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A b st ract 

Anion network in the C 7./,02 plane of m tal-oxid compound is consid red as 
an intrinsic-hole m 'tal with hol ·s rath r than ' le trans ·omprisiu )' a Penni liq­
uid immersed in t h background of n gative 0 2

- ions. Due to th ontrac­
tion of p-orbital of oxygen as a result of occupation by a hole, hole hopping be­
twe n n ~arest neighbor sites ( i, j) is d ,p nd ent npo.n hol ' o · upation as ti.i ,a- = 
t;0 Vn,;, - 17 ni ,- u + H! (ni, - u ni, - u) . 'ouplill g pararneters vV and V (ad litiv 
and multiplicative "contraction interaction" tenm>) result in t he binding of holes into 
singl t, on-sit confi guration, r into tripl t, n ar st-n ighb or-sitc onfiguration, du 
to vV and V respect iv >]y. In th w 'ak coupling limit , HI results in th I3 typ 
of supercondu tive pairing (singlet, s-wave), wh r 'as mul t ipli ativ contra t ion V 
provid es for either singlet, d -w<w or tri] l t, p -ww '- lih pairing stat s . Tt is 'on­
eluded t hat the latter stat m· y r sult in a plausibl' m chanism for high-Tr: sup 'r­
conductivity in metal oxid' ompounds . The supcrcond11 cting p -phas -' i.· sh wn to 
be in accord with recently published ymmetry t sts of th ord er paramet er in oxid s . 

1. Intro duction 

Sine th discovery of high-temp rature sup rcon lu bvity in La2_xBa1; u04 (1] 
and Y B a 2 0u3 0 t>+x[2], great efforts hav" b en devoted to the experimental 'tudy of 
physi al prop rti -'S of high-Tc super onductors and t h ir "xt "nsion to n -w materials as 
W"ll as to t he t lPoretica,l i11v sUg · :~.tion of th '-' ha i physi ·al n P h· nisms of a n w Sll ­

perconducting stat . on erning the latter , several racli al ·hanges in Lh stH.t '-of-· :~.rt 

of ·oud nsed matt r theory ll av b - "11 ·:ttt mpted. Nou-f 'rmi-liquid s ua.rio of ·ondu ·­
tivity hav ' b -'11 suggest d and nontraditional quasiparti le statisti · · hara t "risti · of 
two-dim nsion·:tl syst ms have be n propos d; mom 'ntum pairing as w ll a· local pair­
ing mechanisms of 1 osonizaLion have b - n inves tigat 'd; uon- 1 ctron-plwnon as w·"n as 
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electron-phonon mechanisms of attraction between electrons has been discussed; strongly 
correlated electron models have been considered. 

Experimental study of new superconductors does not give a clue to theory as it 
does not reveal the novel features of high- 'l"'c superconducting state. All effects known for 
low- Tc superconductors (1\!Ieissner effect, the Abrikosov mixed state, flux quantization, 
Josephson effect, etc.) also exist in th oxide superconductors. The anomalous (almost 
vanishing) isotope effect in most-high-Tc materials (3] suggests tha t electron-phonon 
interaction may be not a unique mechanism of superconducting pairing. 

Investigation of an issue as to which components of an intermetallic compound, 
e.g ., Y BaCuO (the rare-earth elements ? copper ions ? oxygens ?) are mos t rel­
evant to superconducting properties, indicates that oxygen is probably a key element 
since according to high-energy X -ray and electron scattering data (4,5], a Fermi-liquid 
unambiguously related to oxygen-derived electronic states develops in the same range of 
a dopant (barium, oxygen, etc.) concentration at which the metallic conductivity and 
superconductivity sets in. 

The fact that oxygen has an almost filled p-shell configuration suggests that holes 
in a p6 shell may play a similar role for the conduction in the oxides as do electrons 
originating from the almost empty atomic shells, in conventional metals. In the present 
paper, we shall follow this line of thought and will try to show that this "chemical" as­
pect of high- Tc materials may result in a new type of band conduction and quasiparticle 
interaction which seemingly show the possibility for high-Tc superconductivity. 

Section 2 describes the idea of the intrinsic-hole metal, as opposed to the conven­
tional "intrinsic-electron" metals and introduces a new type of hole interaction termed 
the "contraction interaction" [6 ,7] . Sections 3 and 4 show, in methodical manner, the 
physical origin of the contraction interaction effect on quasiparticle pairing. Sections 5 
through 7 analyze a weak-coupling regime of contraction interaction. It is suggested that 
the triplet, odd orbital-symmetry (p-wave) gapless state is the most probable scenario 
for superconducting behavior in the new high-Tc materials. This state is shown to be in 
accord with recent symmetry tests of the ord r parameter in oxides. 

2. The Intrinsic-Hole Metal 

In th investigation of unusual electronic properties of metal-oxide compounds, it 
was proposed [6,7] that the new features in the electronic band conduction should 1 e 
included . The first possibility is that intrinsic-hole rather than intrinsic-elec t. rou carriers 
may be dominant charge carriers . The second is that, assuming "intrinsic-holes" are at 
work, the one-particle picture of the electronic transport is not fully adequate, because the 
hopping of holes in itself is nonconstant and is strongly dependent upon sit"' occupation. 

In conventional metals like N a, the Fermi surface is formed by electrons removed 
from metallic atoms leaving behind the closed-shell cation network ( N a+ ) . For the atoms 
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with almost filled a tom ic shells ( 0 b tween those), a ni on con.figunl.LiOl t 0 2 1s 'XP 'cL 'cl 
t.o es t.abhsh with holes, rather than clcct.r ns , conclcm;i ng t.o a hm ni liqn icl in Lh ' spac' 
betwe ' ll anicms. [Notice that this has nothing to do with the el' ·tron-lik' or hole-like 
carriers as evide11 ced hy the Hall effect. Th' cl i1fercnc' b etwe ' ll ' intrinsic-electron" ancl 
"inL ri11sic-hol " Lyp -' metals is Hlustra t ' d in Figure l]. 

