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ABSTRACT 

It is well known that second order lowpass interpolative sigma delta modulators 
(SDMs) may suffer from instability and limit cycle problems when the magnitudes of 
the input signals are at large and at intermediate levels, respectively. In order to solve 
these problems, we propose to replace the second order lowpass interpolative SDMs to 
a specific class of second order bandpass interpolative SDMs with the natural 
frequencies of the loop filters very close to zero. The global stability property of this 
class of second order bandpass interpolative SDMs is characterized and some 
interesting phenomena are discussed. Besides, conditions for the occurrence of limit 
cycle and fractal behaviors are also derived, so that these unwanted behaviors will not 
happen or can be avoided. Moreover, it is found that these bandpass SDMs may exhibit 
irregular and conical-like chaotic patterns on the phase plane. By utilizing these chaotic 
behaviors, these bandpass SDMs can achieve higher signal-to-noise ratio (SNR) and 
tonal suppression than those of the original lowpass SDMs. 
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Index TermsSecond order interpolative sigma delta modulators, fractal behavior, 
limit cycle behavior, chaotic behavior, global stability. 

 
I. INTRODUCTION 

Sigma delta modulation is a kind of source coding techniques [Janssen, 2003]. An 
input signal is first sampled at a much higher rate than the Nyquist rate. The most 
common oversampling ratios are 64, 128 and 256, depending on the applications. Then 
the sampled signal is subtracted from the output of the interpolative sigma delta 
modulator (SDM) and filtered via a loop filter. Finally, the loop filter output is 
quantized to produce the output of the SDM via a very coarse quantizer, such as a single 
bit quantizer. The block diagram of an interpolative SDM is shown in Figure 1 [Janssen, 
2003]. Because of the simple, robust and inexpensive circuit implementation, many 
systems employ interpolative SDMs to perform analog-to-digital (A/D) conversions 
[Janssen, 2003]. 

By modeling the quantizer as a white noise source and properly designing the 
loop filter, the magnitude of the noise transfer function can be very small at the signal 
band. This design method is called the noise shaping technique [Janssen, 2003]. 
However, small magnitude of the noise transfer function at the signal band sometimes 
does not guarantee a good performance of the SDM, in particular, when the state 
vectors of the SDM is suffered from divergence and limit cycle problems. This is 
because the noise shaping technique assumes that the quantization noise is independent 
of the input of the quantizer. Nevertheless, the quantization noise is input dependent. 
Hence, the noise shaping technique cannot explain the occurrence of some nonlinear 
behaviors, such as limit cycle [Hein at al., 1993], fractal [Ashwin, 2003; Davies, 1997; 
Feely, 1997; Petkov, 1997] and chaotic [Hein, 1993; Schreier, 1994] behaviors, as well 
as the divergence of the system states when the linearized closed loop transfer function 
of the SDM is stable [Schreier, 1993; Steiner, 1997]. If a SDM exhibits the divergent 
behavior for some initial conditions, then when electric shocking occurs, the current 
state vectors of the SDM will probably be excited to those states that lead to the 
divergent behavior. In this case, the SDM will be damaged. For some applications, such 
as audio application, the occurrence of the limit cycle behavior may result to annoying 
audio tone [Reefman, 2002]. We can see that both the limit cycle and divergent 
behaviors would cause a degradation of the performance of the SDM, so the occurrence 
of these behaviors should be avoided. It is well known that limit cycle [Hein at al., 1993] 
and divergent behaviors [Schreier, 1993; Steiner, 1997] usually occur especially in high 
order SDMs whereas high order SDMs can produce very small magnitudes of the noise 
transfer functions at the signal bands. Even for second order lowpass SDMs, these 
problems still exist [Wang, 1992; Farrell, 1998] when the input magnitudes are at large 
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or intermediate levels. 
Although some existing control strategies, such as clipping [Reefman, 2002], 

have been proposed to limit the maximum absolute value of the state variables, it may 
result to the occurrence of limit cycles. This situation usually occurs when the input 
signal is very slow time varying and the value of the clipped level is very small. To 
avoid the occurrence of limit cycles, dithering has been proposed [Magrath, 1995]. 
However, dithering would increase the circuit complexity and the implementation cost. 
In this paper, we employ a simple SDM that guarantees both the global stability 
property and the avoidance of the limit cycle behavior. Here, the global stability 
property refers to the property of the SDM that the state variables are bounded for all 
initial conditions in the state space. 

