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The Markovian Arrival Process (MAP), which contains the Markov Modulated 
Poisson Process (MMPP) and the Phase-Type (PH) renewal processes as special cases, 
is a convenient traffic model for use in the performance analysis of Asynchronous 
Transfer Mode (ATM) networks. In ATM networks, packets are of fixed length and 
the buffering memory in switching nodes is limited to a finite number K of cells. These 
motivate us to study the MAP/D/1/K queue. We present an algorithm to compute the 
stationary virtual waiting time distribution for the MAP/D/1/K queue via rational 
approximations for the deterministic service time distribution in transform domain. 
These approximations include the well-known Erlang distributions and the Pad6 
approximations that we propose. Using these approximations, the solution for the 
queueing system is shown to reduce to the solution of a linear differential equation 
with suitable boundary conditions. The proposed algorithm has a computational com- 
plexity independent of the queue storage capacity K. We show through numerical 
examples that, the idea of using Pad6 approximations for the MAP/D/1/K queue 
can yield very high accuracy with tractable computational load even in the case of large 
queue capacities. 

Keywords: Performance analysis of ATM networks, Markovian arrival process, finite 
buffer queues, loss probability, state-space representations, Pad6 approximations. 

1. Introduction 

In  an  A T M  ne t work ,  all i n f o r m a t i o n  such as voice, da ta ,  a n d  v ideo  is 
s egmen ted  into  fixed-size packe t s ,  called cells. T h e  share  o f  c o m m o n  n e t w o r k  

resources  a m o n g  indiv idual  connec t ions  is m a d e  on  a stat ist ical  mul t ip lex ing  basis.  

The  p e r f o r m a n c e  analysis  o f  a stat is t ical  mul t ip lexer  whose  inpu t  consists  o f  a 
supe rpos i t i on  o f  several  packe t i zed  sources  is in genera l  difficult. This  difficulty is 
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mostly due to the number of arrivals in adjacent time intervals possessing a positive 
correlation. A common approach is to approximate this complex nonrenewal input 
process by an analytically tractable one. 

Neuts [29] introduced a versatile Markovian point process, called N-process, 
which is analytically tractable and which is convenient for approximation of these 
complicated nonrenewal processes. This class of processes includes the MMPP, 
PH-renewal processes and a wide range of other processes as special cases, e.g., 
see Heffes and Lucantoni [19], Kuczura [23], Lucantoni et al. [27]. Lucantoni [25] 
introduced the Batch Markovian Arrival Process (BMAP), which is equivalent to 
the N-process but which has a simpler unifying notation. For a BMAP, arrivals 
are allowed to occur in batches where different types of arrivals may have different 
batch size distributions. If batch arrivals are not allowed, BMAP reduces to the 
Markovian Arrival Process (MAP) which is still a rich class of processes that 
contains MMPP and PH-renewal processes as subcases. Furthermore, stationary 
MAP's have the significant property that they are dense in the set of all stationary 
point processes, see Asmussen and Koole [9]. 

A detailed study of the N/G/1 queue is made by Ramaswami [31] in the 
context of M/G/1 type Markov chains where the queueing problem is shown to 
reduce to finding the minimal nonnegative solution for a certain nonlinear matrix 
equation. Variants of the algorithm in [31] for computing the minimal matrix 
solution have been proposed in Ramaswami [32], Grin [18], Lucantoni [25] and 
Lucantoni et al. [26] which require less computational effort. QBD (Quasi-Birth- 
and-Death) chains are special cases of M/G/1 type Markov chains and include 
the MAP/PH/1 queue as a subcase. Latouche and Ramaswami [24] have presented 
a logarithmic reduction algorithm for finding the matrix-geometric rate matrix for 
QBD chains with a quadratic convergence rate. The extension of the N/G/1 queue- 
ing model to the case of limited buffering memory is studied by Blondia [12] for 
which the computational load strictly depends on the queue capacity and the 
method is therefore computationally intractable especially for large buffer sizes. 
For the subcase of finite QBD chains, we note the techniques proposed by Ye 
and Li [41, 42] in order to analyze multi-media traffic queues by which significant 
reductions in computational load and space requirements have been achieved. 

Many forms of data, voice, and image based communications in ATM 
networks are expected to have an on-off type behavior. On-off sources generate 
traffic during activity periods alternating with silence periods during which there 
is no traffic generation. The cell arrival process from an individual on-off source 
may be highly complicated (e.g., packetized voice) and exact analysis of systems 
offered with a superposition of such sources is generally difficult. One basic 
approach is to approximate the superposition by fitting certain parameters of the 
original process to those of a 2-state MMPP, a subcase of the MAP, proposed by 
Heffes and Lucantoni [19]. The MMPP/G/1 queueing model is shown in [19] to 
approximate the first two moments of delays as well as the tail probabilities 
with high accuracy. In Ide [20], the individual on-off source is characterized by an 
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Interrupted Poisson Process (IPP) which is indeed a special case of the MMPP. The 
MMPP is also used to model packetized video traffic by Saito et al. [33] and Skelly, 
Schwartz and Dixit [34]. Other special cases of the MAP/G/1 queue have appeared 
in the telecommunications literature in the context of PH/G/1 queues. A general 
treatment of which, with its special cases, can be found in Neuts [30]. For recent 
work on applications of the MAP in traffic modeling and control in ATM networks, 
we refer the reader to works by Choudry et al. [14] and Whitt [38]. 