CD G 0 G 0 0 8 8 0 
+ + + I· + 

CD 0 CD CD 0 8 8 G 8 8 
I· + + ·I 

(a) (b) 

F igure 1. Cation network with the intrinsic le trons condensin g to a I· rmi li cpt id (a) and 

th anion network with intrinsic holes as a Fermi liqui I o f positiv charge (1 ). Noti e that this 

does not con ern wit h the sign of th Hall o ffi i 11t which in principl ca.n b ' both positiv a.n 'I 
n gative in 'ith "r case 

N nnally, for oxygen at.ou1s Lhi s do s not bapp n h cause two oxy ·ens have a 
stro11g t nd ncy Lo cov·:tl nt b ondin g resultin g in the form a L ion of oxyg n mol" ul , 0 2 . 

How ver, in a prop er hemical surrounding this m a.r not take pla ·c if th '-' n 'ar 'St n ighbor 
a toms ar " not too close to each oth r. Th n the oLh 'r s · ' nario will apply, rclllillis cut 
of rn tallic oxyg ' H. We may sup] os' that. this is just what happens in th' m "tal-oxid' 
superconductors. In th' 'uO;. plane of the laLL ..:~r , chi -' Lo lcugc iolli c rad ius of opp 'r 
oxygen or h i ta.ls ar overlapping a mm1 gst. Lhems lvcs almos as strongly as Lh -' n a.r-si t 
oxyg n aud copper orl it':ds ( · •ig .2 in which oxyge11 '1JH.l ·op} 'r radii ar' shown ap­
proximately in scale). Then, th" 0 2 mol cul 'S a.re not formed, a.nc.l Lh ' hol 'S d -'riv ' d fro m 
the p6 shells are to be t he itinerant carriers. D 1 to ovcrla.pping of hol wave function: 
a t diifereut ions, hole can propagate from the oxygen anion to the u aresL on ' . 

Int rinsi hol s are not totally equivalent Lo the intrinsic 'l 'drons in Lh " se us Lhat 
LlPy can not b " fully r"'mov d from the par ' nt atom. But the -'xt 'm al atoms, like those 
in th' ligand plane of copp 'r-oxyg n ·hains can provide a prop ' r surromHlin · in wbi ·h 
Lhe hol may r 'sid ha.rg tra.nsf 'r h etwe ' H hol -s ·lt anions Ai, Aj in Lh' 'H0 2 pla.uc, 

(Ai + hol ), A · J (A,;+ hole), ( l) 

will be h a.r a ·t ri~ed by the oc 'llpation-d p u 1 nt hopping amplituc.l ' L1j 'Xpon 'nLially 
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dcp 1clen t upon dist· 11 · b tw ' n th j ns ( a is the ff ctivo an ion radius) 

{2) 

If another hole (a hole with the anti parallel spin) is localized at the same anion, the anion 
radius will shrink as shown schematically by dotted line in Fig.2, thus changing the value 
of t ij . From the known data concerning oxygen and oxygen ion radii (9], 

o: a = o.7.A, o 2
- : a = 1.36.A (3) 

we conclude that this effect may be quite strong, i.e. the,. "contraction interaction" (7] 
representing the change in the hopping amplitude upon hole localization is expected to 
be important . This interaction can be labeled in terms of neither repulsion nor attraction 
but as will be shown in the next section, it results in binding of two holes in a pair thus 
showing a way to superconductivity (6,8]. 

•0 •0 •0 • 
0000 
•0 •0 •0 • 
0000000 • • • • 

e 
0 

~ ... ' . 

' : 

Cu2+ 

o2-

o-

Figure 2. Atomic configuration in the Cu02 plane of Y BCO and similar met al-oxide 
compounds . Full line, 0 2

- configuration; dotted line, o- configuration corresponding to a 
hole nesting at the oxyg n site. Cont raction of the ion orbital due t o extra. positive charge of th " 
ion cor changes t h hole h pping amplitud' b ·tween t.h i · anion and the nearest neighbor anion 

It was proposed that hopping amplitude is dependent upon site occupation accord­
ing to [10) 

tij,u = to(l - n i, - u )(1 - nj, - u) + t1 [(1 - ni, - u )nj ,- u + ni, - u(1 - nj,- u )] + 

where niu 
(annihilati n) 

In case 
transitions: 
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t2n i, - unj ,- u, ( 4) 

at aiu is particle number operator, and aia ( aiu ) is crea.tion 
perator of hole with spin projection a- at site i . 

of oxygen anions, quantities to, t 1 , and t 2 are the amplitudes of the 
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We expect that, due to the R-dependence of tij of the type represented by Eq.(2), 
1;1 will be smaller than to, and t2 smaller than t1 and can be estimated as 

(6) 

where S is the ratio of the distance between the maximum of the lattice potential 
(presumably,. at the Cu2+ location) and the anion position. 

Occupation dependence of the hopping can also be represented in another form, 

(7) 

where, from ( 4), 

(8) 

If we accept the estimate for the hopping amplitude (6), the contraction parameters 
V and vV will become 

(9) 

From this formula we conclude that the sign of V is expected to be opposite to the sign 
of the unperturbed hopping amplitude t, whereas W should have the same sign as that 
of t . This will have an important implication for the appearance of superconductivity in 
the corresponding regimes. 

