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Abstract

Anion network in the CuO» plane of metal-oxide compound is considered as
an intrinsic-hole metal with holes rather than electrons comprising a Fermi lig-
uid immersed in the background of negative O?”  ions. Due to the contrac-
tion of p-orbital of oxygen as a result of occupation by a hole, hole hopping be-
tween nearest neighbor sites (7, j) is dependent upon hole occupation as t;j,, =
to + Vni—onj—o + Wi —o + nj—o). Coupling parameters W and V (additive
and multiplicative ”contraction interaction” terms) result in the binding of holes into
singlet, on-site configuration, or into triplet, nearest-neighbor-site configuration, due
to W and V respectively. In the weak coupling limit, W results in the BCS type
of superconductive pairing (singlet, s-wave), whereas multiplicative contraction V
provides for either singlet, d-wave, or triplet, p-wave-like pairing states. It is con-
cluded that the latter state may result in a plausible mechanism for high-7.. super-
conductivity in metal oxide compounds. The superconducting p-phase is shown to
be in accord with recently published symmetry tests of the order parameter in oxides.

1. Introduction

Since the discovery of high-temperature superconductivity in Las_,Ba,CuO4|1]
and Y BayCuzOg42[2], great efforts have been devoted to the experimental study of
physical properties of high-T,. superconductors and their extension to new materials, as
well as to the theoretical investigation of the basic physical mechanisms of a new su-
perconducting state. Concerning the latter, several radical changes in the state-of-art
of condensed matter theory have been attempted. Non-fermi-liquid scenario of conduc-
tivity have been suggested and nontraditional quasiparticle statistics characteristic of
two-dimensional systems have been proposed; momentum pairing as well as local pair-
ing mechanisms of bosonization have been investigated; non-electron-phonon as well as
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electron-phonon mechanisms of attraction between electrons has been discussed; strongly
correlated electron models have been considered.

Experimental study of new superconductors does not give a clue to theory as it
does not reveal the novel features of high-T, superconducting state. All effects known for
low-T, superconductors (Meissner effect, the Abrikosov mixed state, flux quantization,
Josephson effect, etc.) also exist in the oxide superconductors. The anomalous (almost
vanishing) isotope effect in most-high-T, materials [3] suggests that electron-phonon
interaction may be not a unique mechanism of superconducting pairing.

Investigation of an issue as to which components of an intermetallic compound,
e.g., YBaCuO (the rare-earth elements 7 copper ions ? oxygens ?7) are most rel-
evant to superconducting properties, indicates that oxygen is probably a key element
since according to high-energy X -ray and electron scattering data [4,5], a Fermi-liquid
unambiguously related to oxygen-derived electronic states develops in the same range of
a dopant (barium, oxygen, etc.) concentration at which the metallic conductivity and
superconductivity sets in.

The fact that oxygen has an almost filled p-shell configuration suggests that holes
in a p° shell may play a similar role for the conduction in the oxides as do electrons
originating from the almost empty atomic shells, in conventional metals. In the present
paper, we shall follow this line of thought and will try to show that this “chemical” as-
pect of high-T, materials may result in a new type of band conduction and quasiparticle
interaction which seemingly show the possibility for high-7T, superconductivity.

Section 2 describes the idea of the intrinsic-hole metal, as opposed to the conven-
tional “intrinsic-electron” metals and introduces a new type of hole interaction termed
the “contraction interaction” [6,7]. Sections 3 and 4 show, in methodical manner, the
physical origin of the contraction interaction effect on quasiparticle pairing. Sections 5
through 7 analyze a weak-coupling regime of contraction interaction. It is suggested that
the triplet, odd orbital-symmetry (p-wave) gapless state is the most probable scenario
for superconducting behavior in the new high-7,. materials. This state is shown to be in
accord with recent symmetry tests of the order parameter in oxides.

2. The Intrinsic-Hole Metal

In the investigation of unusual electronic properties of metal-oxide compounds, it
was proposed [6,7] that the new features in the electronic band conduction should be
included. The first possibility is that intrinsic-hole rather than intrinsic-electron carriers
may be dominant charge carriers. The second is that, assuming “intrinsic-holes” are at
work, the one-particle picture of the electronic transport is not fully adequate, because the
hopping of holes in itself is nonconstant and is strongly dependent upon site occupation.

In conventional metals like Na, the Fermi surface is formed by electrons removed
from metallic atoms leaving behind the closed-shell cation network ( Na™ ). For the atoms
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with almost filled atomic shells (O between those), anion configuration O* is expected
to establish with holes, rather than electrons, condensing to a Fermi liquid in the space
between anions. [Notice that this has nothing to do with the electron-like or hole-like
carriers as evidenced by the Hall effect. The difference between “intrinsic-electron” and
“Intrinsic-hole” type metals is illustrated in Figure 1].
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(a) (b)

Figure 1. Cation network with the intrinsic electrons condensing to a Fermi liquid (a) and
the anion network with intrinsic holes as a Fermi liquid of positive charge (b). Notice that this
does not concern with the sign of the Hall coeflicient which in principle can be both positive and
negative in either case

Normally, for oxygen atoms this does not happen because two oxygens have a
strong tendency to covalent bonding resulting in the formation of oxygen molecule, O,.
However, in a proper chemical surrounding this may not take place if the nearest neighbor
atoms are not too close to each other. Then the other scenario will apply, reminiscent
of metallic oxygen. We may suppose that this is just what happens in the metal-oxide
superconductors. In the C'uOy plane of the latter, due to large ionic radius of copper,
oxygen orbitals are overlapping amongst themselves almost as strongly as the near-site
oxygen and copper orbitals (see Fig.2 in which oxygen and copper radii are shown ap-
proximately in scale). Then, the O, molecules are not formed, and the holes derived from
the p® shells are to be the itinerant carriers. Due to overlapping of hole wave functions
at different ions, hole can propagate from the oxygen anion to the nearest one.

