between the potential well set up by the lattice
polarization and the electron which, in turn, becomes trapped
in this well. It then follows that, for each choice &, there

~ J
— E T E 2 2 2

— %‘, T oU,S0po(ag+al). (14)
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In what follows, we shall consider the case of a stationaryin the aboveg is a constant, which serves for normalization,

polaron, i.e., takg¢ W |IL,|¥ ) as zero, and thus regasdas ~ and the index refers to the intermediate states, those con-

a virtual velocity that we retain in our calculations to keepsisting of the electron and one-phonon with wave vector

track of the effective mass of the coupled electron-phonor). The summation over the intermediate states is a rather

complex. difficult task, since now the states themselves and the corre-
In the case where the coupling constant is thought to bgponding energies depend arand the lattice coordinates in

really strong, the visualization of the problem is relatively involved manners. Nevertheless, this shortcoming can be

simple and a reasonable description of the system can readigfiminated by replacing the energy denominater; _ 4 by an

be achieved by requiring an optimization of the transformedaverage quantity,

Hamiltonian H, with respect to the ground state,

d)e(ﬁ,z)|0>, of the polaron. We shall retain the results and Jo= 1 (16)
discussions pertaining to the large limit until later and Q Agi_q4 i’

point them out as a special case of the more general results, = ) ] ) o
which we derive in the last section. Here, our concern is tgvhich in the calculation will be determined variationally.
make correspondence with the variational scheme of/Sing completeness, thie summation in Eq.(15) can be
Devreeseet al,'3 where the adiabatic polaron trial state is Projected out to yieftf

modified accordingly, so as to cover the overall range of the

cogpling strength. .For the sake of completeness, _in the .fc.)re- q,g: c+ E FQgQ(efidF_ SQ)ag v, (17)
going two subsections, we choose to include a brief revision Q

of the basic essentials in the variational ansatz advanced lPhe variational parametay,, sets up a fractional admixture
Ref. 13. The major distinction, which sets the present con- Q >~
cern apart from that in Ref. 13, is that we confine ourselveé)f the strong- and weak-coupling counterparts of the coupled

to a one dimensionally confined polaron model with a Virtualelectron-phonon system and thus is expected to serve for the

momentum imposed to the coupled electron-phonon comtheory to interpolate between the extreme limits of the cou-

plex through the factopg, multiplying the termsg in the pling constant.
Hamiltonian(12).

C. Formulation

B. Variational state for arbitrary «a The requirement that the extended trial stﬁ@ be nor-
malized yet poses a further constraint, interrelating the pa-

Regardless of the value ef, no matter how small it is,
rametersc andgq through

the procedure is still to continue with our considerations
from Eq.(12), since with decreasing, the degree of local-
ization of the electron becomes reduced in a significant man- f(c,90) =c%+ Z FégéhQ— 1=0, (18
ner; eventually sy tends to zero on the average and, thus, Q
H converts back to its original fornd stripped from the in which
displaced oscillator transformation. In view of this reasoning, o o
one is_ led to include a_first order correction to the trial state hQ=<0|(e‘Q'r—sQ)(e‘iQ'f—sQ)|0)=1—sé. (19)
(3), with the last term in Eq(12) treated as a perturbation.
Since, at present, we limit ourselves to the case of a statiorin order to find the optimal fit tg,, one has to minimize the
ary polaron, we first would like to bring about an insight into expectation value dfl —vIl, in the trial statg17), subject to
the problem withpq in Eq. (12) set to unity, thereby obtain the constraint(18). Within the framework of the modified
a means of characterizing the polar@re., calculating the trial stateW,, the functional(8) now takes the form
optimal ®, and hence the binding energy, for instante
the case when = 0. Thereafter, we shall turn on the velocit
to keep trace of the polaron mass under a virtual translat)i/oﬁ('g'v|C’gQ):CZ(GOJr av?)- §U2+(1_2C2)X
of the electron and the lattice distortion together.