It was discussed in [Ashwin, 2003] that if second order bandpass interpolative 
SDMs exhibit fractal behaviors [Ashwin, 2003], then an invariant set [Ashwin, 2003], 
[Güntürk, 2004; Schreier at al., 1997; Thao, 2002, 2004] exists for these SDMs. It was 
also found by [Ashwin, 2003] that some of these SDMs achieve the global stability. On 
the other hand, it was reported in [Güntürk, 2004; Schreier at al., 1997; Thao, 2002, 
2004] that the existence of an invariant set as well as some other conditions will 
guarantee the global stability property. However, the global stability conditions in 
[Güntürk, 2004; Schreier at al., 1997; Thao, 2002, 2004] are not satisfied for second 
order bandpass interpolative SDMs. This is because the SDM studied in [Güntürk, 
2004; Schreier at al., 1997; Thao, 2002, 2004] are based on feedbackward structures, in 
which these results cannot directly be applied to the second order bandpass 
interpolative SDMs with loop filters having arbitrarily filter coefficients. It was found 
by [Ho, 2006] that some of second order bandpass interpolative SDMs may exhibit the 
divergent behavior if the frequency spectrum of the input of the loop filter contains an 
impulse located at the natural frequency of the loop filter. This implies that the global 
stability of second order bandpass interpolative SDMs is not universally guaranteed 
and the global stability of these SDMs is still opened. One of the objectives of this 
paper is to address this issue. The global stability conditions for these second order 
bandpass interpolative SDMs is analyzed by the root locus approach [Baird, 1994]. 
Moreover, we numerically show that these SDMs may also exhibit irregular and 
conical-like chaotic patterns on the phase plane. For these two behaviors, the global 
stability property of these SDMs has not been investigated yet. 

In this paper, the difference between the fractal and irregular or conical-like 
chaotic behaviors is also investigated. It was reported in [Ashwin, 2003] that if the filter 
parameter of a second order bandpass interpolative SDM is within a certain range, then 
fractal behavior will occur. However, the relationship between the occurrence of the 
fractal behavior and the magnitude of the input signal has not exploited yet. In this 
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paper, we investigate this relationship. The importance of studying this relationship is 
to provide some guidelines for SDM engineers to operate these SDMs, so that the 
occurrence of unwanted behaviors can be avoided and high tonal suppression can be 
obtained. 

The outline of this paper is as follows. Notations are introduced in Section II. In 
Section III, analytical and simulated results are presented. Finally, a conclusion is 
drawn in Section IV. 
 

II. NOTATIONS 
We assume that the loop filter is causal and rational with real valued coefficients 

and a unit delay element multiplied by the numerator of the transfer function. We make 
this assumption because of the feedback loop configuration. Hence, the transfer 
function of the second order loop filter can be denoted as: 

   
  11

11

11
1









azza

bzGzzF , (1) 

where a  and a  are the poles, b  is the zero and G  is related to the DC gain of the loop 
filter. Since the input signal is oversampled, the input is very slow time varying and we 
can approximate it as a DC signal. That is, by denoting  ku  as the input of the second 
order interpolative SDM and u  as the input step size, we have   uku   for 0k . 
This assumption can be validated via testing the performance of the SDM by using a 

sinusoidal input with frequency within the signal band 





R
,0 , in which R  denotes the 

oversampling ratio [Schreier, 2003]. Denote the output of the loop filter as  ky . The 
dynamics of this SDM can be described by the following state space equation: 
        kkkk suBAxx 1  for 0k , (2) 

where            TT kykykxkxk 1221 x  is the state vector of the SDM, 

      Tkukuk 12 u  is the vector containing the past two consecutive points 

from the input signal  ku , 












aaaa

10
A  (3) 

is the system matrix, 












GbG
00

B  (4) 

is the matrix associated with the input signal and the nonlinearity due to the quantizer, 

        TkxQkxQk 21s  for 0k  (5) 
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is the quantized state vector in which the superscript T  denotes the transpose operator, 
and 

 








otherwise1
01 y

yQ  (6) 

is a single bit quantization function. 
 

III. MAIN RESULTS 
A. Magnitude response of the loop filter in a second order bandpass interpolative SDM 

Now, let us consider the second order bandpass interpolative SDM discussed in 
[Ashwin, 2003; Davies, 1997; Feely, 1997; Petkov, 1997], where the parameters of the 

filter are cos2G , jea  , jea   and 
cos2

1
b , in which   is the natural 

frequency of the loop filter. Although the bandpass filter is employed, the magnitude 
response of the bandpass filter is close to that of the lowpass filter when   is very close 

to zero, in particular, when  2 . Hence, the magnitude response of the lowpass 

filter can be approximated by the bandpass filter with the natural frequency very close 

to zero. Here, very close to zero means that   is much smaller than 
R
 . Figure 2 shows 

the magnitude responses of a second order bandpass filter with 001.0  and a second 

order lowpass filter with 1 aa , 
2
1

b  and 2G . It can be seen from Figure 2 that 

the magnitude responses of these two filters are almost the same when  2 . 