Intrinsic holes are not totally equivalent to the intrinsic electrons in the sense that
they can not be fully removed from the parent atom. But the external atoms, like those
in the ligand plane of copper-oxygen chains, can provide a proper surrounding in which
the hole may reside. Charge transfer between holes at anions A4;, A; in the CuO, plane,

(A; + hole), A; =5 A;, (A;+hole), (1)

will be characterized by the occupation-dependent hopping amplitude ¢;; exponentially
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dependent upon distance between the ions (a is the effective anion radius)
¢
| tij | ~ exp(—Rij/a) (2)
If another hole (a hole with the antiparallel spin) is localized at the same anion, the anion

radius will shrink as shown schematically by dotted line in Fig.2, thus changing the value
of t;;. From the known data concerning oxygen and oxygen ion radii [9],

O: a = 0.74, 0%~ : a = 1.364 (3)

we conclude that this effect may be quite strong, i.e. the.“contraction interaction” [7]
representing the change in the hopping amplitude upon hole localization is expected to
be important. This interaction can be labeled in terms of neither repulsion nor attraction
but as will be shown in the next section, it results in binding of two holes in a pair thus
showing a way to superconductivity [6,8].

Figure 2. Atomic configuration in the CuO; plane of YBCO and similar metal-oxide
. L, - v . . = v . .

compounds. Full line, O®" configuration; dotted line, O~ configuration corresponding to a

hole nesting at the oxygen site. Contraction of the ion orbital due to extra positive charge of the

ion core changes the hole hopping amplitude between this anion and the nearest neighbor anion

It was proposed that hopping amplitude is dependent upon site occupation accord-
ing to [10]

tija” =" ,'0(1 - 71'1'7_'0')(1 - TLJ)—U) + [/] [(1 = In’iy'"'a'),n/j,_” + ’nli'v'"a(l == IrLj»—o-)] +
toni, —oMj —y (4)
where n;, = a;aw is particle number operator, and s (Giy) is creation
(annihilation) operator of hole with spin projection o at site 4.

In case of oxygen anions, quantities to,f;, and ¢y are the amplitudes of the
transitions:

to: O +07” = 07 +0;

(4
S
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We expect that, due to the R-dependence of ¢;; of the type represented by Eq.(2),
t; will be smaller than ¢y, and t; smaller than ¢; and can be estimated as

tl ~ [,()(i—s, [Jg ~ t()(i_z‘s, (6)

where S is the ratio of the distance between the maximum of the lattice potential
(presumably, at the Cu?" location) and the anion position.
Occupation dependence of the hopping can also be represented in another form,

bige = =t + Vni oty + Win—o +05-5), (7)
where, from (4),
e ey, Voss tn~Bidde W o fyetn (8)

If we accept the estimate for the hopping amplitude (6), the contraction parameters
V and W will become

Ve—t(l—e )2 W~i(l-e®). (9)

From this formula we conclude that the sign of V' is expected to be opposite to the sign
of the unperturbed hopping amplitude ¢, whereas W should have the same sign as that
of t. This will have an important implication for the appearance of superconductivity in
the corresponding regimes.

Including both type of contraction interaction, and also the Hubbard in-site repul-
sion, Hamiltonian of the system becomes

H=—t Z a;t,aj(,+HU+Hv+HW (10)
<HY >0
with
Hy = UZ”Z‘T"M’ (11)
Hy =V Z af(;ajani,_anj,_(,, (12)
Lo

HW =W Z a;aj(,(ni,_a -+ IrLj,__o')- (13)

<ij>,0

The effect of a coupling term W in (10) has been considered in much detail in the
paper of Hirsch and Marsiglio [13], as well as in the author’s papers [6,7,10]. Below, we
consider the effect of both types of contraction pairing. In the weak coupling regime, the
sign of W derived from (9) is unfavorable for superconductivity whereas the sign of V
is. Moreover, pairing due to V' is not subject to a suppression by the intersite Coulomb
repulsion.
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Models with different signs of ¢ are in fact equivalent [11]. Change of the sign
of t can be compensated by the momentum transformation &k, — k; +m, k, —
k, + ™ corresponding to the shift of the elementary cell, and therefore of the Fermi
surface, in the reciprocal lattice by a vector (m, 7). If not stated otherwise, later we
shall consider ¢ in (7) as positive. Then, according to previous consideration, coupling
parameter V is most likely expected to be negative whereas W a positive quantity.

3. Binding of Holes into Pairs via Contraction Mechanism (Singlet State)

To clarify the contraction mechanism of superconductivity, we consider in this
section a simple problem of two holes in an empty one-dimensional host lattice interacting
with one another via the occupation dependent hopping (13) and show that they bind
into a singlet pair similar to a Cooper pair, at appropriate sign of the interaction term
W . In the following section, we address the same problem of hole binding to a triplet
state due to the contraction energy V. The reader who is already familiar with the
pairing property of the interaction (7) may continue directly from Sect.5 which deals with
superconductivity in a dense 2d Fermi liquid of holes.