In this paper, we examine a queueing system for which the incoming arrival 
process is modeled by a MAP which is simple but general enough to cover many 
teletraffic models used for ATM source characterization. We assume that the service 
times are deterministic due to cell-based transport in ATM networks. Since 
buffering memory in switching nodes is limited, the loss probability as well as the 
waiting times turns out to be an important performance measure of the system 
especially for real-time services. These motivate us to study the MAP/D/1/K queue 
whereas particular emphasis is given to the computation of the cell loss rate. 

We propose an approximate method to compute the important performance 
measures of the system rather than an exact solution. The proposed exact solution 
algorithms by Blondia [12] and Lucantoni [25] either suffer from low convergence 
rates or they become computationally intractable especially when the number of 
phases of the MAP or the buffer sizes are large. Our solution technique consists 
of two main stages. At the first stage, we present Pad6 approximations for the deter- 
ministic service time distribution in transform domain. Although these approxi- 
mations are not necessarily associated with probability distribution functions 
(pdf), they are shown to be more effective in capturing the queue dynamics 
compared with Erlang distributions. The second stage consists of solving a linear 
differential equation with suitable boundary conditions. The computational 
effort reduces to efficiently computing a matrix exponential of size md, where 
m is the number of phases of the MAP and d is a parameter based on which- 
ever approximation for the service time is employed. We show through numerical 
examples that a Pad6 approximation with parameter d = 3 suffices for most of 
the applications. 

From the mathematical formulation and computational complexity point of 
view, we believe that our work is closest to the techniques proposed by Baiocchi [10] 
and Baiocchi and Blefari-Melazzi [11] except that they are based on root finding 
algorithms whereas in our case, the solution is given in terms of a matrix exponential 
form. Besides the simplicity of our algorithm and the resulting form of the 
expression for the virtual waiting time distributions we have obtained, there is 
more flexibility in ways of evaluating matrix exponentials (see Moler and Van 
Loan [28]) which include simple rational approximations at the expense of some 
loss of accuracy (see Golub and Van Loan [17, pp. 555-560]). Furthermore, we 
make use of Pad6 approximations for the particular but important subcase of deter- 
ministic service times, making it numerically tractable to solve for the MAP/D/1/K 
queues even when the MAP consists of a large number of phases. 
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The remainder of the paper is organized as follows. In section 2, we define the 
MAP and present the virtual waiting time expression in a MAP/G/1 queue. We also 
present a novel exact solution methodology for the MAP/PH/1 queue that is extend- 
able to the MAP/D/1/K system�9 Section 3 concentrates on rational approximations 
for the deterministic service time distribution which consist of the classical Erlang 
distributions and the Pad6 approximations. The problem formulation and an 
approximate solution for the MAP/D/1/K queue is presented in section 4. The final 
section includes numerical examples to demonstrate the performance of the 
proposed algorithm mainly in terms of the cell loss rate. 

2. The MAP/G/1 queue 

The Markovian Arrival Process (MAP) is introduced by Lucantoni et al. [27] 
in which the reader can find a detailed description of the concept of MAP and 
related issues. This section is devoted to a brief discussion of the Markovian arrival 
process and virtual waiting time expression in a MAP/G/1 queue. 

The Markovian arrival process generalizes the Poisson process by allowing 
interarrival times which are not exponential but still maintaining its Markovian 
structure. In the case of a Poisson process with rate A, the counting process 
{N(t)}, (number of arrivals in (0, t]), is a Markov process on the state-space 
{i : i E Z} (Z denotes the set of nonnegative integers). The infinitesimal generator 
matrix of this process, Q, has the form 

Q = 

do da 

do dl 
do (1) 

where do = -A, d 1 = ,~. In the case of a MAP, there is the additional phase process 
{J(t)} assuming values in {1 ,2 , . . . ,m}.  The two-dimensional Markov process 
{N(t) ,J( t)}  is then modeled as a Markov process on the state-space {(i, j) : 
i c Z, 1 _< j _< m} whose infinitesimal generator matrix Q can be represented in 
block form as 

Q = 

Do D1 

Do D1 

Do 

�9 ~ �9 

D 1 .. .  
(2) 

Here, Do, D 1 are m x m matrices, D o has negative diagonal elements and 
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non-negative off-diagonal elements, D 1 is non-negative, and D ~ Do + D1 is an 
irreducible infinitesimal generator. The matrix Do is stable implying Do to be 
nonsingular and the sojourn time in each state (i, j) to be finite with probability 
1. The evolution of the process is as follows. Assume that the Markov process 
(phase process) with generator D is in some state j,  1 < j _< m. After an expo- 
nentially distributed time interval with parameter -(Do)jj, there occurs either a 

(Do):~ transition to another state k r j without an arrival with probability (D0)----~j or to a 

state l (possibly the same state) with an arrival with probability ~'~z~)Ji Let 7r be 

the stationary probability vector of the phase process with generator D so that 7v 
satisfies 

7rD = 0, 7re = 1, (3) 

where e is a column vector of ones. The mean arrival rate denoted by ,~ is given by 

= 7rDle. (4) 

The MAP includes MMPP, PH-renewal processes and superpositions of 
these processes as special cases. The MMPP (see Heffes and Lucantoni [19]) with 
an infinitesimal generator R and rate matrix A = diag {A1, A2,.. . ,  Am} is a MAP 
with Do = R - A and D1 = A. The PH-renewal process (see Lucantoni et al. [27]) 
with representation (oz, T), is a MAP with Do = T and Dl = -Tec~. This rich class 
includes superpositions of the Erlangian (Ek) and Hyperexponential (Hk) 
distributions. We refer to [27] for a general treatment of the subcases of the MAP. 