B. Global stability property of the second order bandpass interpolative SDM 
As discussed in Section I that an invariant set exists for a class of second order 

bandpass interpolative SDMs [Ashwin, 2003] when this class of SDMs exhibits fractal 
behaviors. Also, some of these SDMs will be globally stable. However, this property 
has not been proved in [Ashwin, 2003]. Moreover, the global stability condition has not 
been investigated yet if fractal behaviors do not occur. In this subsection, we will 
address the following issues: First, what are the general global stability conditions for 
these SDMs? Second, do invariant sets exist when these SDMs do not exhibit fractal 
behavior? Third, will the state vectors move towards these invariant sets when these 
SDMs do not exhibit fractal behavior? To address the first problem, we have the 
following result. 
Lemma 1 

For the class of second order bandpass interpolative SDMs discussed in [Ashwin, 
2003], if the ratio of the output of the SDM to the output of the loop filter tends to zero 
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as well as the frequency spectrum of the input of the loop filter contains an impulse 
located at the natural frequency of the loop filter, then this SDM will diverge. 
Proof: 

To prove this lemma, the root locus approach [Baird, 1994] is employed. That is, 
the quantizer is modeled as an amplifier with variable gain K . 

As  
 ky
ksK   and       1,1  kyQks  0k , 0K . The poles of the 

linearized closed loop transfer function are: 

      1cos1cos1 22
1  KKKK   (7) 

and 

      1cos1cos1 22
2  KKKK  . (8) 

If 10  K , then    0Kimag i  for 2,1i  and it can be checked easily that 

  11  KKi  for 2,1i  and   , . For 0K ,  je1  and  je2 . 

For 1K ,    0Kimag i  for 2,1i . It can be checked easily that if 
2
1cos   and 

 



cos21
cos12




K , then 1K  and   11 K . If 
2
1cos   and  

1cos2
1cos2






K , then 

1K  and   12 K . Since    
1cos2
1cos2

cos21
cos12












  for 

2
1cos0    and vice 

versa for 0cos
2
1

  , by combining all these conditions, the stability of the 

linearized closed loop transfer function is summarized as follows: 

If  



cos21
cos12




K  and 0cos  , or  
1cos2
1cos2






K  and 0cos  , then the 

linearized closed loop transfer function will be unstable. If 0K , or 0cos   and 
    2

1cos2
1cos2

cos21
cos12














K , or  




cos21
cos12




K  and 0cos  , or 

 
1cos2
1cos2






K  and 0cos  , then the linearized closed loop transfer function will be 

marginally stable. Otherwise, the linearized closed loop transfer function will be 
strictly stable. The stability region is shown in Figure 3. 

As  
 ky
ksK   and       1,1  kyQks ,  ky  is unbounded if and only if 

 0K . Hence, the stability analysis can be performed by only considering the case 
when  0K . It is worth noting that this linear approach is applied even though it is 
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employed for the analysis of a nonlinear system. When  0K , the linearized closed 
loop transfer function is marginally stable. For any bounded input  ku , the input of the 
loop filter is bounded because  ks  is bounded. As the SDM consists of the marginally 
stable loop filter, the only possible cause for  ky  being unbounded is the resonance 
effect. That is, the frequency spectrum of the input of the loop filter contains an impulse 
located at the natural frequency of the loop filter. This completes the proof.  

From the above, we can see that large value of  ky  corresponds to small value 

of K . If  ky  is large and  0K , then the linearized closed loop transfer function is 

marginally stable. If the frequency spectrum of the input of the loop filter contains an 
impulse located at the natural frequency of the loop filter, then the state vectors will 
diverge. 

As fractal behaviors could be exhibited for a class of second order bandpass 
interpolative SDMs, we can understand the exhibitions of fractal behaviors from the 

above root locus analysis. It is worth noting that small values of  ky  correspond to 

large value of K  and an unstable linearized closed loop transfer function. Hence, for 

small values of  ky , the state vectors will move outwards from the region around the 

origin. On the other hand, large values of  ky  correspond to small value of K  and a 

strictly stable linearized closed loop transfer function if K  does not tend to zero. Hence, 

for large values of  ky , the state vectors will move towards the region around the 

origin. Hence, the state vectors will move in and out of the region around the origin 
again and again. This accounts for the occurrence of the fractal and irregular chaotic 
behaviors. 