Including both type of contraction interaction, and also the Hubbard in-site repul­
sion, Hamiltonian of the system becomes 

with 

H = -t L ata.aja + Hu + Hv + Hw 
<ij >,a 

Iiv = V L ata.ajani, - anj, - a, 
<ij >,a 

Hw = W L ata.aja(ni, - a + nj,-a.). 
<ij>,a 

(10) 

(11) 

(12) 

(13) 

The effect of a coupling term W in (10) has been considered in much detail in the 
paper of Hirsch and Marsiglio [13], as well as in the author's papers [6,7,10]. Below, we 
consider the effect of both types of contraction pairing. In the weak coupling regime, the 
sign of W derived from (9) is unfavorable for superconductivity whereas the sign of V 
is. Moreover, pairing due to V is not subject to a suppression by the intersite Coulomb 
repulsion. 
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Models with different signs of t are in fact equivalent [11]. Change of the sign 
of t can be compensated by the momentum transformation kx - } kx: + 1r, ky ~ 
ky + 1r corresponding to the shift of the elementary cell, and therefore of the Fermi 
surface, in the reciprocal lattice by a vector ( 1r, 1r). If not stated otherwise, later we 
shall consider t in (7) as positive. Then, according to previous consideration, coupling 
parameter V is most likely expected to be negative whereas W a positive quantity. 

3. Binding of Holes into Pairs via Contraction Mechanism (Singlet State) 

To clarify the contraction mechanism of superconductivity, we consider in this 
section a simple problem of two holes in an empty one-dimensional host lattice interacting 
with one another via the occupation dependent hopping (13) and show that they bind 
into a singlet pair similar to a Cooper pair, at appropriate sign of the interaction term 
W . In the following section, we address the same problem of hole binding to a triplet 
state due to the contraction energy V . The reader who is already familiar with the 
pairing property of the interaction (7) may continue directly from Sect.5 which deals with 
superconductivity in a dense 2d Fermi liquid of holes. 

The 1d version of interacting holes in an anion network is represented by the Hamil­
tonian including the contraction interaction (7) and the Hubbard term U accounting for 
the Coulomb interaction between holes at the same site 

N N 

H -t L at.ai+l,a + h.c. + U L nilni l + 
i=l,a 

N 

L at.ai+l ,a[Vni, - ani+l, - a + W(n1.,- a + ni+l, - a )] + h.c. (14) 
i=l,a 

Two holes in the noninteracting lattice ( U = V = W = 0) have an energy 

€k = 2 COS k, (15) 

where k; = 'tJ n ( n is an integer) is the momentum of a finite-size, cyclic-boundary­
condition anion chain of length N. Consider solution to the Schrodinger equation H'I! = 
E'I! in the form 

(16) 

where X1, x2 are integers. Changing from the coordinate representation f ( x 1 , x 2 ) to the 
Fourier representation fk 1 k 2 according to 
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we obtain an equabon for the wave function amplitude /h:,k.: '!. 

-[/; ( c- h~, + C h~·J + E]h~lk'2 + ~ L .h, - k,k'2+ A: + 

'" ' vv 
N L fk, - h: ): 2 +dc- h~ 1 + E k.:'!. + E k.~ 1 - h: + E k 2 +k:) = 0. 

h: 

By introducing the functions 

where Q = kL + k2 is a total momentum of a. pair, we obtain a solution 

[U + vV(c- h~ 1 + Ek 2 )]Fo + ltV FJ 
t(ck 1 + c X: 2 ) + E 

which, after substitution back to Eq.(18), results in the equation for E 

Ut2 + W(W- 2t)E 
S(E), 

where S(E) is the function 

S(E) 
1 1 

N ~ E + t(cx: + EQ - h:) · 

(18) 

(19) 

(20) 

(21) 

(22) 

The function S(E) is shown in Figure 3. By intersecting S(E) with the left hand side 
of Eq.(21) we obtain the eigenvalues E related to the energies of the propagating states 
(11), and an addibonal energy below the edge of noninteracting holes E < - 4 I t I 
corresponding to the bound state of holes . 
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Figure 3. Function S(E) for N = 4, Q = 0 (full line). Dotted lines - left-hand-side of Eq.(21) 
for W = 0 , U < 0 (a), and for U = 0, W < 0 (b). Squares indir::ate bound states 

In case of zero contraction and large negative Hubbard's U, the bound state energy 
l S 

u < o, I u 1>>1 t I (23) 

which corresponds to the binding energy - I U I and an effective mass of a pair 

m * = 1 u 1 / 4t2 (24) 

much greater than the single particle effective mass m = 1/(2 I t \) (in the units 
n = a = 1 , wh re t~ is Planck constant and a is the intersite spacing). 

In case of zero U and large W , Eq. ( 21) gives the energy of the bound hole-hole 
state 

Eb = - I w I (25) 
2(1 +cos Q) . 

corresponding to the value of the binding energy at Q = 0 Eb = - I W I / 4, and an 
effective mass 

8 
.l'vf* = -- (26) 

\WI 
which is negative and much smaller in the magnitude than the free hole mass. Therefore 
we obtain in this limit highly mobile bosons coupled to an energy - I W I /4. 

At small I W I, the symmetry between the positive and negative values of th '"' 
contraction energy W is removed and pairing is produced in a restricted range of couplings 
W. The phase diagram in the (U, W) plane showing the effect of pairing is presented 
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in Fig.4. We consider here both cases of positive and negative /; to show that the sign 
of W corresponding to pairing correlates with the sign of t; in a manner opposite to the 
one expected for "normal" contra.ction, Eq.(9) (decrease of hopping amplitude with more 
localized holes, i.e. with extra positive charge on the anion). 

w w 

u 
4 
~ u 

(a) 

Figure 4. Phase diagram of hole binding into a singlet pair. Hatched region corresponds 
t binding, empty one to no binding. U is the Hubbard energy, Hf the contraction energy. 

(a) t = 1; (b) t = - 1 

However, it should be mentioned that this does not n cessarily exclude the pos­
sibility of superconductivity due to contraction mechanism in the copper-oxide system, 
since, owing to the anisotropic nature of p-orbitals and to the possibility of reorientation 
of those from the direction Cu - 0 to the direction 0 - 0 at increasing filling, the 
"renormalized" W value can be of any sign and magnitude (in particular, I vV 1>1 t I). 
The issue of the first-principle calculation of vV has been address ,din the Hirsch's paper 
[14]. 