The 1d version of interacting holes in an anion network is represented by the Hamil-
tonian including the contraction interaction (7) and the Hubbard term U accounting for
the Coulomb interaction between holes at the same site

N N
H = —t) alaipe + he + UY nygni +

i=1,0 i=1

N

Z a;-t}_aH],(,[Vni,_aniH,_(, + W(n;—o + Nit1,-0)] + h.c (14)
=Ll

Two holes in the noninteracting lattice (U =V = W = 0) have an energy

0 "
E© = —t(ek, +€k,), €k = 2cosk, (15)
where k£ = %v’in (n is an integer) is the momentum of a finite-size, cyclic-boundary-

condition anion chain of length N. Consider solution to the Schrodinger equation HW¥ =
EV in the form

U= flz,a2)af af, | 0>, (16)

L1y

where z1,zy are integers. Changing from the coordinate representation f(zy,xs) to the
Fourier representation fy, 1, according to

ey, 29) = z szlk._,ei(l""’"‘Jr""”’m'“’), (17)

]“'1 )k'.l
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we obtain an equation for the wave function amplitude [y, .,

, U
_[I/(a].1 + 5[.‘,2) + E]./-klkz '+_ N‘ Z .fk‘ —k,ko+k +
k

W 3
F Z flr.-, "I\?,I\Tg'f'l\?(gl\f] -+ Eky + Eky—k 4+ Ektg—‘rl.z) = 0. (18)
k

By introducing the functions

1
E)(Q) = NZflx:lak,kg-‘rl.:,
k

1
Fl ((\2> == ]—V: Z fk] ——L:,I.:g—}—k:(gk,] = T E]\!:_)-i--l\f)) (19)
k

where @ = ki + k2 is a total momentum of a pair, we obtain a solution

[U + W(ex, + er, )| Fo + WF,
TN = , 2
Tk Hek, +xy) + B 0

which, after substitution back to Eq.(18), results in the equation for F

(W —t)?
U2 + W(W — 20)E

- S(E)7 (21)

where S(FE) is the function

S(B) = — g | (22)

The function S(F) is shown in Figure 3. By intersecting S(F) with the left hand side
of Eq.(21) we obtain the eigenvalues F related to the energies of the propagating states
(11), and an additional energy below the edge of noninteracting holes £ < —4 | ¢ |
corresponding to the bound state of holes.
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Figure 3. Function S(E) for N =4,Q = 0 (full line). Dotted lines - left-hand-side of Eq.(21)
for W =0, U <0 (a), and for U =0, W < 0 (b). Squares indicate bound states

In case of zero contraction and large negative Hubbard’s U, the bound state energy

1s
Ef = —|U|—%2—|(1+COSQ), U<0, |U/|>|t| (23)
which corresponds to the binding energy — | U | and an effective mass of a pair
m* = |U | Jai (24)
much greater than the single particle effective mass m = 1/(2 | ¢ |) (in the units

h=a =1, where h is Planck constant and « is the intersite spacing).

In case of zero U and large W, Eq.(21) gives the energy of the bound hole-hole
state

| W
fy B et 25
1 2(1 4 cos Q) (25)
corresponding to the value of the binding energy at Q =0 E, = — | W | /4, and an
effective mass "
M = —r—xr (26)
| W |

which is negative and much smaller in the magnitude than the free hole mass. Therefore
we obtain in this limit highly mobile bosons coupled to an energy — | W | /4.

At small | W |, the symmetry between the positive and negative values of the
contraction energy W is removed and pairing is produced in a restricted range of couplings

W. The phase diagram in the (U, W) plane showing the effect of pairing is presented
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in Fig.4. We consider here both cases of positive and negative ¢ to show that the sign
of W corresponding to pairing correlates with the sign of ¢ in a manner opposite to the
one expected for “normal” contraction, Eq.(9) (decrease of hopping amplitude with more
localized holes, i.e. with extra positive charge on the anion).

/.

7

(a) (D)

Figure 4. Phase diagram of hole binding into a singlet pair. Hatched region corresponds
to binding, empty one to no binding. U is the Hubbard energy, W the contraction energy.
(a)t=1; (b}t = ~=1

However, it should be mentioned that this does not necessarily exclude the pos-
sibility of superconductivity due to contraction mechanism in the copper-oxide system,
since, owing to the anisotropic nature of p-orbitals and to the possibility of reorientation
of those from the direction Cu — O to the direction O — O at increasing filling, the
“renormalized” W value can be of any sign and magnitude (in particular, | W |>| ¢ |).
The issue of the first-principle calculation of W has been addressed in the Hirsch’s paper
[14].

The origin of the pairing property within the contraction model can be explained as
follows. Occupation dependence of hopping, Eq.(7), can be visualized as band narrowing
(Fig.5,a) or widening (Fig.5,b), depending on the sign of W, near the location of spin-
down hole. If signs of ¢ and W are opposite to each other, an eflfective potential barrier
is formed near the point at which the hole is located, thus repelling the other hole. In the
opposite case when t and W are of the same sign, the potential well will be created near
the hole attracting another hole. For large | W |, band inversion occurs (Fig.5,c) acting
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as a trap for another hole irrespective of the sign of W. This explains the phase diagram
for the occurence of hole binding shown in Fig.4.