To investigate whether an invariant set exists for the SDM when the SDM does 
not exhibit the fractal behavior, we need to recall the definition of an invariant set 
[Ashwin, 2003], [Güntürk, 2004; Schreier at al., 1997; Thao, 2002, 2004]. Denote a 
map G  which maps from a set   to itself. That is, :G . If   G , then   is 
called an invariant set. Denote Ø as the empty set. 
Lemma 2 

Denote 

       
       
















.cos21cos2  where,,

and ,0,2,:,

1121

121

 uxxQxxxxxQ

xQQxx
T

TT xxuBAxx
. (9) 
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Denote :G  such that     xuBAxx QG  . Suppose that  Ø. Then  is 
an invariant set under the system map G . 
Proof: 

Since x ,       xuBAxx QG . This implies that   G . 

   Tyy 21,y , define      cos21cos2 112  uyyQyy . Denote 

  TyyyQ 1,x . Then x  and 

    
       
     T

T

yyyQQyQy

yyQQuyQuyyyQy

QG

21

111

,

cos2cos2cos2,









xuBAxx

. 

If 0y , then   1yQ ,    1 yyQQ  and   yx G . If 0y , then   1yQ , 
   1 yyQQ  and   yx G . Hence, y , x  such that   yx G . This 

implies that   G . Therefore,   G  and  is an invariant set under the system 
map G . This completes the proof.  

There are some conventional approaches to test whether a set of state vectors of a 
SDM is an invariant set or not. One of the conventional approaches is based on the 
geometric property of the set. Although this conventional approach can be applied for 
those SDMs which exhibit the fractal behavior, because the corresponding set consists 
of trapezoids, this conventional approach cannot be applied if the shape of the sets is 
irregular. In fact, we will show numerically at the end of this subsection that a bandpass 
SDM may exhibit irregular and conical-like chaotic patterns on the phase plane. By 
applying Lemma 2, we can conclude that these sets are invariant sets because Lemma 2 
is satisfied for these cases. 

To investigate whether some state vectors, which are initially not inside the 
invariant set  , will eventually move towards the invariant set   if the invariant set   
exists, the injective property of  G  has to be investigated. However, in general, the 
existence of invariant sets does not imply that the corresponding system maps are 
injective. Consider the following counter-example: Define    1,01,0: f  as a map 
such that    1,2mod xxf  , where mod  is denoted as the modulo operator. Obviously, 
 1,0  is an invariant set under the map f , but f  is not injective. 
Lemma 3 

Suppose that  Ø. Then G  is bijective. 
Proof: 

From Lemma 2, we have   G . This implies that G  is surjective. To show 

that G  is injective, denote  Txx 1
2

1
1

1 ,x  and  Txx 2
2

2
1

2 ,x . Assume that 21, xx , 
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21 xx   and    21 xx GG  .    21 xx GG   implies that 2
2

1
2 xx   and 

    2
1

1
1

2
1

1
1 xxxQxQ  . Since 21 xx   and 2

2
1
2 xx  , 2

1
1
1 xx  . This implies that 

   2
1

1
1 xQxQ   and  1

1
1
1

2
1 2 xQxx  . As    

TxQ 0,2 1
1

12 xx , this contradicts to 

2x . This implies that G  is injective. Hence, G  is bijective. This completes the 
proof.  
Lemma 4 

Define 22: H  as a map that     xuBAxx QH  . Then H  is 
surjective. 
Proof: 

Denote  Txx 21,x ,  Tyy 21,y  and 

     cos21cos2 112  uyyQyy . 2y , let 12 yx   and   yyQx 1 . 
Then 2x  and  xy H . Hence, H  is surjective. This completes the proof.  
Lemma 5 

H  is not injective. 
Proof: 

Denote  Txx 1
2

1
1

1 ,x  and consider the case when 21 x . Define 

    TT xQxx 0,2, 1
1

12
2

2
1

2  xx . Then 

        TxQxQuxxxH 1
2

1
1

1
1

1
2

1
2

1 cos21cos2cos2,  x  

and 

           TxQxQxQuxQxxxH 1
2

1
1

1
1

1
1

1
1

1
2

1
2

2 cos221cos22cos2,  x . 

Since 21 x ,     1
1

1
1

1
1 2 xQxQxQ   and    21 xx HH  . This implies that H  is not 

injective. This completes the proof.  
If   0x , since           0001 xxuBAxx GQ  , from Lemma 2, we 

have   1x . Similarly, we can conclude that   kx  for 0k . Hence, the SDM is 

locally stable. Define  2: 1  xS x  and  SR G  . As S , from Lemma 2, 

we have R . Assume that ØS . Define 

     S
TT xxxQ  2111 ,:0,2~ xx . Since S Ø, 1

~ Ø and  Ø. From 

Lemma 2, we can conclude that  1
~ Ø. From Lemma 4 and Lemma 5, we can 
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conclude that Ry , S 1x  and 12
~x  such that 21 xx   and 

    RHG  yxx 21 . This implies that if    \~0 1x , then      RH  01 xx  and 

  kx  for 1k . Or in other words, there exists some state vectors, which are 
initially not in the invariant set  , but they will eventually move towards the invariant 
set   if S Ø. 