In the perturbation treatment of the Ttizh interaction,
the first nonvanishing contribution to the ground-state energy
comes from the term, which is of second order in the inter-
action amplitude. Correspondingly, the leading correction to
the trial state defined through Eo) and (4) is of first  where
order. The ground state trial wave function férand for the
constraint that the total momentuhf, be conserved, then eo=(De|—V?|Dy), (21)
becomes extended to

+ 2c% T'3g0ho+ %‘, I'3g5(eq— o+hg),

(20

o= (D |(eQ 7 —50)(—V2)(e 12T —50)| D)
‘1’9—>‘T’9=C‘1’g+§ o2l [¥i) —el® (g, 3 v)ho. 22)
with

(¥il(e7' = sq)ad ¥y
X Ae. ' (15 0)_ 2. 12 1.2
€i—g eq =q°+ 20;t (et 20;)hg, (23
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and furthermore, in which s o refers to the same expression as $gr, cf.
Eq. (10), in which g is to be replaced bg+q’, andq, by
x=2 I'2s2po, (24) G-
T 90 ° Furthermore, setting
(0) — a(0) _ <(0) _ (0) _
5Q:§ I'%S0Aogrpors (25) Do'=eq' —dq +(1-&+2x"=A)hg, (39
; we obtain
wherein
iG7F ., AmiQ T\ mmiO-T 1
Ao =(0](e'¥"—sg) (e T+ ' (e ™? r_SQ)|(1>2-6) F(B,0)=Eq(B)— Zu*my, (36)
The variational fit togg (and to the normalization constant \ynere
c) is achieved by requiring
Eq(B)=€0—x'+A (37)

17
o {F(Bwlc.gq) ~ Af(c,go)} =0, 27)
9 refers to the ground-state energy and the fastgmultiply-
with A being a Lagrange multiplier. It then follows that the N9 iv? is identified as the polaron mass given by

functional F is given by
2

h
_ Q (0)92
1 my=1+ P+, I'd—=1{[29,ho/DY]
F(B.v)=eo=x~ v+ A, (28) - ¢ bR
+[65)—2xMhol/DDY. 38
whereA is derived through the transcendental equation, [6"=2x"hol/Dq’} 38
The explicit analytic forms for the quantities, so, x",
A=2 T3[go/clhg, (29 and Y, involved in Egs.(37) and (38), can be derived
© using the functional form forI)e(;;,z), which we introduce
in which in the next section. They are, however, lengthy to write here
and therefore, we list them in the Appendix.
go  ho It should be clear that, in deriving E¢36), we have re-
< D_Q (30 garded parameteA as being obtained from Ed29), for
go/c=—ho/DY, ie., for the case where the polaron is

and taken as stationary.

Do=€o— do+(1—ey— fv2+2x—A)hg. (31
Q=€ do* (1€~ 3 X~ Mhe. (8D IIl. RESULTS AND CONCLUSIONS
In order to trace out the polaron mass from E2f), we have . . . .
to split F(B,v) into its parts consisting of the binding energy o Due tto tT)e analfytlc ccc)jmbplexny, th'e (?pnmtahl fgs m.?r?d
of the polaron alone and the additional kinetic contribution, e &€ 0 D€ periormed by humerical Methods within an
which shows up having imposed a virtual momentum to thaterative scheme. In our calculations, we select the electron
polaron. We are thus tempted to expand Hgd), (25) and ~ Wave function®¢(p,z), given by Eq.(2) in a reasonably
the summand in Eq29) in a power series up to second order Simplest form, where its transverse and longitudinal parts are

in v. We, therefore, conforny and éq into the forms given by

X:X(O)_,_%UZX(D and 5Q=5{QO)+%UZ5(1), (32 (p)= bio1/R) (39)
VR (o)
wherex(™ and 5% (n=0,1) are given by
and
x"=2 Tosl20,1”, (33 g2 4
Z(z)=(?) exp(— 1 B%2%). (40)
n)_ 2 112n
5 _g T'aSerAoel2a;] Here,J,, denotes theith order cylindrical Bessel function of
the first kind and o ;~2.4048 is the first zero af,. Param-
eter B is to be adjusted variationally and provides a measure
of the spatial extent of the electron along the wire axis, i.e.,
the root mean square of the coordinatds related togs
X(SQ+Q/+SQ—Q')[ZQQ]ZH, (34 through

=2x"(1+5s3)— 250>, T Sq
QI
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FIG. 1. The binding energy, as a function of the wire radius
calculated within the strong coupling theory. The solid and dashed
curves are forp(p), taken as given by Eq$39) and (42), respec-
tively.

