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We investigate the effects of screening on polaronic corrections to  the effective band edge in photoex- 
cited quasi-one-dimensional GaAs quantum wires and two-dimensional quantum wells. We develop a 
variational method to calculate the polaron energy of a two-component plasma (electrons and holes) 
coupled to LO-phonons. Screening effects are incorporated within a dynamical scheme. We find that 
the screening effects and finite well width considerably reduce the polaron energy as the plasma den- 
sity increases. Many-body corrections beyond the random-phase approximation are also considered. 

1. Introduction 
A high-density electron-hole plasma may be achieved under intense laser excitation of 
undoped semiconducting materials. In such systems, the exchange-correlation effects, the 
screening of the Coulomb interaction, and various singleparticle properties are affected, 
among which the most dramatic one is the band-gap renormalization as a function of 
the plasma density. This phenomenon is important to determine the emission wave- 
length of coherent emitters as being used in semiconductors [l]. Since a substantial car- 
rier population may be induced by optical excitation, the renormalized band gap can 
change the excitation processes leading to optical nonlinearities. On the other hand, the 
coupling between the charge carriers and LO-phonons in these systems also influences 
the band-gap energy and carrier effective mass. The gap between the valence and con- 
duction bands is renormalized by the emission and absorption of LO-phonons [2]. In this 
paper we investigate the density dependence of the band-gap renormalization in quasi- 
one-dimensional (QlD) photoexcited semiconductors due to the phonon effects within a 
variational approach which includes dynamical screening. The phonon contribution to 
the self-energy lowers the conduction band and raises the valence band, resulting in a 
narrowing of the band gap. Recent experiments [3] made available the density depend- 
ent change in band gap in GaAs based quantum wires. Our aim is to assess to what 
extent the band-gap renormalization is due to phonon effects. 

Much effort has been devoted to the study of Q1D semiconductor structures in recent 
years. In these systems, based on the confinement of the charge carriers, the motion of 
charged particles is quantized in two transverse directions, thus the charge carriers es- 
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sentially move only in the longitudinal direction. Interest stems from fundamental and 
applied points of view, because of new physical phenomena involved and their potential 
applications in high-speed optoelectronic devices. Progress in the fabrication techniques 
such as molecular beam epitaxy and lithographic deposition have made possible the real- 
ization of such Q1D systems [4]. 

The energy and the effective mass of an electron in a quantum wire including the sub- 
band effects were calculated in the presence of electron-LO-phonon interaction by Degani 
and Hip6lito [5]. The ground-state energy of the Q1D polaron gas in a rectangular quan- 
tum well wire has been calculated by Campos et al. [6], and very recently by Hai et al. [7]. 
The latter group has investigated the polaron energy in different quantum well wire models 
and the effects of screening. Coupling to phonons of a Q1D electron-hole plasma at  finite 
temperature was considered by Guven and Tanatar [8] within the perturbation theory. 

In this paper our primary aim is to develop a variational formulation of the contribu- 
tion to the ground-state energy of an interacting electron-hole-phonon system. Our 
method is the generalization to a twc-component plasma of the variational calculation of 
polaron energy given by Lemmens et al. [9]. Secondly, we compare our results with per- 
turbation theory calculations to assess the validity of the static approximation to screen- 
ing effects. For electron (hole)-optical phonon interaction, wave vectors such that 
k N (2rn,,ho~o)~’~ are important. The static screening approach would be valid if 
k << k ~ ,  where IGF is the Fermi wave vector. In low-dimensional (2D and Q1D) struc- 
tures the plasmon energy opl(k) is generally much smaller than the LO-phonon energy 
OLO, in contrast to the situation in the bulk. The dynamic dielectric function E ( q ,  o) at 
finite o N OLO may differ considerably from its w == 0 value (i.e., static value). Thus, 
the dynamical screening effects are expected to be important in low-dimensional systems 
as pointed out by Lei [lo]. We employ a variational approach to estimate the phonon 
contribution to the ground-state energy, and investigate the effects of dynamic screening 
in various approximations. The Q1D and 2D systems studied contain electrons and 
holes at equal number density N ,  appropriate for an undoped, photoexcited semiconduc- 
tor, which are free to move in one or two spatial directions, respectively. We consider 
here the coupling of electrons and holes with bulk LO-phonon modes. 