4t 4] t—wl 4t 4 t—w

(a) (b) (c)
Figure 5. Formation of the quantum barrier near a hole for sign(W) = sign(t) (a), quantum

well at sign(W) = — sign(t) (b), and the band inversion at | W |> 2 | ¢t | ( ¢). Dotted line
shows an energy of the bound state near the hole

4. Binding of Holes into Triplet State

Contraction term V' proves to be inoperative in case of two holes ‘with opposite
spins in an empty host lattice as this term does not appear in Eq.(18) following from
(14). However we may expect on the basis of Fig.5h that two holes with the same spin
located at a nearest sites will create an effective potential well, if sign(V') = sign(¢), and
therefore acting as a trap for the third hole having opposite spin. To verify whether this
is the case we consider an eigenstate

v = Z flzy, 2o | w)al’l.‘;a;:l,].a,;?l |0 > (27)

1o

of the Hamiltonian with the interaction V' alone,

N N
i o ‘
H = E a; Qi1 + V g a%(Li_H,(,n,,;,_afn,.,;H‘_(, + h.c. (28)
=1, =lia

The wavefunction amplitude f(xy,25 | ) is expected to be antisymmetric in x,z, and
satisfies the equation

_LZ[f(:rl + 6,22 | x) + fz1,22+ 6 | 2) + f(zr, 22 |2+ 6)] +
6

14 Z(5I111:E5!B2,3:1+5 . » 6:1:2:1:5:1:1,:ng—}—6)f($1>"L'Z l z + é) o Ef(.’l)l,.’lig I :L')’ (29)
)
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where 6 = £1 is the unit vector connecting nearest neighbor sites.
Consider solution to Fq.(29) with a fixed momentum Q
e,z | @) = F(ay —a, a9 — z)et@@1+e2ta) (30)

After expanding F(wxy,22) in a Fourier series analogous to (17) we shall obtain an
equation for the pairing amplitude £},

— [t(eky+Q + EkotQ + E—by—ko+Q) + B Floykes +

v - 2le'l san
e ZF;,-((—f""l‘“{’—e"’k"b)(ﬁ'(‘?b = 0 (31}
i b

with Fy = F(0,—6) = —F(=6,0).

Substitution of Fj, 4, in to Eq.(29) gives an equation for Fj

Fs = V) _ SsyFy (32)
6/
where _ , ’ ,
1 eik16 _ pikad)(pikid' _ ikad"),iQ0
- ( X ) .

7
2

2N? ey k ek, +Q + Eky+Q + Ekytha—Q) + E

Choosing the total momentum of a bound state ) = 0, the eigenvalue equation

will be
1 + VSL(FE) = 0, (34)

whare S.=51+8;, S1=8.,.=8..., S9=8,_.=5_, and

; 1 (cos ki — cos ko)?
fp = WZ%(' s k 208 k os(ky + k E’
5 2tcos ky + cos ko + cos(ky + ko)) + E

£ = _i‘) Z ( (sinky — sin ky)? | 5
N* ik 2t(cos ky + cosky + cos(ky + k2)) + E ‘
ik

At large V| the energy of the bound state equals
E, = —|VI|, [VI[>|t]. (36)

We will not consider the problem of binding in more detail since it serves only to
provide some indication as to what may happen in a system composing of many holes.
The strong coupling regime of the Hamiltonian (14) requires the numerical analysis [12].
The weak coupling regime will be analysed for a 2d network in the forthcoming sections.
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5. The Cooper Instability

Contraction interactions in the anion network - terms (12), (13) in the Hamiltonian
- result in the instability of the ground state of a fermi-liquid with respect to pairing of
electrons in the zero-momentum state (p,—p). Spin structure of the paired state is
however more complicated than in a standard BCS theory.
Consider first the weak coupling limit of an “additive contraction”, Eq.(13). In the
momentum representation, Hamiltonian Hy, reads

%4 . + .
}[l/V = 7\[— Z Z (€p + Ep/)af;(f(],plo.(l,f)l‘_G(Lpz’_ﬂ(‘)p_‘_pl‘p/,i,p2 ('57)

pP.p'.o P1.P9
where 7
€p = Z(ilpb. (158)
S
s is a vector between a given site and its nearest neighbor.
Singular part of the interaction (37) corresponds to terms with py = —p and
p2 =-p":
bl e ot ot 39)
HVV = N Z (Ep +cp/)apaa,_p,_(,a_p/,_,_(,.a,p,(,. (
p.p'.o

According to the Green-function formulation of the theory of superconductivity
[15], it is needed to trace the behavior of the vertex part I'pp,(w) in the apper half plane
of complex frequency w. The vertex part corresponding to Eq.(37) is represented as a
sum of diagrams shown in Fig.6,a thus giving

Fpp/(w) W(Ep+€pl -}-———2/27” cp+ck)(€k+Epl)Crk(€)G_k(w"5)+--- (4())

where Gy is a one-electron Green function (ny is the Fermi distribution at 7" = 0):

g N 1-— N
Gy = 41
e—&k—ié+5‘-£k+vﬁé L

Subsequent terms of this series are powers of singular integral
1 - )”k
C(k (42
N Z )fk —w )

with w =i and £ = —tey — pu. Therefore we shall have at {p = &pr =0

2uW

, % (43)
1 —2uWln 2

I'(if)) ~
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o is the cutoff energy of the order of Fermi energy. Pole of (43) is a familiar Cooper
instability. The instability occurs once pW is positive which means that W should be
negative at hole concentration corresponding to less than half-filling of the electron energy
band and positive in case of less than half-filling. This is in agreement with the result of

the binding energy calculation in Sect.3.

(
P\‘\ » /
'\\
-p -p -K,m-¢
(b)
Figure 6.

