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Non-linear optical properties of photoexcited semiconductor quantum-wells are of interest
because of their opto-electronic device application possibilities. Many-body interactions of the
optically created electrons and holes lead to the band-gap renormalization which in turn
determines the absorption spectra of such systems. We employ a simplified approach to
calculate the band-gap renormalization in quantum-well systems by considering the interac-
tion of a single electron-hole pair with the collective excitations (plasmons). This method
neglects the exchange-correlation effects but fully accounts for the Coulomb-hole term in the
single-particle self-energy. We demonstrate that the density, temperature, and well-width de-
pendence of the band-gap renormalization for GaAs quantum-wells within our model is in
good agreement with the experimental results.
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Non-linear optical properties of photoexcited semiconductor quantum-wells are of interest
because of their opto-electronic device application possibilities. Band-gap renormalization arising
from the many-body interactions of optically created electrons and holes is an important ingredient
to understand the absorption spectra of such systems. Screening in the electron-hole system leads to
a renormalization of the single-particle energies. In particular, the Coulomb interaction between the
carriers results in a decrease in the average charge density felt by individual particles. These many-
body interactions along with the Pauli exclusion principle reduce the energy of charge carriers in
valence and conduction bands. The narrowing of the band-gap affects the luminescence properties
with interesting consequences for the semiconductor lasers [1].

The full many-body calculations of the band-gap renormalization make use of the perturba-
tion theory to calculate the electron and hole self-energies at the conduction and valence band edges.
The contribution to the self-energy may be split into a screened-exchange and a Coulomb-hole term.
The former is calculated using the screened Coulomb potential in which various models and approxi-
mations for the dielectric function is employed. The Coulomb-hole term, on the other hand, describes
the charge-density fluctuations around individual carriers. The general conclusions drawn from nu-
merous studies [2–4] are such that for bulk materials the band-gap renormalization exhibits a uni-
versal density dependence [5], whereas the quantum-well systems show marked dependence on the
well-width.

The main purpose of this communication is to extend the recent calculations of Ninno et al.
[6] to quantum-well systems, and explore the well-width and temperature dependence of the band-gap
renormalization to make more realistic contact with experiments. We demonstrate that the simple
approach of calculating the band-gap renormalization, which neglects the exchange-correlation ef-
fects but fully accounts for the Coulomb-hole contribution, yields reasonable agreement with experi-
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mental results, provided well-width and temperature dependences are included. This is chiefly due to
the fact that the Coulomb-hole part of the self-energy becomes dominant for not too high densities,
as also noted by Haug and Schmitt–Rink [2]. Similar model calculations [7] based on the Coulomb-
hole contribution have proven quite useful in bulk systems. Microscopic calculations [8–10] taking
the finite well-width and temperature dependence for quasi-two-dimensional (Q2D) systems are gen-
erally in good agreement with the experimental results [11–13]. Various simplified approaches [14–16]
for 3D and 2D systems provide understanding for the basic mechanisms of band-gap renormaliz-
ation.

In the following, we calculate the energy of a free electron-hole pair interacting only with
plasmons for a Q2D system. We include the well-width and finite temperature dependences. The
resulting band-gap renormalization shows satisfactory agreement with the experiments.

We express the Hamiltonian of an electron-hole pair interacting with the collective modes
(plasmons) as [6,17].
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in which we have neglected the direct electron-hole Coulomb interaction (we take h~\1). In the above
expression, MD

i
(q) is the matrix element describing the interaction of ith carrier (electron or hole)

with plasmons for a D-dimensional system, and x
q

is the q-dependent plasma dispersion. Since this
Hamiltonian is formally identical to that of the polaron problem, straightforward application of the
Lee–Low–Pines variational scheme [18] gives
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for the energy of the electron-hole pair interacting with plasmons. The carrier-plasmon interaction
matrix element for a D-dimensional system is found to be DMD
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is the static dielectric constant of the semiconducting material. In the 2D Coulomb inter-
action, we have allowed for a form factor f(q) arising from the subband quantization. An infinite
square-well model with width a yields

f (q)\
8

(qa)2]4p2C
3
8

qa]
p2

qa
[

4p4

(qa)2
1[e~qa

(qa)2]4p2D . (3)

The plasma dispersion x
q

is evaluated within the static plasmon-pole approximation [17]
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where e(q) is the static dielectric function (i.e. e(q)\e(q,x\0)). We use the random-phase approxi-
mation (RPA) at zero and finite temperature for e(q). (The explicit forms we use may be found in
the references cited.) x