2. Theory 

The specific model we use in our calculation for the QlD, electron-hole fluid is devel- 
oped by Das Sarma and Lai [ll] and is applicable to the experimental realization of 
semiconducting systems [12]. The charge carriers are assumed to be in a zero thickness 
xy-plane with a harmonic (parabolic) confinement potential in the y-direction so that 
the subband energies are E, = Q(n + 1/2), where Q describes the strength of the confin- 
ing potential. In this work, we shall assume that both types of carriers are in their low- 
est subbands. This approximation will hold as long as the subband separation remains 
much larger than the phonon energy in quantum wires and the thermal energy kBT. 
The Coulomb interaction between the particles in our model Q1D system is given by 
[13] (2e2/&0) F(q) ,  where F(g)  = f exp (b2q2/4) Ko(b2q2/4) in which Ko(x) is the modi- 
fied Bessel function and EO the background dielectric constant. The characteristic length 
b = l@, where p is the reduced mass of the electron-hole pair, is related to the con- 
fining potential strengths of electrons and holes, and for simplicity we use throughout 
this paper the same value of b for both species. For more realistic calculations this re- 
striction may easily be relaxed. 
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We study the Q1D polaron gas using the Lee-Low-Pines unitary transformation 
approach as introduced by Lemmens et al. [9] and Wu et al. I141 in application to 3D 
and Q2D systems. It is harder to incorporate the screening effects (especially the dy- 
namic screening) in the perturbation theory approach 12, 81, thus a variational method 
seems more suitable. We introduce a unitary transformation, U = exp [Q], where 

f4 ,z(aq - uy4) &f&+q,z applied to the Hamiltonian of the interacting many elec- 

tron-hole and phonon system. Here the index i runs over electron and hole compo- 
nents, and the creation and annihilation operators for different species have their usual 
meaning. The variational parameters f q , z  are to be determined by minimizing the 
ground-state energy. Following the usual procedure [7, 9, 141 the ground state may be 
written as the product of phonon vacuum state and ground-state wave function of elec- 
trons and holes, and minimizing the energy with respect to the variational parameters, 
we arrive at  the ground-state energy of the two-component polaron gas. Minimization 
yields the following set of equations for the unknown variational parameters (we s u p  
press the q-dependence of M2 and fz) :  

= 
2, k ,  rl 

where Sij(q) are the static structure factors to  be discussed below. In the extreme 
quantum limit, when the electrons and holes are in the lowest subband, the Q1D 
electron (hole)-phonon interaction matrix element is given by [2, 6, 71 IMq,i12 
= [ 2 a i w ~ O / ~ ~ ] F ( q ) .  Solving the above set of coupled equations for fi, we ob- 
tain the polaronic contribution to the ground-state energy as 

E p  = - C {sll(MTfi+ MifT) + s12(MTf2 + Mif; + Mffi + M2fT) 
4 

+ S 2 2 W 3 2  + M2.f;)) + c wLo{sllfTfl + S l d f T f 2  + f l f f )  + S22f?f2} 
4 

+c P (& f T f l + G  q2 fZf2 1 
When the correlations between the electrons and holes are neglected, i.e., ,912 = 0, we 
obtain a simplified expression for the energy, 

as a sum of individual contributions of the plasma components. Furthermore, setting S11 
= 5’22 = 1, amounts to the nwmeening limit, and we recover the perturbation theory 
result. 

We consider two approximations in the evaluation of static structure factors Sij(q). In 
the first case, we use the Hartree-Fock (HF) approximation, which has the simple form 
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Note that in the HF approximation ,911 = 522, since we have equal numbers of electrons 
and holes, and S 1 2  = 0. In the second case, we employ the RPA generalized to a two- 
component system [15]. The density-density response function of the system is ex- 
pressed in matrix form, 

where xyi(q, w )  is the Lindhard function for the i-th component, i.e., the noninteracting 
susceptibility. We calculate the corresponding static structure factors using 

M 

where the analytic continuation of the response function to the complex frequency plane 
and a subsequent Wick rotation of the frequency integral are used to incorporate the 
single-particle and plasmon contributions. 

The static structure factors Stj(q) are obtained from the full frequency dependent 
response function x(q ,  w )  by integrating over all frequencies, thus they inherently carry 
dynamic information. For Q1D electron systems the collective excitations (plasmons) 
have a strong wave vector dependence without damping. Thus, along with the single- 
particle excitations, plasmons must also be taken into account in the calculation of 
S, (4). The static structure factors, as set out above, determine the screening properties 
of the electron (hole)-phonon system. In Fig. 1 we show the resulting partial structure 
factors in a two-component plasma for a typical density N = lo6 cm-’ and confinement 
energy 52 = 10 Ry* (the effective Rydberg is defined as Ry* = e2/2ai ) .  Solid, dashed, 
and dotted lines indicate Sll(q), S22(q), and S 1 2 ( q ) ,  respectively, whereas the dash-dotted 
line is the HF result. Also shown by the thin solid line is the quantity 
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D(q) = S11(q) S22(4) - S&(q) as defined by Chakraborty [16]. It has been argued that 
D(q) qualitatively resembles the static structure factor of a single-species system of the 
same density. 

