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The quantum deformation created by the stereographic mapping fromS2 to C is studied. It is shown that the
resulting algebra is locally isomorphic to su~2! and is an unconventional deformation of which the undeformed
limit is a contraction onto the harmonic oscillator algebra. The deformation parameter is given naturally by the
central invariant of the embedding su~2!. The deformed algebra is identified as a member of a larger class of
quarticq oscillators. We next study the deformations in the corresponding Jordan-Schwinger representation of
two independent deformed oscillators and solve for the deforming transformation. The invertibility of this
transformation guarantees an implicit coproduct law which is also discussed. Finally we discuss the analogy
between Poincare´’s geometric interpretation of the quantum Stokes parameters of polarization and the stereo-
graphic projection as an important physical application of the latter.@S1050-2947~96!00106-0#

PACS number~s!: 03.65.Fd, 02.20.Sv, 02.20.Qs

I. INTRODUCTION

Since the discovery of the first deformed quantum algebra
by Biedenharn and Macfarlane@1# a tremendous effort has
been made to find physical realizations of these algebras.
Much earlier, inspired by an operator representation for
q-deformed dual resonance models@2#, Baker, Coon, and Yu
formulated the simplestq algebra which produced a suitably
bounded spectrum determined by the parameter of deforma-
tion q. Apart from their profound mathematical significance
mainly related to the solution of the quantum Yang-Baxter
equation@3#, and other problems@4#, physical applications
can be found in the deformed Jaynes-Cummings model@5#,
the ubiquitous quantum phase problem@6#, the relativistic
q oscillator @7#, and recently, in reproducing deformed
nuclear energy levels@8#, the Morse oscillator@9#, and the
Kepler problem@10#.

In particular, several possible realizations of deformed Lie
algebras can be constructed by applying certain nonlinear
invertible deforming transformations to the generators of the
undeformed algebras@11#. In this context, some explicit
cases have been examined by Curtright and Zachos@12#,
among several previously studied examples.

The quantum deformation of a physical symmetry should
be identified by a deformation parameter which must be
uniquely determined by a set of observables. In this work,
we give a particular example of that by examining the ste-
reographic projection of the su~2! generators on an extended
complex plane and show that the resulting deformation is
described by a deformation parameter which is directly con-
nected with the central invariant of the embedding su~2!. In
Sec. II we define and derive the properties of the quantum
stereographic projection. Section III is devoted to the prop-
erties of the central invariant. In Sec. IV the deformation
induced by the homographic oscillator on su~2! is studied
using Jordan-Schwinger representation. The proof of exist-
ence of the coproduct for the corresponding su~2! deforma-
tion is presented in Sec. V. In the last section, Sec. VI, we

discuss possible physical applications where quantized ste-
reographic projection and the resulting homographic oscilla-
tor algebra become relevant.

II. STEREOGRAPHIC PROJECTION

Stereographic projection~SP! is a mapping from the Rie-
mann sphereS2 onto an extended complex planeC. At the
classical level, SP is defined by a mapping fromS2 in spheri-
cal J,u,f parametrization to thatz,z* on the complex plane
given by

z52Jcotu/2eif, with Su5
2v

11v2 ,

Cu5
v221,

v211
, where v5

Az* z
2J

, ~1!

whereJ is fixedu andf are real coordinates describing the
polar and azimuthal angles,Su andCu describe the sine and
cosine ofu, respectively, andz,z* are defined on the pro-
jected plane as shown in Fig. 1. SP is an invertible mapping
except for theideal point at infinity. However, this does not
violate the formal equivalence between the two representa-
tions; since, as will be shown later, when Eq.~1! is quan-
tized, the ideal point at infinity is well represented by infinity
in the discrete spectrum of the corresponding deformed alge-
bra. We now proceed by defining an operator realization of
Eq. ~1! via sine-cosineoperatorsĈu and Ŝu as

Ĉu5
V̂221

V̂211
, Ŝu5

2V̂

11V̂2
,

where

V̂5AẐ†Ẑ, Ẑ5ÊfV̂, ~2!
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and V̂ and Êf are operator counterparts ofv and eif, re-
spectively. As in the case of angular decomposition of su~2!,
here we deal with ideal unitary polar operators~i.e.,
Ĉu
21Ŝu

251 and @Ĉu ,Ŝu#50) whereas the azimuthal phase
operatorÊf has both a nonunitary as well as a unitary rep-
resentation.