&={(V (|22 )}

1 \/1+2Qrg(gQ/c)2[1—(1—q§/52)sg]

FIG. 2. (a) The binding energ¥,, , and(b) the effective polaron
(41 massm,,, as a function of the wire radius. The solid and dashed

. . - curves reflect the results of the present and strong-coupling approxi-
We think that, for not too large, the choicg39) for ¢(p) IS mations, respectively.

well suited for thin wire structures, as the transverse local-
ization is provided most dominantly by the wire-boundaryonly for small wire radius. On the contrary, however, we see
potential, rather than the phonon-coupling-induced localizathat, for not too largex, both wave functions(39) and(42),
tion. We could, as well, have choser{p) as more general 9ive almost identical binding energies fi=2, and that the
like, wave form(39), which we use in our calculations, becomes
capable of reflecting a reasonable description of the system
. . over a broader range &, whena is made weaker.
o(p)—e(p)exp — B'%p?), (42 In displaying the results of the present formulation, we
first refer to the regime of strong phonon coupling and pro-
consisting of a Gaussian extension, for instance. This latteyide plots of the binding energﬁp=(j01/R)2—Eg and the
wave form duplicates the same features at small wire radib()'aron massfnp against the wire Sizé for a succession of
and is expected to give better results in the range of larggyrge o values. An immediate glance at the set of curves in
R, and moreover, to depict asymptotically the bulk limit Fig. 2 reveals that, with increasing degree of confinement
whenR—c. However, we still adopt the former expression (j e with increasindR 2, as well as with increasing), the
(39) for ., mainly to facilitate the analytic and numeric pinding becomes substantially deepened, where, correspond-
computations. In the following we, therefore, restrict ouringly, the effective polaronic mass scales to large values with
considerations SOIer to thin WireS, rather than bulklike me-very pronounced s|0pes_ Comparing our results with those
dia, where the relevant polaron properties have already beeferived from the strong-coupling theofyf. dashed curves
well understood in the literature. In this regard, we shall bQNe note that the present approach y|e|ds Significant|y im-
content with a comparison of the two wave forif®) and  proved energy upper bounds and that the strong-coupling
(42) within only the framework of the strong-coupling ap- approximation deviates considerably from the present for-
proximation withe selected as larger than 1, where the dis-malism asa is made weaker and/@® is increased. Indeed, it
crepancy is expected to be somewhat more prominent thag only for large @ and smallR that the two approaches
that in the intermediate and weak-coupling regif&s Fig.  pecome identical since, in this limit, the electron gets highly
1). From the succession of curves far=2, 4, and 6, we |ocalized,s, (10) becomes unity on the average, and thus
observe that the energy values, derived fr(88), exhibit a hg (19), and henceA (29) tend to zero and the present

considerable amount of digression from what one expects foheory readily reproduces the strong-coupling limit, i.e.,
large R, and in particular, the digression grows larger for

strongera. We also note that the place at which the curves Eq=eo—x¥ and my=1+x, (43)