3. Results for Quantum Wire Structures 

element 
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W B 
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0 

We illustrate our calculations of the electron (hole) -phonon contribution to the ground- 
state energy of a quantum wire by choosing the GaAs system. The relevant parameters 
used in the calculations are ml = 0.067me, m2 = 0.5me, for the electron and hole effec- 
tive masses, respectively, a1 = 0.07, a2 = 0.195, for the electron-phonon and hole-phe 
non coupling constants, respectively, and OLO = 36.5 meV. For the above material param- 
eters and confining potential strength SZ = 10 Ry*, the carriers remain in the lowest 1D 
subband for a wire size of roughly b M 50 A. We estimate the Fermi energy of the elec- 
tron-hole system to be EF < 5Ry" as long as the carrier density is N < (3 to 
4) x lo6 cm-'. The single-subband approximation would break down for higher densities 
(i.e., N N lo7 cm-'), in which case the present theory would be inapplicable. 

We show in Fig. 2 the total polaronic contribution to the ground-state energy as a 
function of the onedimensional electron-hole plasma density N .  The solid line repre- 
sents the variational calculation employing the RPA structure factors to account for the 
screening effects. The variational calculation using the Hartree-Fock structure factors is 
indicated by the dashed line. For comparison we also show by the dotted line the result 
of a perturbative calculation. We first note that both the variational RPA and the per- 
turbative calculations exhibit considerable screening even at  densities as low as 
N M 105cm-'. For the present choice of the confining potential energy (52 = 10 Ry*) the 
unscreened polaron energy is about -7 meV. The Hartree-Fock approximation gives rel- 
atively small screening at low density, and in general it underestimates the screening 
effect. The perturbative calculation we employ [8] includes the static dielectric function 
~ ( q ,  0) through the renormalization of the electron (hole)-phonon interaction matrix 

lM112/[E(q, 0)12. We use the T = 0, plasmon-pole approximation for ~ ( q ,  o = 0) 

R =  10 Ry* f 
- 

- 
I I I I I I I I l  

Fig. 2. Polaronic contribution to* the 
ground-state energy for B = lORy as a 
function of plasma density N .  The solid 
and dashed lines indicate the variational 
calculation using the RPA and Hartree- 
Fock structure factors, respectively. The 
dotted line is for the perturbative calcula- 
tion using the plasmon-pole approxima- 
tion 
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which includes the contribution of electrons and holes, 

Fig. 3. Polaronic contribution to the 
ground-state energy for N = lo6 cm-' as 
a function of o ~ o / Q .  The solid and 
dashed lines indicate the variational calcu- 
lalion using the FPA and Hartree-Fock 
structure factors, respectively. The dotted 
line is for the perturbative calculation 
using the plasmon-pole approximation. 
The thin solid line represents the 
unscreened limit 

where the Q1D plasmon frequency is (wkl(q))2 = N(q2/2m,) V(q) .  As in the case of 
quantum wells [2] (2D structures), the static approximation overestimates the effects 
since only the long-time response of the system is accounted for within this approach. 
We observe that going from the HF to RPA, the screening reduces the electron (hole)- 
phonon interaction appreciably for low carrier densities. It has been noted [2] that the 
static screening has a stronger effect on the renormalization (of polaron energy and 
mass) than the dynamic screening, because in the static approximation only the long- 
time response of the system is taken into account. Similar conclusions are drawn by Hai 
et al. [7] in a calculation that takes the dynamic screening effects into account for single 
component Q1D systems. 

In Fig. 3, the confining potential energy dependence (or size dependence) of the po- 
laronic contribution to the ground-state energy is illustrated. We show the results of 
various approximations as a function of w ~ o / s Z  at a fixed plasma density, 
N = lo6 cm-l. The solid and dotted lines represent the dynamical (variational, RPA), 
and static (perturbative, plasmon-pole approximation) screening calculations, respec- 
tively. We again observe that static approximation overestimates screening effects in 
comparison to the dynamical approach. The variational calculation using the Hartree 
Fock approximation to the structure factors (dashed line) appears to underestimate the 
screening effects especially for wide quantum wires (small Q). The thin solid line indi- 
cates the unscreened polaron energy. 