Suppose that S Ø. Define 1
~

n  such that   nnH  
~~

1  for 1n . Then the 

state vectors in n
~  will move to 1

~
n , and then move to 2

~
n , and continue to move 

until they move to 1
~ , and eventually reach R  and stay inside   forever. 

Now, we investigate whether all the state vectors, which are initially not in the 
invariant set  , will eventually move towards the invariant set  , when the invariant 
set   exists and the frequency spectrum of the input of the loop filter does not contain 
an impulse located at the natural frequency of the loop filter. If the frequency spectrum 
of the input of the loop filter does not contain an impulse located at the natural 
frequency of the loop filter, then the state vectors will be bounded. Denote   as the 

corresponding bounded set. Denote the set 
1

~\\



n

n  as 


 . 

Lemma 6 

Suppose that S Ø, 


Ø, and the frequency spectrum of the input of the loop 

filter does not contain an impulse located at the natural frequency of the loop filter. 

Then 


  is an invariant set under the system map H . 

Proof: 

Since S Ø, this implies that 1
~ Ø. As H  is surjective, this further implies 

that n
~ Ø for 1n . Since the frequency spectrum of the input of the loop filter does 

not contain an impulse located at the natural frequency of the loop filter, the state 

vectors are bounded. As Ø


,  


 0x . Hence,   


 0x , 

          000 xuBAxx QH . However,    
1

~\0



n

nH x . Otherwise, it 
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contradicts to the definition of   nnH  
~~

1 . Therefore,   


0xH  and 








H . 



y , as H  is surjective and the state vectors are bounded, x  such that 

  yx H . However, 
1

~\



n

nx . Otherwise, it contradicts to the definition of 

  nnH  
~~

1 . Hence, 


x  and 








H . This implies that 









H  and 



  is 

an invariant set under the system map H . This completes the proof.  

Suppose that 


Ø. Without lost of generality, 


  can be partitioned into 4 

different subsets, denoted as i  for 4,3,2,1i , such that kji  xx ,     ji QQ xx    

and    ji QQ   for ji  ,  ji  Ø for ji  , and 
4

1


i

i . 

Theorem 1 
If S Ø and the frequency spectrum of the input of the loop filter does not 

contain an impulse located at the natural frequency of the loop filter, then 


Ø. 

Proof: 

From Lemma 1, we see that if 0K , or 0cos   and  



cos21
cos12




K , or 

0cos   and  
1cos2
1cos2






K , or 0cos   and 2K , then the linearized closed 

loop transfer function of the SDM will be strictly stable. This implies that the SDM is 

strictly stable for 
3
40  K . This further implies that if  

4
3

ky  and the frequency 

spectrum of the input of the loop filter does not contain an impulse located at the natural 
frequency of the loop filter, then the SDM will be strictly stable and larger values of 

 ky  will move to a region around the origin. Since S Ø, n
~ Ø for 1n . Suppose 

that 


Ø. If     i
TT xxxx  2

2
2
12

1
2

1
11 ,,, xx  such that   TxQ 0,2 1

112  xx , 

then the trajectories corresponding to these two initial conditions will move to a region 

around the origin. Hence, we can just consider the case that i1x  and j2x  for 

ji  . Suppose that   i
Tx  0,1x  for   , x  and   j

Tx  0,2x  for 



International Journal of Bifurcation and Chaos 

 12 

  , x , where   is the length of the neighborhood of 1x  and 2x . Since 

      TT xHxH  ,00, 11 xx ,       TT xHxH  ,00, 22 xx  and 

   21 xx HH  , the regions after the system map are overlapped. However, this 
contradicts to the definition of an invariant set with the system map having the property 

  1det A . Hence, 


Ø. This completes the proof.  

Theorem 1 implies that, if S Ø and the frequency spectrum of the input of the 
loop filter does not contain an impulse located at the natural frequency of the loop filter, 

then for all the initial conditions that are initially not in the invariant set  ,  0k  

such that   10
~kx . That means, the SDM is globally stable and the state vectors will 

eventually move to the invariant set. To illustrate the theorem, the black, blue, cyan, 

yellow, green, magenta and red regions in Figure 4a and 4b show the sets 6
~ , 5

~ , 4
~ , 

3
~ , 2

~ , 1
~  and R , respectively. 