Throughout this work we assume that a quantum defor-
mation is understood explicitly in the same sense as Refs.
@11,12#. To be more precise, providing invertible nonlinear
functionals of generators, the deformed algebraic structure
and its representations are obtained by directly applying
these nonlinear functionals to a particular representation of
the undeformed mother algebra su~2! @11#. Depending on
which level this substitution and following quantization take
place, one naturally obtains different quantum deformations.

Using Eqs.~2! it can be found that

Ẑ†Ẑ5
11Ĉu

12Ĉu

, ẐẐ†5Êf

11Ĉu

12Ĉu

Êf
† . ~3!

In deriving Eq.~3! we did not assume the existence of any
particular unitary representation forÊf ~i.e., Êf

†ÞÊf
21). The

algebraic structure of theẐ,Ẑ† operators, however, as will be
discussed later, is not influenced by any conflict between the
unitary and nonunitary description ofÊf . The algebra de-
fined by Ẑ,Ẑ† can be found by using the well-known su~2!
relation @13,14#

@Ĉu ,Êf#52
1

J
Êf ~4!

in Eq. ~3!, which is expressed by thegeneralized commuta-
tion relation

ââ†5
pâ†â11

kâ†â11
~11@Êf ,Êf

† # !, with â5
1

a
Ẑ, â†5

1

a*
Ẑ†,

~5!

whereâ(â†) represent the normalized annihilation~creation!
operators and the parametersq,k,a are given by

uau25u2J21u21, p5~2J11!/~2J21!,

k52~2J21!22. ~6!

Equation~5! is not an example of prototype deformed alge-
bras and has not been studied in the literature. The commu-
tation @Êf ,Êf

† # naturally arises in the derivation. It has been

recently shown that it is possible to find a manifestly unitary
description ofÊf without affecting any of its operator prop-
erties@6#. Here,Êf is identical to the azimuthal phase opera-
tor in the su~2! polar decomposition@6,15# and its unitary
representation has the cyclic property

Êf5 (
m52 j

j

u jm21&^ jmu1bu j2 j &^ j j u, @Êf ,Êf
† #50

~7!

in the finite dimensional Hilbert space spanned by the basis
vectors u jm&. Here ubu51 and is otherwise undetermined,
referring to an arbitrary reference phase. On the other hand,
we must mention as a side remark that, if one adopts the
nonunitary description ofÊf @i.e. b50 in ~7!#, the first de-
formed excitation energy of the algebra~5! is influenced by
the nonunitarity ofÊf in such a way that it produces a scale
transformation on the operatorsâ,â†. However, its effect can
always be absorbed by a further trivial renormalization of
these operators. We will not elaborate on the other implica-
tions of the nonunitary description of theÊf operator in this
work.

Equation~5! is actually in the class of generalized quartic
oscillators@16# whose properties cannot be simply obtained
by taking the square of any generalized commutator. Be-
cause of the homographic dependence ofâ†â on ââ† we
term the algebra in Eq.~5! a homographic oscillator~HO!. In
the limit J→` we observe the limitsp→1 andk→0, there-
fore HO contracts to the simple harmonic oscillator~SHO!.
This is reminiscent of the I˙nönü-Wigner contraction of su~2!
onto the SHO@17#. The spectrum of HO can be solved ex-
actly by considering a generalized Hermitiannumberopera-
tor N̂ such that@ â,N̂#5â;@ â†,N̂#52â†. For the most gen-
eral solution, we haveâ†â5@N̂# and ââ†5@N̂11# where
@N̂# is the principal number operator, andun&J are the basis
vectors such that

@n11#5
p@n#11

k@n#11
, ~8!

where

âun&J5@n#1/2un21&J , â†un&J5@n11#1/2un11&J ,

N̂un&J5nun&J . ~9!

Enforcing the ground stateu0&J to be annihilated byâ, we
have@0#50. Using this ground state in~8!, the whole spec-
trum can be analytically iterated to yield

@n#5
@@n##

@@n##2@@n21##
, @@n##5

r 1
n2r 2

n

r 12r 2
~r 1Þr 2!,

~10!

where@0#5@@0##50 and@1#5@@1##51, with

1

r 1
1

1

r 2
511p,

1

r 1r 2
5p2k. ~11!