The origin of the pairing property within the contraction model can be explained as 
follows. Occupation dependence of hopping, Eq.(7), can be visualized as band narrowing 
(Fig.5,a) or widening (Fig.5,b), depending on the sign of vV, near the location of spin­
clown hole . If signs of t; and W are opposite to each other, an effective potential barrier 
is formed near the point at which the hole is located, thus repelling the other hole. In the 
opposite case when t; and HI are of the same sign, the potential well will be created near 
the hole attracting another hole. For large I HI I, band inversion occurs (Fig.5,c) acting 
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as a trap for another hole irrespective of the sign of W. This explains the phase diagram 
for the occurence of hole binding shown in Fig.4. 

t "" 
j / t 

/ 1 ~ 
4hl 4h-w 41 t I 41t-w 

i / i "" t -~- -J _ _;_ 

(a) (b) (c) 

Figure 5. Formation of the quantum barrier near a hole for sign(W) = sign(t) (a), quantum 
well at sign(W) = - sign(t) (b), and the band inversion at I W I> 2 It I (c). Dotted line 
shows an energy of the bound state near the hole 

4. Binding of Holes into Triplet State 

Contraction term V proves to be inoperative in case of two holes with opposite 
spins in an empty host lattice as this term does not appear in Eq.(18) following from 
(14) . However we may expect on the basis of Fig.5 that two holes with the same spin 
located at a nearest sites will create an effective potential well , if sign( V) = sign( t), and 
therefore acting as a trap for the third hole having opposite spin. To verify whether this 
is the case we consider an eigenstate 

\lf = L j(x1, x2 I x)a;;da;
2
la;1 I 0 > (27) 

X 1:l:2 x 

of the Hamiltonian with the interaction V alone, 

N N 

i = l ,O" i = l ,O" 

The wavefunction amplitude f( x1 ,x2 I x) is expected to be antisymmetric in x1,:x:2 and 
satisfies the equation 
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where 8 = ± 1 is the nui t vector connect ing nearest neighbor sites . 

Consider soln t ion to .Eq.(29) with a fixed moment11 m Q 

r (T T· J :-~ · ) = F( -~:· _ '1: ,1 .. _ x ) eiQ (:1: , + :c:d-:1:) 
. .· ' I , ··' 2 · ' .. 1 · , · ' 2 · - · (30) 

A ft cr ex pa nJ iug F(:1; 1, ~t 2 ) in a Fo miu series analogous to (17) we shall obtain an 
eq nation l'or the pairing ampli tnde h .:, f..:2 

0, (31) 

wit h Fo = F(O, - 8) = - F( - b, 0) . 

Substitu tion of F h:r k:2 in to Eq.(29) gives an equa tion for F11 

F{j = v L: sh{j ' F{j ' (32) 
b' 

where 
_ 1_ """"' ( e ik1ti _ e i. k'26 )(eih:16' _ e ik '26 ' ) e iQt/ 

Soo' = 2 L...t ·( ) . 
2N "~ 1/;;2 t C /,; J + Q + C f..: '2+ Q + C f.,;l + h:'2 - Q + E 

(33) 

Choosing the total momentum of a bound state Q = 0 , t he eigenvalue equation 
w ill be 

(34) 

5 = _ _ 1_ """"' (sin k1 - sin k2 )
2 

- N 2 L...t 2t( cos k 1 + cos k2 + cos( k L + k2 )) + E · 
/;: l f.,;2 

(35) 

At la rge V , the energy of t he bound state eqnals 

Eh = - J V J, I v 1>>1 t J . (36) 

We will not consider the problem of binding in mor ' detail since it serves only t o 
p rovide some indication as to what may happen in a system composing of ma ny holes. 
T he st rong coupling regime of the Hamiltonian (14) requires the numerical analysis [1 2]. 
T he weak coupling regime will be analysed for a 2d network in the fort hcoming sections . 
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5 . The Cooper Instability 

Contraction interaction::; in the anion network - terms (12), (13) iu the Harniltonian 
- result in the instabili ty of the ground state of a fermi-liquid with respect to pairing of 
electrons in the zero-momentum state ( p , - p ). Spin structure of the pa ired state is 
however more complicated than in a standard BCS theory. 
Consider first the weak coupling limit of an "additive contract ion,, Eq.(1 3). Iu the 
momentum representation, Hamiltonian Hvv reads 

where 
cp = ~ e-;,ps. 

s 

s is a vector between a given site and its nearest neighbor. 

Singular part of the interaction (37) corresponds to krms with PI 
P2 = - p ' : 

(37) 

(38) 

- p and 

(39) 

According to the Green-function fonnulation of the theory of superconductivity 
[15], it is needed to trace the behavior of the vertex part r pp, ( w) in the apper half plane 
of complex frequency w. The vertex part corresponding to Eq.(37) is represented as a 
sum of diagrams shown in Fig.6, a thus giving 

where Gk is a one-electron Gree11 function ( nk is the Fermi distribution at T = 0 ): 

nk 1 - n.k G - + 
k - c - ~k - ·ib c - ~k + i8 

(41) 

Subsequent terms of this series are powers of singular integral 

(42) 

with w = irl and ~k = - tc:k - fJ.. Therefore we shall have at ~p = ~P' = 0 

f(irl) "' 2JJ. ltV 
- 1 - 2fJ. vV In 2~0 . 

(43) 
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co is the cutoff energy of the order of Fermi energy. Pole of ( 43) is a familiar Cooper 
instability. The instability occurs once fJ, W is positive which means that W should be 
n egat·ive at hole concentration cmT 'Sponding to less than half-filling of the electron energy 
band and positive in case of less than half-filling . This is in agreement with the result of 
the binding energy calculation in Sect .3. 

p p 
K,E 

>ex 
-p -p -K,ro-E 

(a) 

p 

-p -p -K,ro-E 

(b) 

Figure 6. 