The multiplicative part of the Hamiltonian function Hy takes form after transfor-
mation to momentum representation

4 s O g
Hy = WZ Z €p+p1‘pza‘PaaP’”apl»“f’apz""akl,—aakz»—rfX
Op-py+Pg.p+kq-ky (44)

Putting p; = —ky and py = —ko gives the “singular” part of the Hamiltonian

1%
_ + -+
Hy, = N > WP -00psa pra-proaprs (45)

Po

with

1
M0 = 5 D O _q.o %o (46)
k

Cooper-type diagrams for the vertex part corresponding to the above Hamiltonian
are showm in Fig.6,b. We will receive I'(2) similar to (43) with a more complicated
angular dependence. The singularity of the vertex part is a signature of superconducting
transition. The calculation of the pairing state below the transition will be presented in

the next section.
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6. Weak-Coupling Mean Field Theory of Superconductivity in an Anion
Network

Oxygen orbitals in the CuQO, plane of oxide compounds have states p., (o =7 or
1) directed perpendicular to the plane and coupled to electrons belonging to atoms outside
the plane. Concerning two other states of the oxygen, p.s,pys, a possible scenario may
be that they are coupled to copper atoms within the plane and do not participate in band
conduction (or, in other words, they form a totally filled conduction band). The remaining
two orbitals, pys,pye (see Fig.7) will be considered along the lines of intrinsic-hole metal

approach.
C
S

dg}{b{}w

SRE A

Figure 7. Anion network in the CuO2 plane. p. orbitals of oxygen are supposed to be included
in the chemical bonding with the Cu cations whereas p,, p, oxygen states participate in the

band conduction. p.,, », orbitals are rearranged pointing in the oxygen- oxygen direction to
y Py Y
maximize the hybridization energy between the near oxygen sites

These states are filled in the 2p° configuration (a vacuum state O*7) and become
progressively occupied by holes when the compound is doped with an acceptor. Such
an acceptor can be Ba or Sr in case of the Lay_,(Ba, ST),Cu0O4 compound, or oxygen
itself in the Y BasCuzOg., system. In latter case, dopant oxygen is supposed to occupy
positions outside the C'uO- plane whilst oxygen sites in the plane remain intact.

The hole system is described by the Hamiltonian

H = -t E a;—r*,_g-a':lri-()',rr + E ('I'j;_g-(-llzlt-l»ﬁ,(r[V'n:l:,—(rn:n—}-r‘i,-—-rr -+ ‘/V(”m,—(r -+ 'rL:n+6,—r7)] .
rho zho
U E NgiNg| + Vi E NgtNzts,] + Wi g Tgs il s (47)
x xh oo

including multiplicative (V') and additive (W) contraction energies as well as the Hub-
bard intra-site (U ) and inter-site (Vi, W) ) terms.
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Feynman diagrams corresponding to the interactions included in Eq.(47) are shown
in Fig.8.

(a) (b)

\\ 4 \\ /” \\ ,”
\Q\\U ﬂ/ \\\\Wl/ﬂ/ Vl \\\\\V] ;7/
L N \(’

4 \\\\
/ ,” ™
(c) (d)

Figure 8. Feynman diagrams for the electron- electron interaction representing the effect of
contraction. (a)Additive contraction; (b)multiplicative contraction; (c)-(d)intra-site and inter-
site Coulomb interactions U, Vi, W;. Full and dotted lines distinguish between spin up and spin

down states

Four-vertex diagrams correspond to W and to the Hubbard (Coulomb) interaction,
whereas six-vertex diagrams refer to the V term. The Cooper effect in the interact-
ing fermion system [15] manifests itself as a singularity in the two-particle scattering
amplitude at zero momentum. Four-vertex interactions result in the singularity of the
scattering amplitude at small momentum of the type shown in Fig.9,a whereas six-vertex
interaction is represented by a block of diagrams of Fig.9,b-e. Of the latter, only diagrams
(b) and (d) are singular as kq + ko — 0, because in diagrams (c) and (e) the momentum
conservation at the vertex does not require that the momenta of the Green functions are
equal at k = 0. '

There is one-to-one correspondence between the diagrams of Figure 9 and the mean
field Hamiltonian obtained from Eq.(47) by the Wick-decoupling of the product of the
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Fermi operators. We need to select only from those with the singular part and can neglect
products which may be included in the renormalization of the chemical potential [15].

(b)

(c)

e e @

2 i
>"33::‘ -------- _',’,’f'< ©

Figure 9. Cooper diagrams for four-vertex (a) and six-vertex (b)-(e) interactions. Of the latter,
only diagrams (b) and (d) are singular at ky +ko — 0

The singular part of the interaction (47) can be represented as a sum of three terms,
according to their symmetry with respect to the transformation k — —k:

1711 lm‘ mf

where superscript “S = 0” corresponds to pairing in a singlet state and the remaining
two terms to pairing in the triplet states with the spin projection equal to 0 and to 41,
respectively. These terms are selected according to their symmetry:

1 V
HI=Y = N Z{U +2(Vi = = ) eqng)(cos ky cos ki, + cos ky, cos ki) +

kk’ N q
) V
Z(Ek;+€k,/)(W+NZ?’L(1)+VZE(I(1— q)}a (z e, @k Ty (49)
q q
fSa=0,5=1 _ Z 2V 12 )(sin by sin K. -+ sin &, sin k' )at_at
ok = o EqNg)(sin k, sin k,, 4+ sin k,; sin U)akTa'—kla-mk’la'k"l'
kk! q
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= 1 V
HS=E1 % 2(2W'1 T Z £qMq)(sin ky sin kI, + sin ky, sin k;/)af:aafkaa_k,ﬂak,a.

kk'o q
(51)
The transformation to the momentum space have been carried according to

1 kx
AxXe = —— E s 52
/N ’\ k(f ( )

At the critical temperature T, , there will appear the nonzero order parameters corre-
sponding to the above states:

Apr™ = 3 W ca_piam > (53)
k' s
or
Af::er = Z)\:leza < A_kloQile > (54)
,\’I

with the coupling amplitudes Ap

Afﬁo = U+V[-n+2v(ex+ep)— %'r](el,,ek,/ + Eér )] +
2W (e +epr) + %VI (exer’ + Ex€nr) (55)
and 3 0
Ape=08=1 - Z(QVI +nV ) (orok + 51O ), (56)
S,=+1,8=1 1 1 e
)‘I\:/::’ : — Z(VV[ 5 EZ"I’]V)(O';\,O‘],;/ —+ (71\,0';‘,/). (57)
In these formulas
e = 2(cosky + cosky), €= 2(cosky —cosky),
or = 2(sink, +sink,), 6 = 2(sink, —sink,), (58)

and v(p),n(p) are functions of the chemical potential () determined through the iden-

tities 1 ;
_ " S . EC
v = N Ek g, B = N E,\_ NLEL- (59)

where ny = 1/(exp(tey, — p)/T 4+ 1) is the Fermi distribution at A = 0. Notice that
terms labeled with ” ~ 7 differ in their symmetry with respect to transformation &, < k&,
from those without ” ~ 7.