Corollary 1 
Define 

          





1

0
121 cos21sin

M

j
jxQujxQujML  , (10) 

          





1

0
122 cos21cos

M

j
jxQujxQujML  , (11) 

     MxMxL sin0~cos0~~
211   (12) 

and 

     MxMxL cos0~sin0~~
212  . (13) 

Denote 









 sincos
01

T . Then 1T  exists for bandpass filters. Define the 

transformed state vectors as    kk xTx 1~  . Then    \0x ,  ZM  such that 

  Mx . Also, if y   
2

1
2

0~ yTx  , then  ZM  such that 

    2
2

2
1

2
22

2
11

~~~~ LLLLLL  . 

Proof: 
Since sin  is zero only for lowpass or highpass filters, 1T  exists for bandpass 
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filters. According to Theorem 1, as 


Ø,    \0x ,  ZM  such that 

  Mx . Define 













cossin
sincos

A


. Hence, 1 TATA


 and 

       




 
1

0

10
M

j

jMM jQM xuBAxAx . 

This implies that 

           
    











 






221

121
1

0

11

cos0~sin0~
sin0~cos0~

0~~
LMxMx

LMxMx
jQM

M

j

jMM




xuBTAxAx


 

and         2
2

2
1

2
22

2
11

22 ~~~~0~~
22

LLLLLLM  xx . If y   
2

1
2

0~ yTx  , 

then  ZM such that    
22

0~~ xx M . Hence,  ZM  such that 

    2
2

2
1

2
22

2
11

~~~~ LLLLLL  . This completes the proof.  

Corollary 1 provides information on how the initial condition moves towards the 
invariant set  . 

Beside, some interesting phenomena are found. First of all, fractal patterns are 
not the only type of chaotic patterns exhibited in the phase plane. The SDM may exhibit 
irregular and conical-like chaotic patterns. Figure 5a and 5b show the phase portraits 
when   0x 0 , 3.0u ,  158532.0cos 1 , and   0x 0 , 5.0u , 1.0 , 
respectively. Figure 5c shows the transformed phase portrait  kx~  when   0x 0 , 

1u  and 01.0 . It can be seen from Figure 5a, 5b and 5c that fractal, irregular and 
conical-like chaotic patterns are exhibited on the phase plane, respectively. However, 
no matter what type of chaotic patterns is, an invariant set exists. By dividing the phase 
portraits, shown in Figure 6a, 6c and 6e, into four subportraits, it can be seen, 
respectively, in Figure 6b, 6d and 6f, that the union of the mapped regions generates the 
original phase portraits with the same outer boundaries. 

The second interesting phenomenon is that  S\ Ø when the SDM exhibits 
fractal patterns, while  S\ Ø when the SDM exhibits irregular and conical-like 
chaotic patterns. To understand this phenomenon, note that the fractal patterns are 
confined within two trapezoids, the co-ordinates of the outer four corners of these two 
trapezoids not including the co-ordinates on the 2x  axis are: 

      Tuu 11cos411cos2 2
1  P , (14) 

     Tuuu 11cos411cos2 2
2  P , (15) 
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      Tuu 11cos411cos2 2
3  P  (16) 

and 

     Tuuu 11cos411cos2 2
4  P , (17) 

respectively. We will show in Subsection IIID that the conditions for exhibiting fractal 

behaviors are 
2
1cos   and 















cos21
cos21,1minu , and the absolute values of the 

first co-ordinate of these four state vectors is bounded by 2. Note that these two 
trapezoids are in S . Hence, S  and  S\ Ø. However, this property does not 
hold for the cases when irregular and conical-like chaotic patterns are exhibited on the 
phase plane. The red regions shown in Figure 7a and 7c correspond to S , while the 
blue region shown in Figure 7c corresponds to S \ . The red regions shown in Figure 
7b and 7d correspond to R , while the blue region shown in Figure 7d corresponds to 

R \ . It can be seen in Figure 7a and 7b that there is no blue region in the phase 
portraits, which implies that  S\ Ø when the SDMs exhibit fractal patterns. 
C. Conditions for the second order bandpass interpolative SDM exhibiting limit 

cycle behavior 
The necessary and sufficient conditions for the class of second order bandpass 

interpolative SDMs discussed in [Ashwin, 2003] exhibiting the limit cycle behaviors 
are presented below. 