The multiplicative part of the Hamiltonian function Hv takes form after transfor­
mation to momentum representation 

Hv 

Putting Pl = - kl and P2 = - k2 gives the "singular" part of the Hamiltonian 

, _ v~ + + 
H v - N L.-t "Yp - p' ,-aap a-a- p a-a- p' a-ap'a (45) 

pa-

with 

(46) 

Cooper-type diagrams for the vertex part corresponding to the above Hamiltonian 
are showm in Fig.6 , b. We will receive I'(D) similar to ( 43) with a more complicated 
angular dependence. The singularity of the vertex part is a signature of superconducting 
transition. The calculation of the pairing state below the transition will be presented in 
the next section. 
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6. Weak-Coupling Mean Field Theory of Superconductivity in an Anion 
Network 

Oxygen orbitals in the Cu0 2 plane of oxide compounds have states Pza ( u =l or 
1) directed perpendicular to. the plane and coupled to electrons belonging to atoms outside 
the plane. Concerning two other states of the oxygen, P:ra , Pya , a possible scenario may 
be that they are coupled to copp r atoms within the plane and do not participate i11 band 
conduction (or, in other words, they form a totally filled conduction band) . The remaining 
two orbitals, Pxa,Pya (see Fig.7) will be considered along the lines of intrinsic-hole metal 
approach. 

Figure 7. Anion network in the Cu0 2 plane. Pz orbitals of oxygen arc supposed to be included 

in the chemical bonding with the Cu cations whereas Px , Pv oxygen st a tes participate in the 
band conduction. Px, Pv orbitals are rearranged pointing in the oxygen- oxygen direction to 
maximize the hybridization energy between the n ar oxygen sites 

These states are filled in the 2p6 configuration (a vacuum state 0 2 - ) and become 
progressively occupied by holes when the compound is doped with an acceptor. Such 
an acceptor can be Ba or ST in case of the La1- :c(Ba , ST)xCu04 compound, or oxygen 
itself in the Y Ba2Cv,30 6+x system. In latter case, dopant oxygen is supposed to occupy 
positions outside the Cu02 plane whilst oxygen sites in the plane remain intact. 

The hole system is described by the Hamiltonian 

xba :dia 

u 2.:: n xrnx! + vl 2.:: nxlnx+b,! + wl 2.:: n xa n a;-J-b,a ( 47) 
:J' xb xba 

including multiplicative ( V) and additive ( W) contraction energies as well as the Hub­
bard intra-site ( u) and inter-site ( vl' wl) terms. 
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Feynman diagrams corresponding to the interactions included in Eq. ( 4 7) are shown 
in Fig.8. 
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Figure 8. Feynman diagrams for the electron- electron interaction representing the effect of 
contraction. (a )Additive contraction; (b )multiplicative contraction; (c)- ( d )intra-site and inter­
site Coulomb interactions U, \11 , W1 . Full and dotted lines distinguish between spin up and spin 
clown states 

Four-vertex diagrams correspond to vV and to the Hubbard (Coulomb) interaction, 
whereas six-vertex diagrams refer to the V term. The Cooper effect in the interact­
ing fermion system [15) rnanifests itself as a singularity in the two-particle scatt ring 
amplitude a t zero momentum. Four-ver tex interactions result in th -' singularity of the 
scattering amplitude at sm·:t.ll rnomentmn of the type shown in F ig.9 ,a whereas six-vertex 
interaction is represented by a block of diagrams of Fig.9,b-e. Of the latter, only diagrams 
(b) and (d) are singular as k1 + k2 -+ 0 , becaus in dia.grams (c) and (e) th momentum 
conservation at the vertex does not require that the momenta of the Green functions are 
equal at k = 0. 

T here is one-to-one corresponden e between the diagrams of 1~ igure 9 and the mean 
field Hamiltonian obtained from Eq. ( 4 7) by the Wick-decoupling of the product of the 
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Fermi operators. We need to select only from those with the singular part and can neglect 
products which may be included in the renormalization of the .chemical potential [15]. 

'~If ><=> Jl > -----< "' , ; .. ' "',........ ~- .... .. 
·- -- ---- ----· ,.- ' \ ·- -- ------- -- - (a) 

·x=x· .~ 
' 

: : : ! 
(b) 

' ' 

(c) 

(d) 

(e) 

Figure 9. Cooper diagrams for four-vertex (a) and six-vertex (b)-(c) interactions. Of the latter, 
only diagrams (b) and (d) are singular at k1 + k2 0 

The singular part of the interaction ( 4 7) can be represented as a sum of three terms, 
according to their symmetry with respect to the transformation k --7 - k: 

1{ _ 1'"-rS=O + HS z =O,S = l + HS -:=±1 
i nt - "l.inf; int ·int , (48) 

where superscript "S = 0" corresponds to pa.iring in a singlet state and the remaining 
two terms to pairing in the triplet states with the spin projection equal to 0 and to ±1, 
respectively. These terms are selected according to their symmetry: 

Hi~=::_ o = ~ L {U + 2(Vl - ~ L cqnq)(cos ka; cos k~ + cos ky cos k;1 ) + 
kk' q 

2(cA: +ck')(W+ ~Lnq)+VL cq(l-nq)}akT a=k1 a_k 1 ak l' (49) 
q q 

(50) 
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H S .., =±l- ~"'(?.W V"' , )(,' k. k.' ' · k ·. k') + + int - N D .. 1 + N D cqnq s1n :r: sm :r: + sm 11 sm 11 aka a - ko-a - ko-aku · 
h:k'a q 

The transformation to the momentum sp~ce have been carried according to 
(51) 

At the critical temperature Tc , there will appear the nonzero order parameters corre­
sponding to the above states: 

k' 

or 

with the coupling amplitudes AH' 

and 

In these formulas 

U + V[ - TJ + 21.1( r:: "~ + r:: k') - ~7J(c k ck' + i ki ":' )] + 

2T¥(ch: + ck') + i Vt ( r:: h~c "~ ' + i~,; ik') 

1 1 - -
4(2V1 +77V)(o-ko-k' +o-h~ O""~ '), 

l(l1Vl + ~77V)(o-ko-h: ' + D-h:D-k' ). 

c k = 2 (COS k:1; + COS ky), c k = 2 ( COS kx - COS ky) , 

o-h: = 2(sin k:t + sin k 11 ), D-k = 2(sin k:r:- sin ky) , 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

and v(p,), T?(~t. ) are function s of the chemical potential ( fl·) determined through the iden-
tities 

(59) 

where nk = 1/(exp(tr::k - JJ.)/T + 1) is the Fermi distribution at 6. = 0. Notice that 
terms labeled with " rv " differ in their symmetry v,rith respect to transformation kx +--+ k11 
from those without )) rv )) . 