Functions v(p) and n(p) can be calculated easily. For practical purpose, it is
appropriate to specify v and consider p and 7 as functions of the filling factor v. The
dependences p(v) and n(v) for a 2d square lattice with nearest neighbor hopping are
presented in Figure 10.
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Figure 10. Functions p(v) and 7(r) in a two-dimensional square lattice with the nearest-

neighbor hopping. Exact value of 5 at v = 0.5 is 8/7>

After the introduction of the pairing amplitudes (53) and (54), the mean-field
Hamiltonians corresponding to Eq. (47) becomes

H:=0 — /,Z 5,,.,(.1,}‘;(.1%,(, - Z A‘:FU(J.;'] (L"f,\,1 + h.c (60)
ko k

for both S = 0 and S = 1 states (both having S, = 0) differing only in the orbital
symmetry of Ay (A =A 3 for S=0and A = -A_j for S=1,5, =0), and

y —_4— <+ ': i i )
HS=*' = Y eaf ane + 3 AF ot by, + he (61)
ko k

for the triplet states S, = 20 = £1 corresponding to an odd symmetry Ay = —A
Order parameter A vanishes at the critical temperature 7,.. The actual transition will
I (
take place to one of the states (60)-(61) depending on the value and the sign of Ay,1,, which
: . . kk’
provides for the maximal value of T,.. Below, we consider superconducting transitions to
the singlet state (Sect.6), and to triplet states (Sect.7) separately.

7. Singlet Superconducting State

By standard procedure, Hamiltonian (60) results in the gap equation for Af{_” =

"2k tanh(Ey /2T)
A . — /\ s ./A o - ’ ()2
k / [ 2E, (62)

E, = (& + A2, & = te —p, (63)

Ay

with
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where g is the chemical potential and

Aekr = Ao + Ailep +€w) + Ao(enen + Exérr) (64)

where ;
1
Yo = =U+qV, A= =2W+vV), X = (V= V). (65)

It follows from Eq.(48) that Ay takes form

§

Ay = Agex * AZ + Adéy, (66)

where Al A2 and A, are constants. The first two terms correspond to the dependence
which does not change with the rotation by 7/2 in the momentum space, whereas the
last term changes its sign under such rotation. Therefore, A? and A, correspond to
pairing into the s- and d-states, respectively.

After substitution of (66) into (62) we obtain a system of coupled equations for

Al, A2 and Ay

)5()\1 + /\)E},)(A Ek + A“ +Ach)Tk

A.l— == f (2
Af == f (Ziﬂls )\()’i'/\lgl\:)(A,J,-Elf. +Af +Adék)r[i(
Aa = [EE (AL, + A2 + Agd)T, (67)

with Ty = tanh(FEy/2T)/2E),.

In the weak coupling limit A — 0 to which Eqs.(67) apply, the characteristic energy
of a quasiparticle & = te). — p is small compared with the Fermi energy p because the
integrands of Eqs.(67) have singularity at the Fermi energy at A — 0. Therefore in the
leading approximation &} should be put equal to 0 and e to g, which means that the
order parameter is energy independent. Moreover, in the limit A — 0 the third of the
equations (67) decouples from the first two, because the leading (logarithmic) part of the
corresponding integral is isotropic and < &, >= 0, where < ... > denotes averaging
over the Fermi surface.

Therefore, we shall have either isotropic and energy independent s-wave state found

from the gap equation

" d%k
1 = A, =T 68
| o -
where
Ae = Ao+ Apft+ hou?/t2, (69)
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or an anisotropic d-wave state with the order parameter satisfying the equation

1 = )\d/—Ciu—k—T]L{(cosk',,;—(:osk'y)2

o (70)

with Ag = 4X;. The latter state is gapless because the order parameter Aj = Agé)  has
nodes at the Fermi surface at k, = %k, .

Depending on the magnitude and on the sign of the coupling parameters V and
W, we shall obtain either isotropic or anisotropic superconducting phase. At zero tem-
perature, the corresponding order parameters will be

A(0) = eo(is) exp(—1/As ()N (1)) (71)

and
Aa(0) = eop) exp(—1/Xa(p)C ()N (1)), (72)
where the cutoff energy ¢y equals
go(p) = 8/t2 — p2/16, —4t < p < 4t. (73)

N(p) is the density of states in a 2d network (Fig.11). Function ((u) is shown
in Fig.12. As N(p) has van-Hove singularity at p = 0, A(0) and critical temperature
T, are expected to have maxima near the half-filling v = 1/2. But since singularity is
only logarithmic, any factor we neglected here like e.g. three-dimensional interaction will
reduce and possibly eliminate this effect.

Notice that, apart from the Hubbard energies giving negative contributions to Ay,
Ad, the “contractive” parts of both A’s expected from the “normal” contraction (9) are
also negative. The question of the existence of such phases will be discussed after the
next section in which we consider the triplet superconducting state.