Let us now consider a single server queue offered with a MAP characterized 
by the matrices Do and D1. For the time being, let the service time have an arbitrary 
distribution function B, with Laplace-Stieltjes Transform (LST),/~. Hereafter, we 
assume that the parameters of the incoming MAP are normalized so that the mean 
service time is unity. We also assume a stable queue, i.e., ,~ < 1. 

We now restate the results for the virtual waiting time distribution in the 
MAP/G/1 queue given by Ramaswami [31] and Lucantoni [25]. An alternative 
proof for the same expression is developed by Akar and Arlkan [5] for the subcase 
of an MMPP/G/1 queue. For this purpose, we first define 

W(x) = [ w l ( X )  W 2 ( x )  . . .  Wm(x)], 

where l/Vj(x) is the stationary probability that at an arbitrary time the arrival 
process is in phase j and the unfinished work at that time is at most x. The virtual 
waiting time cumulative distribution function (cdf) is denoted by w(x) = W(x)e. 
We define l~(s) and #(s) to be the Laplace Transforms (LT) of W(x) and w(x), 
respectively, where in our LT definition, the lower limit of integration is 0- allowing 
impulsive functions located at the origin. Ramaswami [31] has shown that 

l~(s) = yo[sI + Do + Ol/~(s)] -1, (5) 
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from which 

= W ( s ) e ,  

where I is the identity matrix of size m and Y0 = [Y01 Y02 . . .  Yore ] is such that 
Yoj is the stationary probability that at an arbitrary time the arrival process is in 
phase j and the queue is empty. The vector 

1 
g - -  Y0 1 - A  

is shown by Lucantoni [25] to be the stationary probability vector of G described 
implicitly via 

o o  

G = J e [(D~ dB(x), 

0 

(6) 

that is, given G, 

gG = g, ge = l. (7) 

An iterative algorithm has been proposed by Lucantoni [25] for computing the 
matrix G in the BMAP framework which allows batch arrivals and includes 
MAP as a special case. This algorithm starts with Go -- 0 and G can be computed 
by successively iterating in the following recursion: 

Hn+l, k = [I + 0 - 1 ( D 0  q- D1G~:)]Hn,k, 

oo 

Gk+l = Z ~nHn, k' 
n=O 

where Ho,k = I, 0 = maxi{ (-Do)ii}, and 

Oo 

% = I e-~ (Ox)nn! dB(x), 

o 

for n_>O. 

Whichever performance measure of the queueing system one is interested in 
finding, computing G is the essential part of the overall algorithm. Once the matrix 
G is determined, one can compute g (or, equivalently Y0) in (7) and then calculate the 
associated moments of the waiting time distribution which are explicitly given by 
Lucantoni [25]. If distributions are sought, inversion of the transform expression 



N. Akar, E. Arlkan/MAP/D/1/K 103 

in (5) is required for which easily implementable and computationally efficient 
numerical algorithms are available in the literature, e.g., see Abate and Whitt 
[2, 3]. We note that a significant portion of the procedure outlined above is devoted 
to the computation of the matrix G. 

Below, we give an alternative exact solution method for the unfinished work 
distribution in a MAP/PH/1 queue that has the following features: 

(i) We compute the unknown boundary probability vector Y0 without the need 
for calculating the matrix G and write the virtual waiting time distribution in 
terms of a simple matrix exponential form. 

(ii) Via simple extensions based on rational Pad+ approximations, this methodol- 
ogy can be used to obtain accurate approximations for the solution of the 
MAP/D/1/K queue with a computational complexity independent of the 
queue storage capacity, K. 

Since the service time distribution is now assumed to be of phase type, the 
LST of the service time distribution,/)(s), is a rational function of the indeterminate 
s. In other words, 

- ~ - ~ '  

where the polynomials R(s) and ~)(s) are assumed to have degrees n and l, 
respectively, and n _< l, see Neuts [30]. We assume that the highest degree coefficient 
of ~) is unity without any loss of generality. Then the LST of the unfinished work 
distribution in the MAP/PH/1 queue in (5) can be rewritten as 

-1 

= yoQ(s)[(sI + Do)Q(s) + D1/~(s)] -~ 

= y o 0 ( ~ ) H ( , )  -1 (8) 

In the above expression, the polynomial matrix 

has degree 

I2I(s) = (sI + Do)Q@ ) + D1R(s ) 

d = / + l ,  (9) 

that i s , / t  can be written as 

H(s) = H J  + Hd_lJ -1 + . . .  + His + Ho, (10) 
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for some constant matrices Hi, i = O, 1 , . . . ,  d. Similarly, the polynomial ~)(s) is of 
the form 

O(S) = qd-1Sd-1%- qd-2 Sd-2 %-' ' '  %- qls + qo, (11) 

since deg(Q(s)) = l = d - 1. We note that qd-1 is the highest degree coefficient of {) 
and is equal to qd-1 = 1 which then yields Hd = I. 