Functions l.! (JJ.) and 7J(JJ.) can be calculated easily. For practical purpose, it is 
appropria.te to specify v and consider fl· and TJ as functions of the filling factor 1.1. The 
dependences p.(v) and 17(v) for a 2d square lattice with nearest neighbor hopping are 
present d in Figure 10. 
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3.0 1 2.0 

1 1. 0 11 
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- I .0 p 

-2.0 

-3 .0 

-4.0 
0.0 0.2 0.4 0.6 0.8 1.0 

v 

Figure 10. Functions J-L (v) and rJ(I; ) in a two-dimensional scpmre lattice with th e nearest­

neighbor hopping. Exact value of TJ at 11 = 0.5 is 8j1r2 

After the introduction of the pairing ampli t udes (53) and (54), tl1 e mean-field 
Hamiltoniaus correspouc.ling to Eq. (47) becomes 

( 60) 

for both S' = 0 and S' = 1 states (both having S'z = 0) differing only in the orbital 
symmetry of ~k (~k = ~-k for S' = 0 and ~k = -~ -k for 8 = 1, 8 .: = 0) , aml 

(61) 

for the triplet states S'z = 20' = ± 1 corresponding to a11 odd symmetry ~k = -~ - k . 
Order parameter ~ vanishes at the critical temperature Tr; . T he actual transition will 
take place to oue of the stat'S (60)-(61) depending on the value and the sign of ).kk which 
provides for the maximal value of Tc. Below, we consider superconducting t ransitions to 
the singlet state (Sect.6), and to triplet states (Sect .?) separately. 

7. Singlet Superconducting State 

By standard procec.lur ' , Hamiltouia.n ( 60) re~mlts in the gap equatiou for ~k-= O = 

(62) 

with 

(G3) 
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where J.L is the chemical potenti al and 

where 

Ao :::± - U + ·qV, Aj = - 2(1Yf! + vV) , A2 

It follows from Eq.(48) that 6.k takes form 

! 
] . 2 -

6.k = 6.sc h: + 6. .s + 6.ach: , 

(64) 

(65) 

(66) 

·where 6.~, 6. ~ and. 6.r1 are constants . The first two terms correspond to t he dependence 
which does not change with the rotation by 7f / 2 in the momentum space, whereas the 
last term changes its sign under such rotation . Therefore, 6. ~ ·2 and 6.d correspond to 
pairing into the s - and d-states, respectively. 

After sul stitution of (66) into (62) we obtain a system of coupled equat ions for 
6. ,;, 6.; and 6.rt 

(67) 

In the weak coupling limit A -+ 0 to which Eqs .(67) apply, the characterist ic energy 
of a quasiparticle ~k = tck - p, is small compared with the Fermi energy p, because the 
integrands of Eqs .(67) have oingularity at the Fermi energy at 6. -} 0 . Therefore in the 
leading approximation ~k should be put equal to 0 and ck to J.t , which means that the 
order paramet er is energy independent. Moreover, in the limit A -+ 0 the third of the 
equations (67) decouples from the first two, because the leading (logarithmic) part of the 
corresponding integral in isotropic and < ik >= 0 , where < ... > denotes averaging 
over the Fermi surface. 

Therefore, we shall have either isotropic and energy independent s-wave state found 
from the gap equation 

(68) 

where 
(69) 
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or an anisotropic d-wave state with the order parameter satisfying the equabon 

J d
2 k 

1 = Ar1 (
2

1r ) 2 Tk (cos k~: - cos kv )
2 (70) 

with Ad = 4A2. The latter state is gapless because the order pararneter ~k = ~dik has 
nodes at the Fermi surface at kx = ±ky . 

Depending on the 1nagnitude and on the sign of the coupling parameters V and 
W, we shall obtain either isotropic or anisotropic superconducting phase. At ·zero tem­
perature, the corresponding order parameters will be 

~s(O) = co(p,) exp(-1 / A8 (p,)N(p,)) (71) 

and 
~d(O) = co(p,) exp( -1 /Ad(p,) ((p,)N(p,)), (72) 

where the cutoff energy co equals 

c0 (p,) = 8)t2 - p,2 /16, -4t < p, < 4t. (73) 

N(p,) is the density of states in a 2d network (Fig.11). Function ((p,) is shown 
in Fig.l2. As N(p,) has van-Hove singularity at p, = 0, ~(0) and critical temperature 
Tc are expected to have maxima near the half-filling v = 1/2. But since singularity is 
only logarithmic, any factor we neglected here like e.g. three-dimensional interaction will 
reduce and possibly eliminate this effect. 

Notice that, apart frorn the Hubbard energies giving negative contributions to As, 
Ad , the "contractive" parts of both A's expected from the "nonnal" contractjon (9) are 
also negative. The question of the existence of such phases will be discut:Jsed after the 
next section in which we consider the triplet superconducting state . 