From Eqs.~6! and ~11! we find r 15r 25q. The spectrum is
thus given by the first derivative of@@n## with respect toq as

FIG. 1. Geometric interpretation of stereographic projection.
Herez5x1 iy andz* is conjugate toz.
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@@n##5nqn21. Here we identifyq5(2J21)/2J as the de-
formation parameter of the HO algebra.

It is known that the basic number@@n## arises in the so-
lution of the generalized Fibonacci series@16#

@@n12##5a@@n11##1b@@n##,

where

a5r 11r 2 , b52r 1r 2 . ~12!

Further, it can be shown that Eq.~12! defines a class of
generalized~i.e., r 1Þr 2

21) Biedenharn-Macfarlane~BM! ~or
Fibonacci! q oscillator. The commutation relation which
yields ~12! can be found if two new operatorsb̂,b̂† are de-
fined such thatb̂†b̂5@@N̂##,b̂b̂†5@@N̂11## as

b̂b̂†5r 2b̂
†b̂1r 1

N̂ . ~13!

In principle, Eqs.~10!, ~12!, and~13! plausibly suggest that
Eq. ~5! can be effectively obtained from the generalized BM
q oscillator by a second deformation. Although a direct
transformation from one into the other has not been found,
recently an attempt has been made to unify all quartic oscil-
lators. In this scheme,~5! and ~13! correspond to special
cases such asr 25r 1

21 , r 25r 1
2 , or r 25r 1 ~see Ref.@18#!.

This can be shown by applying the nonlinear transformation

b̂5 b̂̃~b1g b̂̃b̂̃†!1/2, ~14!

where@ b̂̃,N̂#5 b̂̃ in Eq. ~13!, we get the form

Ab̂̃b̂̃ †b̂̃b̂̃ †1Bb̂̃b̂̃ †b̂̃ †b̂̃1Cb̂̃†b̂̃b̂̃ †b̂̃

1Db̂̃b̂̃ †1Eb̂̃ †b̂̃1F50, ~15!

with the coefficients

A5g, B50 , C52qg,

D5b, E52qb, F521, ~16!

whereas the HO corresponds to the special case of the gen-
eralized quartic oscillator in Eq.~15! with the coefficients

A50 , B5k, C50, D51 , E52q, F521.
~17!

Both Eqs.~16! and~17! have the propertyAE5CD which is
possessed by the quartic square root oscillator@16# as a spe-
cial case of~15!. In the limit J→` both homographic and
Fibonacci oscillators contract to SHO.

III. CENTRAL INVARIANT

The HO algebra in~5! is isomorphic to its underlying
su~2! algebra. The range of values which the quantum num-
ber n can take is limited by the total angular momentumJ
~i.e., 0<n<2 J). This can be seen easily by causing the
diagonal operatorĈu to act on the angular momentum
uJm& and, simultaneously, on the homographic oscillator
un&J bases. The action of theâ,â† operators on the basis

vectors generates lower and upper bounds for its energy
spectrum~i.e., âu0&J5â†u2J&J50). By direct substitution
we find @2 J#5`.

In order to find the central invariantĈq we first write the
HO algebra in the conventional form

@ â,N̂#5â, @ â†,N̂#52â†, @ â,â†#5Gq~N̂!,

where

Gq~N̂!5
Q~11Q!

~N̂2Q!~N̂212Q!
, Q5q/~12q!. ~18!

Ĉq is then formulated as

Ĉq5â†â1ââ†1F~N̂!,

where

F~N̂!5
SN̂21TN̂1U

~N̂2Q!~N̂212Q!
~19!

with the coefficients S5(cq12Q), T5@2cq(112Q)
22Q2], andU5(cq21)(Q1Q2). Herecq is an undeter-
mined eigenvalue ofĈq . It is easy to see also from Eqs.~18!
and ~19! that there are lower (n50) and upper (n52 J)
bounds in the spectrum such that

â†âu0&J5ââ†u2J&J50

and

F~2J!2Gq~2J!5F~0!1Gq~0!. ~20!