0_4 4.0 |
L 3.0 '
g
N (E)
02 20k
e
0.1 ~
Y 1.0 |-

0.0 1 1 =%, (1 ! | | 1

4.0 30 20 -1.0 0.0 1.0 2.0 3.0 4.0 00l 1

E 0.0 0.5 v 1.0

Figure 11. Density of states in a 2d square
lattice with the nearest-neighbor hopping

Figure 12.
¢(1/2) =4

Function ((v). Exact value
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8. Triplet Superconducting State

Both triplet phases (S, = 0 and | S, |= 1) have the same k-dependence of the
order parameter Ay and the identical “gap equations” following from the Hamiltonians
(60),(61)
tanh(Fy: /2T")

2B, W T4

d’k' o
Ay = A]}/W(UA:UA:’+UL:Uk:’)

where F) = \/ (tey, — p)* + Af{ and differ only in the value of the coupling parameter
Ap:

Lo , |
g = —Z(T}V+§V1), B, =1, '
1.1

At small intra-site, opposite-spin and equal-spin, Coulomb repulsion terms Vi, W, cou-
pling strength for a S, = 0 phase proves to be twice larger than that for the S, = +1
phases, which means that the former state is expected to be the leading one. The sign of
the product nV is always negative at the “normal” contraction (9) because 7 is a positive
quantity at any filling. The transition to the spin-triplet, zero-net-spin superconducting
state, which we shall discuss below in some detail, is favored if the the magnitude of
2 | nV | is larger than the intra-site hole repulsion V.
Momentum dependence of the order parameter which follows from Eq.(74) is

AR(T) = (Ba(T)or/4+ Ao(T)/4, (76)
where Ay, Ay satisfy

(1 s )\pTll)Al = )‘p]ﬁl'zA‘Z =0,

—/\7,T12A1 + (1 = )\pT_gg)Az =0 (77)
with )
i ~ ; |
Ti12212 = / W(ai,aﬁ,(fkak) tanh(Ey/2T")/2E},. (78)

It follows from (77) that, apart from the global phase factor e!* (which we ignore),
both A; and Ay are real. This then means that Ak has two nodes at the Fermi surface.
From arguments similar to those of the previous section, we conclude that in the weak
coupling limit A, — 0, equations (77) will be decoupled. The singular part of 75 vanishes
because of the identity < o0y >= 0. From (77) we have

éL ApTi and A ApTi2 (79)

Az~ 1-XT1i(A1,Az) A;  1-pTha(Ar,A)’
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which means that at A\, — 0 either A;/A; =0 at Ay # 0, or Ay/A; =0 at Ay # 0.
The two solutions '

A = Ad(T)o/4, A = Da(T)51/4 (80)
are degenerate (and, in particular, they correspond to equal 7.’s) and have nodes at
ky = =k, (at sign “4") or at k, =k, (at sign “—"). This is the additional symmetry

breaking supplementing the appearance of the conventional (“Josephson™) phase ¢. Later
we shall restrict ourselves to the monodomain phase “+7:

with A(T') satisfying
A2k 0}:’_ tanh(_\/gi + AQO’}T)_/A:/QT) |
1 == /\ s 2 2 5 _9 ' . (82)

Putting A = 0 we obtain an equation for the critical temperature

d’k of tanh(&/2T)
(,27r)2 2€I\: '

1= X (83)

The integral over the momentum space in Egs.(82) and (83) can be reduced to

) dl f
/d“k = /df;,;/-—, A ZOEA;/()k, (_84)
(2N

where [ is the length along the constant-energy line, Fig.13. By the introduction of the
new variables

kp=2z+yYy, ky=2z-y, (85)
the second integral in Eq.(70) reduces to

dl dx gz ' dx (86)
A e [0y J cosxsiny \/sing xo — sin” x , '

where z( is the maximal size of the Fermi surface in the momentum space

xg = arccos(u/4). (87)

With the new variables, angular dependence of the order parameter is represented as
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i

¥

Figure 13. Fermi surface geometry in a two dimensional lattice. Differential elements of the
constant-energy line are dk; = dhsin(yp + 0), dl = ds/sin(p + 0), ds = rdep. 0 is the angle
between the normal to the constant-energy line and the radius-vector

A = Asinzcosy (88)
and the equation of the “Fermi surface” becomes
COST COSY = COS . (89)

It follows from (67) that Ay has two nodes at the Fermi surface (Fig.18) and therefore the
superconducting state is gapless. However, the density of states N(¢) has a pronounced
singularity at an energy € = A (Fig.15).

The dependence N(¢) follows from the equations Eqs.(72),(76):

N (e) / = dx ¢ ) /:z:n dx (90)
- o: D « 92 [ . o D o
N(O) zy \/SIN"xp—sSIn" T \/62 — A2 tan? x cos? o 0 ‘\/5111“) Tog —SIN"
which, after some manipulations, reduces to
f_‘]. l\,(tl/'l,())
N(E) _ to I(I((f(fyf) ), € < A (91)
0/ 11
N(O K(ty) ¢>A

where ty = sinzg, t; = €/ V2 + A2 cot? zy, and K (k) is the full elliptic integral of the

first kind.
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Figure 14. Angular dependence of A in a triplet p- state for v = 0.25. Inset shows nodes of
A at the Fermi surface

Density-of-states singularity at ¢ = A is logarithmic:

2 sin a2
N(F) - In 2(()53 zole—A|

N(O) 2K (ty)

le — A | A, (92)

whereas N(e) behaves linearly with energy in the gapless region:

N(e) (0 € ,
N©O) = KRGy A ¢ €A (93)