0.3 

N (E) 

0.2 

0.1 

0. 0 '-----'----'---'------'-----'---'------L- _J 

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

E 

Figure 11. Density of states in a 2d square 
lattice with the nearest-neighbor hopping 
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8. Triplet Superconducting State 

Both triplet phases ( S z = 0 and I S z I= 1) have the same k-dependence of the 
order pa.rameter 6.~,: and the identical "gap equations" following from the Hamiltonians 
(60) ,(61) 

J d
2 k' _ _ tanh(EJ..:' I2T) 

tlk = Ap (27r )2' ( u~,~ uJ..:' + u~,~ uk') 2Ek' 6.,~ , (74) 

j(tEk - p,) 2 + tlk and differ only in the value of the coupling parameter 

1 1 
Ap = -4 (17V + 2 VI), Sz = 0, 

1 1 
Ap = -4 (277V+W1), Sz = ±l. (75) 

At small intra-site, opposite-spin and equal-spin, Coulomb repulsion terms V1 , W1 , cou­
pling strength for a S z = 0 phase proves to be twice larger than that for the S z = ± 1 
phases , which means that the former state is expected to be the leading one. The sign of 
the product 17V is always negative at the "normal" cont raction (9) because ''7 is a positive 
quantity at any filling. The transition to the spin-triplet , zero-net-spin superconducting 
state, which we shall discuss below in some detail , is favored if the the magnitude of 
2 1 11 v 1 is larger than the intra-::;ite hole repulsion vl . 

with 

Momentum dependence of the order parameter which follows from Eq.(74) is 

(1 - >.pTn)llt - >.P1]26.2 = 0, 

- >.pT12 6.1 + (1 - >.pT22 )6.2 = 0 

J d2 k 2 - 2 - ( I ) I Tn ,22 ,1 2 = (
2

7r) 2 (uk,uk,ukuk)tanh Ek 2T 2Ek. 

(76) 

(77) 

(78) 

It follows from (77) tha t , apart from the global phase factor ei'P (which we ignore), 
both 6.1 and 6.2 are real. This then means that tlk has two nodes at the Fermi surface. 
From arguments similar to those of the previous section, we conclude that in the weak 
coupling limit Ap ~ 0 , equations (77) will be decoupled. The singular part of T12 vanishes 
because of the identity < D"kih >= 0. From (77) we have 

and (79) 
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which means that at )..P - > 0 either 6.J/ 6.2 = 0 a t 6. 2 f. 0, or 6.2/6.1 = 0 a t 6.1 f. 0. 
The two solutions 

(80) 

are degenera te (and, in parti cular , they corresp ond to eq11al Tr: 's) a nd have nodes at 
kx = - ky (at sign"+ " ) or at k~: = ky (at sign " - " ). T hi s is the aJditionaJ sy mmetry 
breaking supplementing the appearance of the co11veutional ("J osephson" ) phase t.p . Later 
we shall restrict ourselves to the monodomain phase "+" : 

(8 L) 

with 6.(T) satisfying 

(82) 

Putting 6. = 0 we obtain an equation for the critical temperature 

(83) 

The integral over the momentum space in Eqs.(82) and (83) can be reduced to 

(84) 

where l is the length along the constant-ener -y liue, Fig.1:3 . By the introductiou of the 
new variables 

kx = X+ y , ky =X - y , (85) 

the second integral in Eq.(70) reduces to 

J dl J dx J dx 
'V j_ = 8c/ By = cos x sin y J dx 

. ? . 2 ) Vsm~ X o - SUl X 

(86) 

where xo is the maximal size of the Fermi surface in the momentum space 

:.co = arccos(J-L/4). (87) 

With the new variables , angular dependence of the order parameter is represented as 

648 



KULIK 

X 

7t 

y 

Figure 13. Fermi surface geometry in a two dimensional lattice. Differential elements of the 

constant-energy Jine are dk j_ = dh sin( <p + B), dl = ds /sin( <p + B), ds = rd<p . B is the angle 
between the normal to the constant-energy line and the radius-vector 

6.. k = 6.. sin x cos y (88) 

and the equation of the "Fermi surface" becomes 

COS X COSy = COS x0 . (89) 

It follows from (67) that b..k has two nodes at the Fermi surface (Fig.l8) and therefore the 
superconducting state is gapless. However, the d nsity of states N( f. ) has a pronounced 
singularity at an energy E = 6.. (Fig.l5) . 

The dependence N(E) follows from the equations Eqs.(72),(76): 

which, after some manipulations, reduces to 

N( ) { h K(t;tfto) 
E _ to K(t:o) ' 

N(O) - K(to/1:1) 
K(to) ' 

E < 6,. 

E > 6,. 

(90) 

(91) 

where t0 = sin :.r0 , t1 = c(V E2 + 6.. 2 cot2 xo, and J((k) is the full elliptic integral of the 
first kind . 
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1.0 r-c;-"---~----.----~------;or-, 

0.5 -

0.0 '-------"-~-~._j 
rc/2 3rc/2 

Figure 14. Angular dependence of ~ in a triplet p - state for 1.1 = 0.25. Inset shows nodes of 

1:::. at the Fermi surface 

Density-of-states singularity at = b. is logarithmic: 

2 . 

N( ) ln 1r s1n t~: 0 
2 cos2 ~vo\ ·- .6. \ 

- - rv 

N(O) - 2K(t;0 ) 
I -- !::l I<< !::l, (92) 

whereas N(E) behaves linearly with energy in the gapless region: 

N(-) n 
- - rv E << /:)., 
N(O) - 2toK(-to) !::l' 

(93) 

At finite temperature, elimination of .\ from Eq.(82) at the expense of Eq.(83) results in 
the identity 

rXJ de l xo 
lo lo 

j ·oo dw 1 
-, - · ... ' ? ') } = 0, 

_ 00 2n e2 + w 2 + !:l2 tan- x/ tan- Xo 
(94) 

in which w = (2n + l)nT, n = 0, ±1, ... an, the fami liar discrete frequencies of the 
thermodynamic perturbation theory. [These appear in (94) through th identity 
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familiar from the Matsubara Green function technique [15). ] 
To find the temperature dependence of .0., it is possible to further simplify Eq.(94): 

ln .0.o = 
.0. . (96) 

r 7r/
2 
F( ~ COS .. To sin ~ ) .si;1

2 <p~<p2 , I r7r /
2 

sin
2 

<pd<p 

.fo 2nT )1 - sm 2 x0 sm2 <p (1 - sm xo sm <p )312 .fo (1 - sin2 x0 sin2 <p )312 ' 

where F( x) is a function 

2N N 1 
F(x ) = lim {ln - - L }. 