IV. THE HOMOGRAPHIC q-BOSON REALIZATION OF
su„2… DEFORMATION

In the q-boson realization of su~2! deformation, the fun-
damental spinor realization is mapped onto a pair of com-
muting homographic oscillators as

Î15â1
†â2 , Î25â1â2

† , Î z5
1

2
~N̂12N̂2!, ~21!

where independent algebras forâ1 and â2 are given by the
analogs of~5!. Using~5! and~6! the operators in~21! can be
found to satisfy

@ Î6 , Î z#57 Î6 , @ Î1 , Î2#5 f Î~ Î z!2 f Î~ Î z21!, ~22!

where

f Î~ Î z!5Q1Q2

Î2 Î z

Î2 Î z212Q2

Î1 Î z11

Î1 Î z2Q1

. ~23!

HereQi5qi /(12qi) ( i51,2) andqi ’s are the deformation
parameters. It is also easy to see thatÎ 251/2(Î1 Î2

1 Î2 Î1)1 Î z
2 is an invariant of the algebra with eigenvalue

i ( i11) wherei51/2(n11n2) and i z51/2(n12n2). Hence
u i i z& form the orthogonal basis vectors of the algebra~22!.
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As q1 andq2 independently approach unity in the zero de-
formation limit, the deformed algebra in~22! approaches
su~2!.

Now, our aim is to find the invertible nonlinear transfor-
mation between the generatorsÎ6 , Î z and the generators
Ĵ6 ,Ĵz of the limiting su~2!. We seek an invertible operator
functionG ( Ĵz) such that@11#

Î15G ~ Ĵz!Ĵ1 , Î25 Î1
† , Î z5 Ĵz1const, ~24!

where the constant only depends on the central invariant.
The type of deformation in~22! is not suitable for any
Laplace~or Fourier! representation@11# in terms of the pow-
ers of Ĵz . However, one can still find the central element
Ĉ of this algebra such that

Î1 Î25G 2~ Ĵz!Ĵ1Ĵ25Ĉ2F ~ Ĵz!,

Î2 Î15 Ĵ2G
2~ Ĵz!Ĵ15Ĉ2F ~ Ĵz11!,

~25!

whereF ( Ĵz) is to be found. SinceÎ is the group invariant,
Ĉ is a function of Î only. Therefore its eigenvaluecQ1Q2

only depends onÎ and the deformation parametersq1 ,q2 .
Furthermore, the existence of the lowermost and uppermost
states on which the action ofÎ2 and Î1 yields zero, respec-
tively, implies thatĈ5F (2J)5F (J11). Using the con-
dition @ Î6 ,Ĉ #50, the operator functionF ( Ĵz) can be easily
found as

F ~ Ĵz!52 f Î~ Ĵz21!. ~26!

From ~24!, ~25!, and the su~2! relation Ĵ1Ĵ2

5 1
2 ( Ĵ

22 Ĵz
21 Ĵz) we finally obtain

G 2~ Ĵz!52
f Î~ Ĵz21!1Ĉ

~ Ĵ22 Ĵz
21 Ĵz!

. ~27!

Equations~23!, ~26!, and~27! define the invertible deforma-
tion G ( Ĵz).

V. COPRODUCT

One implication of Sec. IV is that the existence of the
simple su~2! coproduct

D~ Ĵ6!5 Ĵ6 ^ I1I^ Ĵ6 ,

D~ Ĵz!5 Ĵz^ I1I^ Ĵz , ~28!

and the invertibility ofG ( Ĵz) guarantee a coproduct law@11#
for Î6 , Î z . The deforming map defined in Eqs.~24! and~27!
is, however, not in the class of generalized prototype
su(2)q deformations of Curtright and Zachos@11,12#. The
nonpolynomial forms ofGq(N̂) and f Î( Î z) do not permit a
closed analytic form for the coproductD( Î6) and D( Î z).
However, one can get some hint from the interesting sym-
metry displayed by Eq.~22! in the limits of very large~i.e.,
qi→2`) and very small~i.e., qi→1) deformations as

limqi→1@ Î1 , Î2#52 Î z ,

limqi→2`@ Î1 , Î2#54e Î z / Î ,

where

Qi52~11e!, e!1. ~29!