for (39) and(42) start to get deviated shifts down to smaller

R values for stronger phonon coupling, since for langehe  as depicted by the curvesolid and dashedthat become
polaron is already in a highly localized state and a smalkloser and eventually match as the phonon coupling is made
sized polaron becomes influenced by the confining boundargtronger andR is tuned to small values.
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Alternatively stating, for not too strongy, the pure 0.06
strong-coupling treatment of the problem is totally inad-
equate to reflect any weak-coupling aspect and this short-
coming is eliminated in the present approach by solving the
transcendental equatiof29) for the termA in the energy 0.05 |
expression, since it is only through this term that a detailed
interbalance is set up between the strong- and weak-coupling
counterparts of the coupled electron-phonon systenu As
shifted down to small values, the rafe plays becomes very
prominent, and in case the electron is loosely bound, the
polaron binding is mostly determined by this term. In par-
ticular, for a reduced degree of confinemeRe1) and at 0.015
weak coupling &¢<<1), it is easy to see that the terrag,
dq, x,» andA in Eq. (31) become far too small to yield any
significant contribution to the summand in the trancendental
equation(29). Therefore, in Eqs(37) and (38), retaining 0.010 |
only ho~1 andeg~Q?, we readily obtain

0.04 -

Eg~A~—% r3(1+Q?3) 1= —(2/w)ardQ(1+Q2)-1
0

0.005 : ‘ - 0.0
0.0 0.5 1.0 1.5 2.0
=—a radius
and FIG. 3. (a) The binding energ¥,,, and(b) the effective polaron

massm,,, as a function of the wire radius. The solid and dashed
curves are for CdTe and GaAs based quantum wires, respectively.

1
my=~ 1+42 Féq§(1+ Q%) %=1+ —a, In the plots, the energy and length units correspond, respectively, to
Q 6 18 (35) meV and 44 (40) A, for CdT&aAs.

which are the well established energy and mass values for
the bulk polaron in the weak limit; thus exemplifying the one usually expects for systems of reduced dimensionality,
essential role whichA plays in conforming the adiabatic and originates essentially from that, with decreadtygthe
approximation over to the results derived from the perturbawave function is squeezed onto the wire axis in all transverse
tion theory. directions, resulting in a reduction in the overall spatial ex-
An important remark pertaining to a weakly coupled po-tent of the polaron on the average and hence in the effective
laron in a narrow wire is that the electron now has to chooselimensionality, thus leading to deeper polaronic binding.
between two contrasting aspects of whether to conform to a For even weaker couplin@as in GaAs, for instance—cf.
delocalized state with a correspondingly large spread whethe dashed curves in Fig),3he behavior is rather different.
a<<1, or to acquire a localized configuration as the wire isBeginning from the bulk case and approaching the one-
made thinner. It should be mentioned that, the parametedimensional limit, there comes about a competitive interre-
a andR characterizing the system do not enter the problenation between whether the charge density fluctuations of the
in an independent way, but together take part in a relateelectron will condense onto the polaron center or will expand
manner in the binding, dominating the effect of one anotherto relax itself in the longitudinal £ z) directions along the
and yet acting collaboratively in favor of stronger binding. wire axis. Starting frorR>1 and then restricting the trans-
Thus, a high degree of localization in reduced dimensionalityerse spread of the electron, the contribution coming from
is expected to lead to a pseudoenhancement in the effectithe tendency of the electron to expand longitudinally domi-
electron-phonon coupling, which in turn brings about thenates first, causing a decrease in the binding energy, and
possibility that, in spite of weak polar coupling, as in com- correspondingly leads to a smaller effective mass of the po-
pound semiconductors, the polaron binding may as well haviaron. Meanwhile, with contracting a wire radius, the elec-
a strong-coupling counterpart coming from confinement ef{ronic spread experiences an increasingly large restriction to-
fects in narrow wires. wards the wire axis and therefore, below a certain wire size,
As reference to weak electron-phonon coupling, we seledhe effective degree of localization of the electron-phonon
CdTe (@=0.40) and GaAs4¢=0.07) based quantum wires, system starts to increase, leading to a considerably pro-
which are of particular interest as typical examples of 1I-VI nounced effective phonon coupling and hence to deeper po-
and 1ll-V compound semiconductors. An examination of thelaronic binding. For comparatively stronges, this salient
curves for CdTe and GaAs in Fig. 3 reveals that deghand  feature becomes less prominent and does not even show up,
m, undergo rather distinctive types of variations when wesince the starting state of the system is already a localized
vary R. We observe that fotr=0.40; the bindingand hence one.
the massbecome monotonically stronger and more inertial, In Fig. 4, we provide a global comprehensive summary of
as the dimensionality is tuned from three dimensional tahe variation of the binding energy as a functionafand
quasi-one-dimensional. This is totally consistent with whatR. We observe that, regardless of the wire widy, (and
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o ) ) ) ) ) 0.0 0.5 1.0 1.5 2.0
FIG. 4. The binding energgin arbitrary units on a logarithmic radius

scalg, as a function of the coupling constant and the wire radius.