Suppose that there exists 1M  such that MAI   is invertible, where I  denotes 

the identity matrix. Denote 


  as the infinity-norm operator, 

    







 






1

0

11
0

M

j

jMM jsuΒAAIx , (18) 

  iii suBAxx  
1  for 2,,1,0  Mi  , (19) 

and 

      ii ikMk xxTx 1ˆ  for 0k  and 1,,1,0  Mi  . (20) 

The following lemma describes the necessary and sufficient relationships among 
the periodicity of the output sequence, the behavior of the trajectory and the set of the 
initial conditions generating periodic output sequence. 
Lemma 7 

The following three statements are equivalent: 
i)  ZM  such that 0i     iiM ss  . 
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ii)  ZM  such that    kk i
M

i xAx  1  for 0k  and for 1,,1,0  Mi  . 

iii)  ZM  such that        


  iiM i xxxTxx 1:00  for 

1,,1,0  Mi  . 
Proof: 

The proof can be worked out using the techniques discussed in [Ling, 2003].  
Statement (ii) of Lemma 7 implies that the transformed trajectories are circular. 

Since 1,,1,0  Mi  , there are M  circles centered at the origin with radii  
2

0ix . 

By transforming back to the original state trajectories, there are M  ellipses centered at 


ix  for 1,,1,0  Mi   with the size depended on  

2
ix  and the orientation depended 

on  . Moreover, from statement (i) of Lemma 7, we can see that the output sequence is 
periodic with period M . Furthermore, from statement (iii) of Lemma 7, we can see that 
the shape of the set of the initial conditions is elliptic. 

There are three main important implications and two interesting phenomena that 
can be accounted from Lemma 7. The first important implication of Lemma 7 is that for 
a given initial condition in the trapezoids, Lemma 7 provides information to test 
whether a limit cycle occurs or not. This can be done by checking whether the given 
initial condition is inside the ellipses of the fractal patterns or not. If it is inside the 
ellipses, then a limit cycle occurs, and vice versa. 

The second important implication of Lemma 7 is to estimate the periodicity of the 
limit cycle. Since the periodicity is defined based on the behavior over an infinite 
amount of time, but only a finite number of observable output bits are obtained from 
practical situations, in general, it is not trivial to check whether an output sequence is 
periodic or not. Even though the output sequence is periodic, it is not easy to estimate 
its periodicity. However, according to Lemma 7, the periodicity of the output sequence 
can be estimated by counting the number of the ellipses exhibiting on the phase plane or 
counting the number of the elliptical sets of initial conditions. 

The third important implication of Lemma 7 is to provide information whether a 
limit cycle is stable or not. If a given initial condition is strictly inside an elliptical set of 
initial conditions, a small perturbation of the initial condition will give rise to a similar 
elliptic trajectory pattern and the same periodic output sequence as well. Hence, the 
corresponding trajectory for the limit cycle is regarded as locally stable. However, if the 
initial condition is on the boundary of the elliptical set, a small perturbation of the initial 
condition will give rise to a very different dynamical behavior and output sequence. In 
this case, the trajectory for the limit cycle is regarded as locally unstable. 
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There are two interesting phenomena that can be explained by Lemma 7. First, 

when 1M , 
0x  is on the diagonal line. Since the output sequence is constant, all the 

state vectors are in the same quadrant. Hence, the trajectory and the set of initial 
conditions are confined either in quadrant I or quadrant III, and cannot cut across the 
principle axes. For 1M , by downsampling the output sequence by M , the output 
sequence becomes constant. Hence, the trajectory of each ellipse and each elliptical set 
of initial conditions also cannot cut across the principle axes. 

Second, the occurrence of periodic output sequence does not imply the 
occurrence of periodic state variables [Ling, 2003]. In general the state variables are 
periodic if   is a rational multiple of  . 
D. Conditions for the second order bandpass interpolative SDM exhibiting fractal 

behavior 
Now, we present the results for the class of second order bandpass interpolative 

SDMs discussed in [Ashwin, 2003] which exhibits fractal behaviors. The conditions for 
the occurrence of fractal behaviors are presented below. 
Lemma 8 

If 

2
1cos  , (21) 
















cos21
cos21,1minu , (22) 

 ks  are aperiodic and 

  
1

\0



M

Mx , (23) 

then 

  
1

\



M

Mkx , for 0k . (24) 

Proof: 
It can be proved using the approach discussed in [Ashwin, 2003].  
Although this lemma can be proved using the approach discussed in [Ashwin, 

2003], the effects of the input step size and the initial conditions to the exhibition of 
elliptic fractal patterns have not been explored in [Ashwin, 2003] yet. Lemma 8 
addresses these issues. We can see from Lemma 8 that elliptic fractal patterns will occur 
when the filter parameter satisfies the condition stated in equation (21), the input step 
size is kept below the bound defined in equation (22) and the initial condition satisfies 
equation (23). Note that when the magnitude of u  is larger than the bound defined in 
equation (22), or when the filter parameters are not in the range defined by equation (21) 
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or when the initial conditions are not in the set defined in equation (23) but still in the 
trapezoids, then Lemma 8 will not be satisfied and elliptic fractal pattern will not be 
exhibited in the phase plane. 