One can view the polynomial matrix fractional description given in (8) as the 
expression for the output of an m-output, linear, finite-dimensional, continuous- 
time system excited by its initial condition Y0 (see Chen [13]). In regard of this, 
the input-output relationship (8) can equivalently be represented by a vector- 
differential equation of size deg(det(I2I(s))) = md and of the form 

d u(x) u(x)A, 
dx 

W(x) =u(x)C, 

u(O) = yo B, 
(12) 

via an md-dimensional state vector u(.) and A, B, C being constant matrices of size 
md x md, m x md, and md x m, respectively, e.g., see Chen [13] and Kailath [21]. 
The choice of the suitable matrices that yield 

B ( s I -  A ) - I c  = O ( s ) / ~ ( s )  -1 

is called a state-space realization of (8) [13]. Now, we will obtain a natural state- 
space realization of (8) through the following mathematical formulation. For this 
purpose, we define 

wl(s )  = w(s) ,  

glzi(s) = s g l z i - l ( s )  - wi-l(o), i =  2,3,... ,d, 

where Wi(x) and Wi(s) form a LT-pair. Actually, 

di-1 
Wi(X) - dxi_ 1W(x),  i =  l , 2 , . . . , d ,  x >_ O. 

We note by the initial value theorem on Laplace transforms that 

lim sVv'i(s) = wi (o) ,  (13) 
S---+OO 

must be a bounded vector. 
It is now easy to see that 

SVIZi(s) = Vv'i+I(s) %- wi(o ) ,  i =  1 , 2 , . . .  ,d  - 1. (14) 
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One can also show by using (8) and by algebraic manipulations the following 
expression for s Wa (s): 

d-1 
sVv"d(s) = -  Z gv'i+l(s)Oi 

i=0 
d-1 

+ Yoqo- Z wJ(o)I-Ij 
j=l 

d-I ( i-1 ) 
+ Z s a-i -wi(O) + yoqd_i- Z wJ(O)Ha_i+j . (15) 

i=1 \ j=l 

By (13), the last term on the RHS of (15) should vanish, that is, to make 
l i m s ~  slYd(s) bounded, wi(o), i =  1,2, . . . ,  d -  1 should satisfy 

i-1 
wi(O) = YOqd-i-- Z wJ(O)Ha-i+J ' i= 1 , 2 , . . . , d -  1. (16) 

j=l 

Furthermore, since l i m s ~  17~i(s) = 0 for each i, We(O) satisfies 

d-1 
Wd(0) = Yoqo - Z wJ(o)IIj" 

We now iteratively define 

j=l 

and for i = 2, 3 , . . . , d  

B 1 = I, 

i-1 
Bi = qd-iI -- Z BjHd-i+J ' 

so that one can now write 

wi(o)  = yoBi, 

Let us define the concatenated vectors 

VV'c(S ) = [ V/ZI(s) 

j=l 

i =  1 ,2 , . . . ,d .  

. . .  g / % ) ] ,  

(17) 

(lS) 



106 N. Akar, E. Arlkan/MAP/D/1/K 

and 

B = [ B  1 B2 . . .  Bd], 

One can then make use of (14), (15), and (18) to obtain 

I~c(S)(SI-  A) = yoB, 

W(s) = Wc(s)C, 

A = 

where 

Or, equivalently, 

and 

"0 0 . . .  

I 0 . . .  

0 I . . .  

0 0 . . .  

o -Ho 

0 -H1 

0 - H  2 , 

I -Hd_  1 

C = 

"I-I 

OI 

OI.  

.o3 

We(O) = yo B, W(x)  = Wc(x)C. 

Having obtained the state space realization of the queueing system in (19), the 
solution to the linear differential equation takes the matrix exponential form 

W(x)  = YoBeAXC. (20) 

Recall that the asymptotic behavior of W(x) given by the matrix analytic form 
above is governed by the largest negative real eigenvalue of A, which we denote 
by o-, 

1 -  w(x) = l - W(x)e  :- ke =x § o(e~x), a s x ~ o o ,  

where k is a positive constant. It is actually straightforward to show that 

cr = -p f (Do  + D1/~(cr)); 

where pf( . )  refers to the Perron-Frobenius eigenvalue and - a  is called the 
asymptotic decay rate by Abate et al. [1]. Actually, the eigenvalues of the matrix 
A can be shown to coincide with the singularities of the matrix polynomial /J(s) .  

Given the matrix exponential form of the virtual waiting time distribution 

d 
~xxWe(x)= We(x)A, x ~ 0 (19) 
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(20), what remains is to determine the boundary probability vector Y0- As described 
before, the unknown vector Y0 in the expression (20) can be determined by solving 
the stationary probability vector of the matrix G, the unique minimal nonnegative 
solution of the equation (6). Another alternative we will outline below is to use the 
spectral decomposition techniques of Akar [4] and Akar and Arlkan [5] which are 
based on determining Y0 by imposing that no unstable mode of the dynamical 
system (19) be excited together with the constraint We(0) = yoB. 

It can be shown that the matrix A has m - 1 eigenvalues in the open right half 
plane, one at the origin and the remaining m(d  - 1) eigenvalues in the open left half 
plane when A < 1. We define the m ( d - 1 ) x  md  matrix SA whose rows are 
composed of the left eigenvectors of the matrix A associated with its m(d - 1) eigen- 
values lying in the open left half plane. In other words, let ui, 1 < i < m(d  - 1)be 
such that 

bli~r i - ~ -  uiA , Re o-i < 0. 