For the Q1D electron system we have used a parabolic confinement potential model. 
There are various other models of the quantum well wire structures making use of infi- 
nite barrier potentials and geometrical reduction of dimensionality [7]. The general 
trends obtained here for the carrier density and screening dependence should be valid 
irrespective of the details of the model chosen. We have used the RPA to describe 
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many-body effects in the interacting system of electrons and holes rather uncritically. It 
may be argued that the attractive nature of the electron-hole interaction would make 
the two-component plasma structure factor calculations somewhat less reliable. It is 
known that the corrections to RPA become more important in lower dimensions than in 
3D. Also, the RPA, although exact in the high density limit, fails to take the short- 
range electron correlations into account properly in the lower density regime. For these 
reasons it would be worthwhile to investigate corrections to RPA through local-field 
factors using for instance the self-consistent field method of Singwi et al. [17]. The 
ground-state properties including the exchange-correlation effects in quantum well wires 
beyond the RPA were recently studied by Campos et al. [lS]. To assess the importance 
of local field corrections, we use the equivalent of Hubbard approximation in one dimen- 
sion given as 

which takes only the exchange effects into account, neglecting the Coulomb correlations. 
Fig. 4 shows Ep as a function of plasma density for a quantum wire with f2 = 5 Ry". 
The dashed line is calculated using the HF structure factors. The solid and dotted lines 
are with and without the locat-field factor G(q), respectively. We note that the local 
field effects start to become important for densities less than =lo6 cm-l. We had found 
that [S] vertex corrections introduced within the perturbation theory did not affect Ep 
appreciably. 

We point out that with the present method (variational) the polaronic energy in an 
electron-hole system is calculated at  T = 0. It is possible to use a temperature depend- 
ent dielectric function E ( q ,  T )  within the perturbation theory approach [2, 81. For the 
variational calculation, not only the temperature dependent structure factors are neces- 
sary, but also the assumptions about the product form of the ground state need to be 
justified. We have neglected the interface phonon modes, which are expected to be a p  
preciable only for very narrow wires since they have exponentially decaying amplitudes. 
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Our variational approach yields also effective interactions among the charge carriers 
modified by the interaction with phonons. In terms of the variational parameters fi they 
are given by 

where wiJ (q )  is the bare Coulomb interaction between different species. This result is the 
generalization of the effective potential as derived by Lemmens et al. [9] and da Costa 
and Studart [19]. We display in Fig. 5 the effective interactions for N = lo5 cm-' and 
52 = 10 Ry* within the RPA. The solid and dotted lines are for y F  and v., and the 
dashed line is for y.. We have also shown, by the thin solid line, the bare Coulomb 
interaction for comparison. We find that the changes due to electron (hole)-phonon 
interactions are significant, but decrease with increasing width (small 52) and increasing 
plasma density. 

4. Comparison with Two-Dimensional Quantum Wells 

The effects of screening on polaronic corrections to the effective band edges in Q2D 
quantum wells were considered by Das Sarma and Stopa [a].  They use the perturbative 
approach of evaluating the leading-order self-energy including the static dielectric func- 
tion, and a variational formalism involving the striicture factor. Their approximation 
amounts to the 2D version of our simplified expression given in (3). It is of interest to 
apply the full dynamical screening effects within the variational approach to quantum 
well structures. Fig. 6 shows the results of our dynamically screened calculation for a 
strictly 2D system, for which the Coulomb interaction is taken to be v(q) = 2ne2/q. The 
solid and dashed lines indicate the RPA and HF, respectively, for the total (electron and 
hole) polaronic correction to the ground-state energy. We observe features qualitatively 
similar to the Q1D case, in that the RPA yields more screening than the HF approxima- 
tion. The dotted line appearing in Fig. 6 is for the statically screened perturbative calcu- 
lation. At zero temperature, the static dielectric function for a 2D system is independent 
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where a is the well width. In Fig. 7 we display the polaronic contribution to the ground- 
state energy as a function of quantum well width at  a typical plasma density 
N = 5 x 10" cm-2. We note that the screening effects dominate as the well width is 
increased. Similar conclusions may be drawn from t,he calculations of Das Sarma and 
Stopa [2]. A more complete many-body calculation within the perturbation theory of the 
band-gap renormalization which includes the electron-electron and electron-phonon in- 
teractions for semiconductor quantum wells was performed by Das Sarma et al. [21]. 

5. Conclusion 

In summary, we have calculated the polaron energy of an electron-hole system 
coupled to bulk LO-phonons in a Q1D GaAs quantum well wire at  zero temperature, 
within a dynamical scheme taking into account the full frequency dependence of the 
dielectric response. The variational method of Lemmens et al. 191 has been extended to 
the case of a two-component plasma interacting with phonons. The screening effects 
due to interactions between electrons and holes in a photoexcited quantum wire are 
incorporated into the electron (hole)-phonon interaction within the HF and RPA. Our 
results show that the dynamical screening of the two-component plasma reduces the 
electron (hole)-phonon interaction considerably both for quantum wires and quantum 
wells. As the plasma density increases, viz., N --f 00, the polaronic corrections to the 
ground-state energy vanish. For very high densities the single-subband approximation 
will already break down, hence our theory is restricted to N < 4 x lo7 cm-l. Correc- 
tions to the RPA, introduced via simple local field factors, do not affect the polaron 
energy significantly. 
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