FIG. 6. The longitudinal spatial exted}, as a function of the
m, — not pictured in the figunealways increase monotoni- wire radius at weak coupling. The solid and dashed curves reflect
cally with increasinga. So it is true with decreasin® as  the results of the present and strong-coupling approximations, re-
well, only however, fora lying above some value around spectively.
0.10. Below this value oty, the energy and mass profiles

(viewed as a function of decreasify) are seen to decrease  An interesting remark pertaining to the regime of weak
first, and then increase after going through a minimum as igoupling is that even for coupling constants as small as
the aforementioned description given for the GaAs wire. To,—0.01, a “pseudostrong-coupling” condition can be
give somewhat more impact to this interesting type of variareached at high degrees of confinement. For completeness,
tion of the polaronic binding, we portray the longitudinal \ve exemplify this feature in Fig. 6, where we plgt(calcu-
extent of the polarong, (41), over the relevant range of |ated from both the strong coupling and present thepries
weak « and the wire radiugcf. Fig. 5. We note that when  against the wire size. From the succession of the pairs of
a is small,¢; has first a tendency to expand and, after havingyrves fora=0.01, 0.02, and 0.03, we readily note that, at
displayed a peaked profile, shrinks as the wire radius is renighly confined configurations of the polaron, theprofiles
duced to smaller values. For large valuesagfhowever.§,  calculated from Eq(42) are fairly close to those derived
is seen to shrink_ mon(_)toni_cally without showing any promi-f.om the strong-coupling theoryé,= 1/\/513, where now the
nent increase, since, in this case, the polaron has already@ima) g is to be obtained by minimizing the energy expres-
pomparatlvely deeper_ self-induced potential, and an increasgqp, given by Eq(43). As the confining boundary is made to
in the degree of conflnement. makes the polaron even MOTgynand, however, the strong-coupling theory rapidly loses its
deeply bound and more localized. validity and deviates rather drastically from the present for-
malism, both in terms of magnitude and qualitative nature;
and the digression grows at much faster rates for smaller
Ev'z ISR values of the coupling constant.

. In summary, this work revises the ground-state property

of the optical polaron confined in a cylindrical quantum wire
\ \\\\\‘ of infinite boundary potential. The formalism adopted here
\\\\\\\\\\\\\\\\

20

15+

‘ . allows one to trace out the polaron quantities of general in-

terest within an interpolating scheme, accounting for the

terparts of the coupled electron-phonon complex. Contrary to
the general trend that the effective electron-phonon coupling
is inherently stronger in systems of lower dimensionality, we
find that, at weaky and for thin wires, the polaronic binding
may get loose and even become weaker than for the bulk
case.

o radius

APPENDIX

FIG. 5. The longitudinal spatial exteit, as a function of the The functional forms for the quantities, sq, x™, and
coupling constant and the wire radius. 5(Q“) (n=0,1), calculated using Eq§39)—(40) are given by
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r2n

, 1 8
eo=(]0’1/R)2+ EBZ, 5(Qn): ZX(n)(l+Sé)_ ?CYSQJ dgq’ q,ngq,z
z
2 2 ’2 '
q _— 92+q 0.9
stA(qR)ex% — 4_/812) Xsg/A(lg+q |R)9XD( - 24182Z )COSV( 22,822)
x\0= afowquz(qR)QVZQrfq ), where in the above, we have definge /23, and
(1) * 2 2 2 jo1 5 qR
xV=\32lrap . dqgA(qR){1— Jmye erfo y)}, A(qR)=m . dt tJ3(t)J, Et .
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