The matrix SA is then defined as 

Ul 

u2 
S A =  

Urn(d-l) 

The rows of SA form a basis for the stable subspace of A (see Wonham [40]) where 
the term "stable" is inherited from the stability of differential systems. 

For the infinite buffer case, the initial condition Y0 should be chosen so that 
no unstable mode of the matrix A should be excited. Otherwise, the solution for 
W(x)  in (20) blows up as x --+ ec. In mathematical terms, this is equivalent to saying 
Wc(0) - Wc(oo) should lie in the row space of SA, i.e., 

x S A ,  

for some 1 x m(d  - 1) vector x, or equivalently, 

y o B  - x S A  = 

Then one can solve the linear square system below: 

[yo x]--SA 0 . . .  0 ] ,  

for Y0 and x. The last equality comes from the fact that W(oc) = 7r and the higher 
order derivatives of W(x)  should vanish as x ~ oc. 
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We note that, in the above formulation one can replace SA by any matrix SA 
whose row space is equal to the former. The two companion papers by Akar and 
Sohraby [6, 7] include fast and numerically reliable algorithms to compute a basis 
for the row space of SA without the need for solving the eigenvalues and eigen- 
vectors of A in the more general framework of M/G/1 and G/M/1 type Markov 
chains. 

The emphasis here is introducing a new mathematical framework for the 
MAP/PH/1 queue that is extendable to the MAP/D/1/K queue through rational 
approximations rather than making a comparison of the existing algorithms to 
compute the boundary probability vector Y0 for the infinite buffer case (see Akar 
and Sohraby [7]), which is outside the scope of this paper. The next sections address 
to how this extension is made possible. 

3. Rational approximations for the deterministic service time 

In this section, we consider rational approximations for the deterministic 
service time distribution to allow computational analysis. The deterministic service 
time being unity, we have 

O0 

[~(s) = I e-'XdB(x) = e-s" 
0 

(21) 

In the case of MAP/D/1 queue, the expression for the stationary unfinished work 
distribution turns out to be 

IYV(s) = yo[sI + Do + Die-S] -1, (22) 

which is an irrational transform. The irrational term (i.e., e -s in the denominator 
matrix in (22)) may in general be difficult to handle if the vector of empty queue 
probabilities Y0 is sought. Therefore, we seek appropriate rational approximations 
for the irrational transform e -s so as to compute the unfinished work distribution. A 
rational approximant of e -s is denoted by Ba(s ). 

One alternative is to use phase-type distributions to approximate the distribu- 
tion B. Indeed, a general distribution G of a nonnegative random variable can be 
approximated arbitrarily closely by phase-type distributions (see Wolff [39]). Conse- 
quently, if G has finite rth moment (1 < r < ec), one can find a phase-type distribu- 
tion H for which the first r moments are arbitrarily close to those of G. The k-stage 
Erlang distribution is a special case of the phase-type distribution that is commonly 
used in the ATM literature in references by Saito et al. [33], Choudry et al. [14] and 
Skelly et al. [34] to approximate the deterministic service-time distribution. In the 
case of a k-stage Ertang distribution approximation, the rational approximant, 
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JBa(S), becomes 

J~a(S)= s---~ " (23) 

There are two main disadvantages of this kind of approximations: first, there is the 
need for a large number of stages in the Erlang distribution to adequately match the 
original distribution (see Kleinrock [22]). Second, no matter how large a k we 
choose, we cannot capture the rth moment (r >_ 2), br, of the original distribution 
exactly. Actually, 

(k + r - 1)! 
b r - ( k - 1 ) ! k  r ' 

for a k-stage Erlang distribution and converges to unity as k --+ ec with a linear 
convergence rate. We note that this low convergence rate may be intolerable for 
particular applications. 

Alternatively, we propose here to use rational Pad6 approximations of the 
term e -s. A Pad6 approximation with parameters n and l is a rational function 

k.(s) 
b . , t ( s ) -  0l(~) ' 

where Rn(s) and Ql(s) are polynomials of order n and l, respectively, and the first 
(n + l + 1) terms of its Taylor series expansion equal to those of the Taylor expan- 
sion ofexp(-s) ,  or equivalently the first (n + l) moments of the original service time 
distribution match with those of the Pad6 approximation. A closed form expression 
for/sn, t exists and is given by Vlach and Singhal [37] 

where 

n 

Z (l + n - i)!c(n, 0 ( -1 ) ' , /  
P ( )  ~=o 

n, l  S = 1 

~ , ( t  + n -  i)!c(t,  i)s i 
i=0 

n~ 
C(n,i) - -  i ! ( n -  i)!" 