1-
(q) is the long-wavelength limit of the plasma frequency which reads
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l) for 3D and 2D systems, respectively. Here l is the re-

duced mass of the electron-hole pair.
We now discuss our results for the case of GaAs, for which the material parameters are:

m
e
\0.067 m, m

)
\0.62 m, where m is the bare electron mass, and M

0
\13.18 (we use the same ma-

terial parameters as Ref. [6]). The band-gap renormalization within the present approach in bulk
GaAs at zero temperature was calculated by Ninno et al. [6]. It was found that the density depend-
ence of E

g
was reasonably accounted for. We first explore the temperature dependence of E

g
in our
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Fig. 2. Band-gap renormalization in Q2D GaAs as a function of plasma density. Solid line is for a strictly 2D
system at T\0. Dotted and dashed lines indicate E

g
for a quantum-well of width a\100 Å, at T\0 and

T\300 K, respectively. The solid circles and open squares are the experimental data of Tränkle et al. [11] and
Lach et al. [12], respectively.
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Fig. 1. Band-gap renormalization in bulk GaAs as a function of carrier temperature, for plasma densities
N\1014 cm~3 (dotted), N\1015 cm~3 (dashed), and N\1016 cm~3 (solid). We use the effective Rydberg for
the energy scale, i.e. Ry*\e2l/(2M2

0
).
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Fig. 3. Band-gap renormalization in Q2D GaAs as a function of the quantum-well width. Solid, dashed, and
dotted lines indicate T\0, 100, and 300 K, respectively.

simplified scheme, for a 3D system. Figure 1 shows the band-gap renormalization in bulk GaAs as
a function of carrier temperature for fixed plasma densities N\1016 cm~3 (solid), N\1015 cm~3

(dashed), and N\1014 cm~3 (dotted). We observe that the temperature dependence of E
g

is stronger
for lower plasma densities. In so far as the population of higher subbands is neglected, such behavior
is also obtained in more detailed calculations [8].

The renormalized band-gap energy in a Q2D GaAs system as a function of the plasma density
N is depicted in Fig. 2. The solid line is for a strictly 2D electron-hole system at zero temperature.
For comparison we also show the experimental data by Tränkle et al. [11] (solid circles) and Lach et
al. [12] (open squares). The former of these measurements were taken on GaAs/GaAlAs samples of
quantum-well-widths 21–83 Å, at T\2 K. The dotted line shows E

g
for a 100 Å wide quantum-well

at T\0, and the agreement with the data improves considerably. Lach et al. [12] data on the other
hand, is for a 103 Å GaAs/GaAlAs quantum-well at 300 K, and cover a higher range of plasma
densities. The dashed line shows E

g
calculated for a 100 Å quantum-well at 300 K is also in reason-

able agreement with the experimental data [12]. Our simplified model demonstrates the importance
of including the finite well-width and temperature dependences in the band-gap renormalization.
Calculations of Ryan and Reinecke [10] have already shown the importance of Coulomb-hole con-
tribution over the screened-exchange in quantum wells for carrier densities of N\3]1012 cm~2.

Having identified the importance of well-width and temperature dependence of the band-gap
renormalization, we show in Fig. 3, E

g
as a function of quantum-well width at a fixed 2D plasma

density N\1012 cm~2. The solid, dashed, and dotted lines are for T\0, 100, and 300 K, respectively.
In the above simplified approach of band-gap renormalization, we have considered the inter-

action of a single electron-hole pair with plasma excitations. It is well-known that a two-component
system (i.e. electron-hole liquid) also supports an acoustic-plasmon mode [19] other than ordinary
plasmons. We have attempted to include the contribution of acoustic modes to E

g
within the present

approach, and found their effect to be rather small. This is due to their relatively weak interaction

SM ARTICLE 749

Superlattices and Microstructures, Vol. 20, No. 1, 199684



strengths, and limited region of existence in the phase-space [19]. The effect of carrier-phonon inter-
actions on the band-gap renormalization was investigated by Das Sarma et al. [9] in a many-body
formalism. In our case, the phonon contribution to screening is treated in the so-called M

0
-approxi-

mation. We have also neglected the intersubband contribution to the self-energy within the present
approach. Extension of the present approach to take for instance the intervalence band transitions
into account should be straightforward once the dielectric function is suitably modified [10]. We have
attempted to apply similar ideas for a quantum-well wire. In this case, we found that the Coulomb-
hole term does not represent the experimental results well, suggesting the importance of screened-
exchange term in the self-energy. Another possible source of discrepancy is our use of the bulk
effective masses for the conduction and valence bands. In a confined system such as a quantum-well
or a quantum-wire more accurate band masses should be used.

In summary, we have studied the band-gap renormalization in GaAs quantum-well systems
within a simple model of electron-hole pair interacting with collective plasma excitations. We have
found that experimentally observed band-gap energies may be accounted for qualitatively if the
quantum-well width and temperature dependences are considered. Our calculations indicate that
Coulomb-hole term is more important than the screened exchange term, in the self-energy calcula-
tions, and it represents the experimental data reasonably well.
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