N ->oo X n = O j(n + 1/2)2 + x2 
(97) 

By using the Poisson summation formula (e.g., [17]), F(x ) can be reduced to an integral 

F(x ) = 2 1
00 . dt 

Q e27rX COS h t + 1 , (98) 

Function F ( x ) logarithmically increases as x --+ 0 and vanishes exponentially as x --+ oo 

( ) { 
In £ , x --+ 0 

F X rv X 
- _1 e - 27rx x --+ oo Vx ) 

(99) 

where a = exp( - 1 - C +In 2) = 0.2807 ( C is an Euler's constant C = 0.577). 

2.0 

0 
'-' z --g 1.0 
z 

0.0 L..- - --'- - - -'-- ----L---'-----' 

0.0 1.0 2.0 3.0 4.0 5.0 

Figure 15. Density of states in the triplet 
st a te for concentration v = 0.25 

1.0 

,.....__ 
0 
'-' 
<I --<I 0.5 -

0.0 '---- - ------'--------' 
0.0 0.5 1.0 

T;Tc 

Figure 16. Angular dependence of ~ in a 
triplet p - state for T/ = 0.25 . Inset shows 
nodes of ~ at the Fermi surface 

The temperature dependence of .0. following from Eq.(96) is shown in Figure 16. 
It is very similar to .0.(T) in the BCS theory [16); however , unlike the BCS theory, the 
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ratio D..(O)/Tc is not a universal constant but depends upon hole concentration. The 
dependence found by the numerical solution of Eqs.(82) and (83) is presented in Figure 
17. 

2.5,-----------------------------------, 

2.2 

<I 

2.0 

1.8 L,_ ________________ J__ ______________ __J 

0.0 0.5 1.0 
v 

Figure 17. 6.(0)/Tc vs filling in a triplet state 

9. Discussion 

The analysis presented in this paper shows that the prollem of superconductivity in 
the anion network of metal-oxide compounds can be formulated along the lines of the BCS 
theory, i.e., pairing mechanism in a Fermi liquid due to a Cooper instability at the total 
two-particle momentum k1 + k2 --t 0, but requires specific consideration concerning the 
source of the interaction resulting in pairing. We have shown that strong interaction of 
"orbital contraction" type is expected if intrinsic holes rath r than electrons are the mobile 
species responsible for a metallic conduction . Two possibilities for the superconductive 
pairing are then envisageJ, the first one being due to "additive" contraction of two nearest 
anion sites, while the second one clue to "multiplicative" contraction in which hopping 
amplitude between the nearest neighbor sites depends nonlinearly upon site occupations. 
The first possibility results in the singlet pairing of two holes at the same anion site and 
therefore it should compete with the repulsive Hubbard interaction at this site. As the 
latter is never smaller than U "" 10 - 30e V and the contraction interaction, unlike in the 
electron-phonon case, scales not with U but with the hopping amplitude t ""0.5- 2eV 
(and therefore is smaller than U), it is not expected that the experimental situation may 
favor the singlet state . 

The second possibility is the pairing of holes at different anion sites in a spin-triplet, 
orbital-odd symmetry configuration (a "p-state"). Such pairing should only compete with 
the intra-site Coulomb repulsion which, due to screening, is expected to be much smaller 
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than the inter-site (Hubbard) Coulomb repulsion. Reasonable estimate forth latter can 
be le If, i. e ., th ' same:, order of magnitnde at; the hopping energy t . In this ·ase, the 
superconductivity due to orbital contraction will inevitably show np because the ::dgn of 
Lhe multiplicative contraction is favorable for hole pairing. 

A specific fcatnrc of the p-sta.te is that it is ga.pless, but the density of states ncar 
the Ferm i energy preserves a singnlarity similar to the one in the BCS theory of supcr­
conclucLivity. As <-1. result , Lmmding betvv en oxide supercoudncton; \•Vill have a feature 
ceminiscent of convcntim1 c.d snperconductors and a.lso that of the gapless superconductors 
[1. 8,19]. It is interes ting to note that measurements of the tunneling energy gap in the 
Y Ba2 C·u3 07- :1: crystals as ea.rly as 1987 have given the value of 26. / Tc ~ 4.8 [20] similar 
to wln.t is expected for a p state a ·cordi11g to Fig. 17, and dl / dlf versus If curve simih.r 
to one which can be derived ou the basis of onr JV(E) dependence (91) (Fig.15) . 

l\tlany experirn 'ntal oh.;ervations for high- 1~ sup 'rc6ndu ctors are not in accord with 
the s -wave pairing theory (Nl\!IR spin-lattice relaxation [21], low-temperature penetration 
depth A.(T) dependence [22], etc .) but conform v.rith the ruodeh; introducing gap nodes 
at the Fermi surface (e.g.[23]) . 

Unlike the d-wave state proposed for high-Tc superconductivity based on antifer­
romagnetic coupling [23] and having 4 nodes with a. 1r / 2 in-plane rotational symmetry, 
our p-state has 2 nodes, which is 1r -periodic in rotation. This corroborates with the 
observation of such periodicity in the transverse magnetic susceptibility of the perfect 
DuBa2 Cu30 7 crystals found recently by Bua.n et al.[24], and does not contradict (similar 
to th d -pairing model) with the angular dep ndenc " of 6. in the o ·ientation-s nsitive 
Josephson tunneling experiments [25]. 
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