(24) 

Note that the inverse Laplace transform of/Sn,t(s ), say Pnj(X), is not necessarily a 
pdf. Removal of the restriction of approximating a distribution by another 
distribution brings one more degree of freedom in that the first r moments are 
exactly matched with a convenient choice of a Pad6 approximation. Although the 
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use of Pad6 approximants is not restricted to the deterministic service time and 
may be used for general service time distributions, the focus of this paper is 
on approximants of the form given in (24). The main disadvantage in using 
Pad~ approximants lies under the fact that we might no longer be in the 
framework of probability distribution functions that causes a lack of physical 
interpretation of the underlying process. However, as far as accurate com- 
putational analysis of queueing systems is concerned, we believe that such 
approximations will serve an important role. As a final note on this issue, 
consider an MMPP/D/1 queue with the MMPP having the infinitesimal generator 
matrix R and the rate matrix A. In case P1,0 (s) = 1 - s is employed as a rational 
approximation for e -s, the transform of the unfinished work distribution turns 
out to be 

W(s) = yo[sI + R -  A + APl,0(s)] -1 

= yo[sI + R - A + A(1 - s)] -~ 

= yo[s(I - A) + R] -1, 

which is in fact equivalent to the expression suggested for the unfinished work 
distribution for the well-known Markov modulated fluid sources by Anick et al. 
[8]. Although Pl,o(X) does not correspond to a probability distribution function, 
there is a wide-spread use of stochastic fluid flow models for the performance 
analysis of statistical multiplexers in the ATM context (e.g., see Anick et al. [8], 
Stern and Elwalid [35] and Elwalid and Mitra [16]). 

In the next section, a mathematical framework is presented to solve the 
MAP/D/1/K system in case an arbitrary rational approximation Ba(s) is 
imposed. Then performance assessment of Erlang and Pad6 approximations in 
the analysis of the MAP/D/1/K queue is demonstrated via the use of numerical 
examples. 

4. Analysis of the MAP[D/IlK queue 

Let an arbitrary rational transform 

9o(s) - ko(s)= 
Qa(s) 

be imposed as an approximation of e -~. The polynomials k a and ~)a are assumed to 
have degrees n and l, respectively, where n _< l. The case of n > l is omitted since in 
this case it is no longer possible to interpret the vector Y0 as the equilibrium prob- 
ability vector associated with empty queue lengths. We also assume the highest 
degree coefficient of ~)a(s) is unity without loss of generality. Defining d = l + 1, 
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let us write 

Oa(S) = sl ~- qa,l-1 sl-1 + ' ' "  + qa,1 s + qa,o, 

l~a(S ) = (SI + Do)Qa(s) q- D1Ra(S ) = sdI + Ha,d-1 Sd-1 + " "  Ha, IS q- Ha,o. 

Also let the queue storage capacity be denoted by K. When a new arrival finds 
fewer than K cells in the queue waiting to be served, it is admitted to the system. 
Following the schemes of Tucker [36] and Elwalid and Mitra [15] used for Markov 
modulated fluid sources and noting that in the MAP/PH/1 analysis we only made use 
of the fact that the LT of the service time distribution is a rational function, one can 
show that the following differential equation is valid in the interval 0 < x < K: 

d We(x ) Wc(x)A1, 
dx 

W(x) = Wc(x)cl,  

W c(O) = Yo,KB1, 

0 < x < K ,  

(25) 

where Yo, I((J) refers to the stationary probability of the incoming MAP being in 
phase j and the unfinished work being zero for the case the buffer size equals K. 
In the above differential equation, 

A a =  

and 

is such that 

and for i = 2 , 3 , . . . , d  

0 0 . . .  0 -Ha,o 

I 0 " "  0 -Ha,1 

0 I " "  0 -Ha, 2 

0 0 . . .  I -Ha,a-1 

, C1 = 

I 

0 

0 , 

0 

(26) 

91 = [B1,1 91, 2 " '"  91, d ] (27) 

B1,1 = I, 

i-1 
B1, i = qa, d-iI  -- Z BldHa,d-i+J" 

j=l  
(28) 

On the other hand, if an arrival occurs at time t and the instantaneous queue 
length at that time is above K, the packet associated with that arrival is dropped�9 
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From the queue length point of view, it is convenient to visualize the incoming MAP 
characterized by the matrix pair (Do, D1) to change to another MAP described by 
the matrix pair (D, 0) whenever the number of packets in the queue is K. This is 
equivalent to assuming that no arrivals will occur and the MAP will be constituted 
of only its phase process�9 Also note that the queue length cannot exceed K + 1 since 
there is one deterministic server. Then one can obtain as in (19) the following 
differential equation in the interval K < x < K + 1: 

d W c ( x  ) Wc(x)A2 ,  K < x < K § 1. 
dx  - 

(29) 

In this equation, the matrix A 2 is of the form 

-0 0 

I 0 

A 2 =  0 I 

0 0 

�9 .. 0 -Ga,o 

�9 " 0 -Ga,1 

�9 "" 0 -Ga ,  2 

; z 

�9 . .  1 -Ga,a-1 

where 

(30) 

Ga(s) = ( s l  § D ) Q a ( s  ) = sd I  § Ga,d_l sd-1 §  § Ga, lS § Ga,o. 