Hence in both limits the deformed algebra~22! behaves like
a pure su~2!. In principle,D( Î6) andD( Î z) can be obtained
by the application of the deforming invertible transformation
found in Eqs.~24! and ~27! ~e.g., see Ref.@11#! as

D~Ĝ!5T@I^T21~Ĝ!1T21~Ĝ! ^ I#, ~30!

whereĝ5( Ĵ6 ,Ĵz), Ĝ5( Î6 , Î z), andĜ5T(ĝ) is just a com-
pact notation for the transformation in Eq.~24!. Equation
~30! implies

@D~ Î6!,D~ Î z!#57D~ Î6!, @D~ Î1!,D~ Î2!#5D~ Î z!.
~31!

Here we notice thatD(Ĝ) should behave likeD(ĝ) in the
symmetric limits~i.e., qi→1,qi→2`). A possibly existing
simple analytic form ofD(Ĝ) might be connected to the
closed form~30! by a unitary transformation@12#. However,
no explicit and general form for such a transformation is
known at the moment.

VI. DISCUSSION

The isomorphism between the homographic oscillator al-
gebra ~5! and su~2! has subtle implications in the angular
momentum addition theorem and the coproduct law for
Î6 , Î z . From ~24! and ~25! it is easy to see that
@ Î ,Ĵ6#5@ Î ,Ĵz#50 and@ Î ,Ĵ2#50. These commutations fur-
ther imply an isomorphism betweenu i i z& and u j j z&. In other
words, the two basis vectors are parallel to each other al-
though they are raised and lowered in different scales on the
z axis@19#. We also note thatÎ is a function ofĴ only. Let us
now definei and i z as quantum numbers corresponding to a
basis setu i i z& on which the generators in~22! apply. Then,
using ~27! and acting Eq.~24! on this basis, one obtains

j ~ j11!5cQ1Q2
1Q1Q2

i ~ i11!

~ i2Q1!~ i2Q221!
, ~32!

which is the desired relation betweenÎ and Ĵ. HerecQ1Q2
is

the eigenvalue of Ĉ . In the undeformed limit ~i.e.,
Q1 ,Q2→`) the equivalence of the two algebras requires
cQ1Q2

→0.
The arguments presented above guarantee the existence of

an implicit coproduct, making it possible to considerÎ6 and
Î z as elements of a quantum deformation of su~2!. The de-
formation parameter is shown to be determined by thetotal
angular momentum J. Our work is under progress to extend
the arguments presented above to the most general case of
quartic oscillator algebra. To the knowledge of the authors,
such generalized cases have also been examined recently by
Smith @20# as applied to the more general nonunitary case
Î2Þ( Î1)

†.
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The stereographic projection is intimately connected with
the polar construction of su~2! generators, the quantum phase
problem, and, in particular, certain geometrical realizations
@21# of quantum Stokes parameters of polarization
@14,21,22#. Nevertheless, the nonunitarity of the azimuthal
phaseÊf and/or the unavoidable nonzero commutations be-
tween the azimuthal and polar phase operators@e.g., see Eq.
~4! here# plague the polar operator construction of su~2!. As
briefly mentioned in Sec. II, the resolution was given by
Ellinas@6# by adding a cyclic property to the matrix elements
of Êf along theJz axis with a periodicity of (2J11). This
new term does not affect the original spectrum and further
makesÊf manifestly unitary.

The homographic oscillator representation is physically
relevant for its application, particularly in the weak intensity
regime of quantum Stokes parameters@14,21#. The quantum
phase problem has been studied in the context of an opera-
tional point of view by Noh, Fouge´res, and Mandel using
two coherent laser sources@23#. More recently this formal-
ism has been applied to the case of polarization measurement

of weak fields@14#. Using Poincare´’s stereographic projec-
tion, the angular parameters of the polarization ellipse can be
mapped conveniently on the Stokes parameters. This has a
certain advantage from the operational point of view. The
direct measurement of the quantum Stokes parameters might
be more relevant in determining the orientation of the polar-
ization ellipse both for experimental perspective and the suit-
able group properties that quantum Stokes parameters pos-
sess. This is where the authors believe that the homographic
oscillator introduced here can be linked with the quantum
Stokes parameters and polarization measurement. Another
dimension of our work in progress is to exploit this physical
application.
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