At finite temperature, elimination of A from Eq.(82) at the expense of Eq.(83) results in
the identity

tan? xdz 1
[ o[ 0T FrETE T -
\/Sln To — sin? ¢ B an® ¢/ an? o

/ b L }=0 (94)
coo 2m €2 +w? 4+ A2tan®z/tan’zo” '
in which w = (2n + 1)aT,n = 0,+1,... are the familiar discrete frequencies of the

thermodynamic perturbation theory. [These appear in (94) through the identity

1
55 anh — = Z 7 +w2 (95)

650



KULIK

familiar from the Matsubara Green function technique [15]. |
To find the temperature dependence of A, it is possible to further simplify Eq.(94):

= . (96)

In— =
A
. . ), .
W/ZF A COS T( Sin sin? pdyp 52 sin? pdyp
(27TT P = 2 1 — sin2 zn sin? 3/2/ 1 in? o sin? )3/2’
Jo \/1 — sin® g sin? ¢ " (1 — sin® zg sin” @) o (1 —sin®zsin® )

where F'(z) is a function

(97)

Fle) = lféo{ln—_z\/nﬂ/z +:cz}

By using the Poisson summation formula (e.g., [17]), F(z) can be reduced to an integral

F(z) = 2/000 , dt - (98)

627r:1, cosht . 1

Function F(z) logarithmically increases as  — 0 and vanishes exponentially as 2 — oo

In &, x—0
F(z) ~ { \}:’;_gm v 00 (99)

where a = exp(—1 - C +In2) = 0.2807 (C is an Euler’s constant C' = 0.577).

2.0
1.0 —
5~ 1 e \Q: 2
> S
= L 3
@ 10} — 2 ol
. 0.5
0.0 '
0.0 : : | |
00 10 20 30 40 50 0.0 0.5 1.0
I3 T/Te

Figure 16. Angular dependence of A in a
triplet p- state for v = 0.25. Inset shows
nodes of A at the Fermi surface

Figure 15. Density of states in the triplet

state for concentration v = 0.25

The temperature dependence of A following from Eq.(96) is shown in Figure 16.
[t is very similar to A(7') in the BCS theory [16]; however, unlike the BCS theory, the
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ratio A(0)/T, is not a universal constant but depends upon hole concentration. The

dependence found by the numerical solution of Eqs.(82) and (83) is presented in Figure
1%

2.5
.
"

s 22F N,
[ o
5 -
a

20 -

1.8 :

0.0 0.5 1.0

\Y

Figure 17. A(0)/T. vs filling in a triplet state

9. Discussion

The analysis presented in this paper shows that the problem of superconductivity in
the anion network of metal-oxide compounds can be formulated along the lines of the BCS
theory, i.e., pairing mechanism in a Fermi liquid due to a Cooper instability at the total
two-particle momentum kq + ko — 0, but requires specific consideration concerning the
source of the interaction resulting in pairing. We have shown that strong interaction of
“orbital contraction” type is expected if intrinsic holes rather than electrons are the mobile
species responsible for a metallic conduction. Two possibilities for the superconductive
pairing are then envisaged, the first one being due to “additive” contraction of two nearest
anion sites, while the second one due to “multiplicative” contraction in which hopping
amplitude between the nearest neighbor sites depends nonlinearly upon site occupations.
The first possibility results in the singlet pairing of two holes at the same anion site and
therefore it should compete with the repulsive Hubbard interaction at this site. As the
latter is never smaller than U ~ 10 — 30eV and the contraction interaction, unlike in the
electron-phonon case, scales not with U but with the hopping amplitude ¢ ~ 0.5 — 2¢V
(and therefore is smaller than U), it is not expected that the experimental situation may
favor the singlet state.

The second possibility is the pairing of holes at different anion sites in a spin-triplet,
orbital-odd symmetry configuration (a “p-state”). Such pairing should only compete with
the intra-site Coulomb repulsion which, due to screening, is expected to be much smaller
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than the inter-site (Hubbard) Coulomb repulsion. Reasonable estimate for the latter can
be 1leV, i.e., the same order of magnitude as the hopping energy £. In this case, the
superconductivity due to orbital contraction will inevitably show up because the sign of
the multiplicative contraction is favorable for hole pairing.

A specific feature of the p-state is that it is gapless, but the density of states near
the Fermi energy preserves a singularity similar to the one in the BCS theory of super-
conductivity. As a result, tunneling between oxide superconductors will have a feature
reminiscent of conventional superconductors and also that of the gapless superconductors
[18,19]. It is interesting to note that measurements of the tunneling energy gap in the
Y BayCuzOr_, crystals as early as 1987 have given the value of 2A /7). ~ 4.8 [20] similar
to what is expected for a p state according to ig.17, and dI/dV versus V curve similar
to one which can be derived on the basis of our N(e¢) dependence (91) (Fig.15).

Many experimental observations for high- 7. superconductors are not in accord with
the s-wave pairing theory (NMR spin-lattice relaxation [21], low-temperature penetration
depth M(T") dependence [22], etc.) but conform with the models introducing gap nodes
at the Fermi surface (e.g.[23]).

Unlike the d-wave state proposed for high-T. superconductivity based on antifer-
romagnetic coupling [23] and having 4 nodes with a 7/2 in-plane rotational symmetry,
our p-state has 2 nodes, which is 7-periodic in rotation. This corroborates with the
observation of such periodicity in the transverse magnetic susceptibility of the perfect
LuBayCuzOr crystals found recently by Buan et al.[24], and does not contradict (similar
to the d-pairing model) with the angular dependence of A in the orientation-sensitive
Josephson tunneling experiments [25].
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