We are now ready to compute the virtual waiting time distribution in a MAP/ 
D/1/K system except for the boundary conditions. The boundary condition at 
x = K + 1 is easy to write since (i) queue length cannot exceed K + 1, (ii) stationary 
probability of the queue length being K + 1 is zero, i.e., there may not be a jump in 
the unfinished work cdf vector at x = K + 1. Based on these two observations, one 
can write 

W I ( K +  1) = W ( K +  1) = 7r. (31) 

Making use of the continuity of the solution of the two differential equations (25) 
and (29) at x = K, one can rewrite (31) as 

Yo,KBleA1KeAzC1 = 7r. (32) 

The unknown vector YO,K can be solved through the linear matrix equation (32) of 
size m. At this stage, any algorithm for computing matrix exponentials given by 
Moler and Van Loan [28] can be used to compute the left hand side of (32). In 
particular, to evaluate the matrix exponential in our numerical experimentation, 
we compute the eigenvalues and the eigenvectors of the matrices through converting 
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them to Hessenberg form using orthogonal similarity transformations and then 
using the QR method. The details of the procedure above can be found in the paper 
by Golub and Van Loan [17]. Actually, in case the incoming MAP is made up of a 
superposition of many independent MAP's, these eigenvalue-eigenvector pairs can 
be computed via simpler partial problems via the extension of the techniques 
used by Stern and Elwalid [35] in the context of stochastic fluid models. We 
also note that the extension of the proposed technique in [35] to the particular 
case of a superposition of 2-state MMPP's is examined by Akar [4]. 

Once the boundary vector Y0,x is computed, the solution to the differential 
equations for Wc is easy to write: 

We(X ) = yo,KBle Alx, 0 < x < K, 

= Wc(K)e A2(x-K), K _ < x _ < K + I .  

The stationary unfinished work cdf vector W(x) is then expressed as 

m ( x )  = ml(x)= m c ( x ) C  1. (33) 

Cell losses occur when arrivals find K cells waiting in the buffer. The cell loss rate, 
Plos~, is therefore described by the following expression: 

(Tr- W(K))Dle 
Ploss = X (34) 

We now give the simple-to-implement step-by-step procedure of the overall 
algorithm for the MAP/D/1/K queue for convenience of implementation. The 
time unit is the deterministic service time and the MAP characterized by the two 
matrices Do and D1 is assumed to be normalized with respect to this time unit. 

PROCEDURE 
1. Choose the Pad6 approximation /~a(s)= Ra(s)/Qa(s) based on (24) with 

numerator and denominator degrees being n and l, respectively, and highest 
degree coefficient of the denominator being unity. 

2. Write d = l + 1 and 

. 

4. 

Oa( ) S I-I = Jr qa,l-1S q - " "  -+- qa,l(S) q- qa,0, 

I21a(S) = (SI q- Do)Qa(s ) q- D lka (S  ) = sdI  q- Ha,d_l sd-1 + . . .  Ha, iS + Ha,o, 

Ga(s) = (sI  + O)Oa(S ) = sdI  -[- aa,d_l Sd-1 q- . . . -[- aa,lS -[- Go, O. 

Define the matrices A1, B1, and C1 as in (26)-(28). 

Define the matrix A2 as in (30). 
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5. Find the stationary probability vector 7r of the generator D = Do + D1. 

6. Solve for Y0,K out of the following linear equation of size m: 

Yo,KBleAIK eA2C1 = 7r. 

7. Write the stationary virtual waiting time cdf vector as 

W(x)  = Yo,KBleAlXC1, 0 < X < K 

= Yo,KBleAtKeAz(x-K)c1, K < x <_ K + 1 

and the cell loss probability Plos~ as in (34). 

5. Numerical examples 

In this section, we present some numerical examples to demonstrate the 
performance assessment of the proposed algorithm based on Pad6 approximations. 

We first consider the M/D/1 infinite capacity queue so as to clarify the 
concept of rational approximations for the deterministic service time. In this case, 

•l i i i n L I I n I 

3.51- ~ m m exact 

I • . . . . . . . . . . .  P<","> 
m>, 3[- ~ \ . . . . .  P(2,2) 

.+ I x \ ', - -  ,='13,~> 

.=o 2.5 x 'X ,~  \ \  o o P(4,4) 
o^ ~ .  . . . . . . .  El, 

~ l  _ ' " ' ' " ' � 9  X " ~ . . .  

1.5 . . . .  - ...... x+'--.~.. 

""-..... .... X X ~  

i . . . . . . .  . . . . . .  i ' ........ 

0. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
utilization 

Fig. 1. Asymptotic decay rate for the M/D/1 queue. 
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Fig. 2. Cell loss rate approximations for the M / D / 1 / K  queue with (a) p = 0.3, (b) p = 0.6 and 
(c) p = 0.9 (* denotes the simulation results). 

the transform of the unfinished work cdf reduces to 

~ ( s )  - (1  - p )  ( 3 5 )  
s - p + pe - s '  

where p is the utilization of the system. Note that 

w ( x )  = 1 - ke  ~x + o(e~X), x --+ oo, 

where o- < 0 is the largest negative real root of the denominator of (35) and plays a 
key role in the performance of the queueing system. We now compare the asymp- 
totic decay rates obtained via the Pad6 approximations and the Erlang distributions 
with the numerical values of ~ we have obtained through root finding algorithms. 
Rather than presenting the approach as an approximation for determining the 
asymptotic decay rate which can easily be computed using standard numerical tech- 
niques, our aim is to show the performances of various related approximations in 
terms of one important parameter of the queueing system. The k-stage Erlang distri- 
butions and Pad~ approximations are used to approximate the asymptotic decay 
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Fig. 3. Cell loss rate approximations for the MMPP/D/1/K queue with individual source parameters 
c~ -1 = 4363.63,/3 -1 = 436.36, and P = 0.275 and with three different utilizations. 

rate in an M/D/1 queue and the performance results of  these approximations are 
presented in fig. 1 with respect to the utilization in the system. 

The notation E(k) is used to denote when the k-stage Erlang distribution is 
imposed. Similarly, we use the notation P(n, l) to denote the case of  a Pad~ approxi- 
mation Pn, l(s). Throughout the examples we only focus on the Pad+ approximations 
of  the type P(l, l) since it is clear that P(l - 10, l) (10 > 0) and P(l, l) yield the same 
computational load whereas the former can match fewer moments than the latter 
and is not considered here. As far as the results in fig. 1 are concerned, there is a 
key observation, the rate of  convergence (as l --+ oc) of  the Pad6 approximations 
to the exact asymptotic decay rate is fast whereas this convergence rate in the 
case of  k-stage Erlang approximations is rather slow. Besides, for heavy loads 
(p > 0.5), the simple P(2, 2) works as well as higher order Pad6 approximations 
which makes it well-suited for use in the ATM environment due to its simplicity. 
However, there is the drawback of  using approximations which are not themselves 
probability distributions which is demonstrated by the break in the P(2, 2) curve at 
p = 0.25 which indicates there is no largest negative real root below that utilization. 
This is problematic (e.g., negative probabilities may result) but we recommend the 
use o f  higher order Pad~ approximations in the light load case for which we have not 
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Fig. 4. Cell loss rate approximations for the MMPP/D/1/K queue for a small buffer size, K = 8, with 
two different burst lengths of the individual source. 

observed any such brake for the range p > 0.05. In terms of the asymptotic decay 
rate of the unfinished work distribution, the Pad6 approximations work better 
than the Erlang approximations in the sense that to get the same degree of accuracy 
a significantly higher degree Erlang distribution is needed. This statement is also 
true for the general MAP/D/1/K queue as will be demonstrated by the following 
examples. 

Figure 2 is devoted to the cell loss rate approximations with respect to the 
buffer size (in cells) in an M/D/1/K queue. Three different cases are examined 
with p being 0.3, 0.6, and 0.9, respectively. P(3, 3) captures the simulation curve 
for all the cases whereas P(2, 2) though being indistinguishable from P(3, 3) in 
the latter two cases, exhibits a slight deviation in the p --- 0.3 case. Even the simplest 
P(1, 1) works better than the E(4) for all the cases whereas its performance for the 
heavy load case (e.g., p = 0.9) is quite satisfactory. Here, we recall that the key para- 
meter that determines the computational load is the denominator degree d defined 
in (9) which is k + 1 for a k-stage Erlang distribution approximation and l + 1 for 
the Pad6 approximation/5/, z(s). 

We present our results for the MMPP/D/1/K queue in fig. 3. The input arrival 
process is assumed to be a superposition of N identical and independent 2-state IPP 
sources (users). In the silence state, the source generates no traffic whereas in the 
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Fig. 5. Cell loss rate approximations for the MMPP/D/1/K queue for a large buffer size, K = 1024, 
with two different user peak rates. 

activity state arrivals occur according to a Poisson process with rate P. The silence 
and the activity times are exponentially distributed with parameters c~ and /3, 
respectively. The cell loss rates based on two Pad6 approximants (P(1, 1) and 
P(2, 2)) for the case of  

o~ -1 = 4363.63, /3 -1 = 436.36, P = 0.275 

are plotted in fig. 3 with respect to the buffer size for three different utilizations. 
Note  that with the parameters above p = 0.025N where N is the number of  sources. 
We observe that P(2, 2) captures the simulation curve for the three traffic regimes 
accurately irrespective of  the buffer size. P(1, 1) overestimates the cell loss rate 
for small buffer sizes and underestimates that for large buffer sizes but it is still 
convenient for use for applications that can tolerate a small amount of  error in 
accuracy with the advantage of  requiring less computation. We have omitted the 
P(l, l) approximations with l > 2 in the figure due to the fact that they are almost 
identical to the P(2, 2) curve. 

We then fix the buffer size to K = 8 in the next example and assess the 
performance of  the approximations with respect to the number of  users in fig. 4. 
Two sources are treated, the source of  the previous example with the burst length 
B = 436.36 and this source with the mean activity and silence times changed 



N. Akar, E. Artkan/ MAP/ D /1/ K 119 

to 1/100 of  the previous source (B = 4.3636 in this case). While P(2 ,2)  gives 
accurate  results as in the previous examples irrespective o f  the burst  length 
and  the load, we observe an overest imat ion of  P(1, 1) for small loads and  a 
slight underes t imat ion  for modera te  to heavy traffic. 

The final example a t tempts  to demonst ra te  the per formance  of  the approxi-  
mat ions  for large buffer sizes. We fix K = 1024 and  we let each individual  source 
(modeled as an  IPP) to have the fol lowing parameters:  

-1 /3-1 = 7 8 0 ,  = 2 0 ,  P = 4 .  

Note  tha t  each source introduces a 10% load. The results are given in fig. 5 where the 
cell loss rate is p lot ted  with respect to the number  o f  users. We also change the peak 
rate o f  the individual  user P to 8 as well as change the mean  silence time of  the 
individual  user to 1580 and  present  the associated results. The observat ion is tha t  
for the case o f  large buffers, bo th  two approximat ions  P(1, 1) and  P(2, 2) capture  
the s imulat ion curve accurately regardless o f  the load. 
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