The importance of Lemma 7 and Lemma 8 is that they provide information for 
SDM designers to operate the SDMs so that the occurrences of limit cycle and fractal 
behaviors can be avoided. Hence, annoying audio tones will not be observed if these 
SDMs are employed for audio application [Reefman, 2002]. 
E. Performance of the second order bandpass interpolative SDM 

In the following simulations, we assume that 64R  because it is the most 
common oversampling ratio employed in audio application [Reefman, 2002]. As 
discussed in Subsection IIIA, the natural frequency of a second order bandpass 
interpolative SDM should be small, we choose 001.0 , which is 2.0372% of the 

signal bandwidth 
R
 . In order to compare the performances of the second order 

lowpass and bandpass interpolative SDMs, the second order lowpass interpolative 

SDM with 1 aa , 
2
1

b  and 2G  are set because the magnitude response of this 

lowpass SDM  is close to that of the bandpass SDM. We first employ   0x 0  for 
simulations because “initially at rest” is the most common practical situations. Then, 
we check if the conditions for exhibiting limit cycles and fractal behaviors stated in 
Section IIIC and Section IIID, respectively, are satisfied or not. If none of these 
conditions is satisfied, then we will employ this initial condition. Otherwise, we 
generate another initial condition randomly and check it again. We repeat this checking 
procedure for no more than 100 iterations. Note that only less than 100 iterations are 
checked because this can prevent trapping into a dead loop of the generation of the 
initial conditions. 

In order to compare the performance of the lowpass and the bandpass SDMs, 
tonal suppression and SNR are used as the criteria. Tonal suppression reflects the 
ability of the avoidance of annoying audio tones and SNR reflects the reconstruction 
errors of the A/D and D/A conversions. We define the tonal suppression as: 

   

   
 





S

S
TS

0\,0

0
0 max



 . (25) 

Figure 8a and Figure 8b show the tonal suppression of the lowpass SDM, denoted as 

 0lowpassTS , and that of the bandpass SDM, denoted as  0bandpassTS , respectively. 

Figure 8c shows the ratio of the improvement of the tonal suppression, that is 
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   
 0

00




lowpass

lowpassbandpass

TS
TSTS 

. It can be seen from Figure 8c that there are many positive 

spikes, which implies that the bandpass SDM has higher tonal suppression than the 
lowpass SDM for most frequencies and input magnitudes. Besides, Figure 9 shows the 
magnitude spectra of the output sequences of the lowpass and bandpass SDMs when 
the DC input with the step size 7.0u  is applied under the zero initial condition 
  0x 0 . It can be seen from Figure 9 that there are impulses in the magnitude spectrum 

of the output sequence of the lowpass SDM, which demonstrates that the lowpass SDM 
exhibits the limit cycle behavior. On the other hand, the bandpass SDM operates 
normally. 

The definition of the SNR adopt in this paper is based on that defined in [Schreier, 
2003]. Figure 10 shows the SNRs of the lowpass and bandpass SDMs under the same 
oversampling ratios, that is, 64R , and operating conditions. That is, we assume that 

the frequency of the sinusoidal input is 
3
2  of the signal bandwidth 

R
 . According to 

Figure 10, we can see that the lowpass SDM can only achieve an average of 66.1751dB 
for an input magnitude less than or equal to 1.06, and 9.2952dB for that between 1.07 
and 2. On the other hand, the bandpass SDM can achieve an average of 80.7934dB for 
an input magnitude less than or equal to 1.16 , and 12.0046dB for that between 1.17 and 
2 by using our checking procedures. Hence, the bandpass SDM have an average of 
14.6183dB and 2.7094dB improvements for low and high input magnitudes, 
respectively, as well as an increasing the input stability margin of 0.1. These results 
show that the bandpass SDM with the natural frequency very close to zero can achieve 
a higher SNR than that of the lowpass SDM, and our derived conditions for checking 
the exhibition of limit cycle and fractal behaviors are useful for operating the bandpass 
SDM. 
 

IV. CONCLUSION 
In this paper, we propose to replace a second order lowpass interpolative SDM by 

a second order bandpass interpolative SDM with the natural frequency of the loop filter 
very close to zero. If the natural frequency of the bandpass SDM is smaller than the 
value which depends on the oversampling ratio, then the magnitude response of the 
bandpass SDM will be close to that of the lowpass SDM. The main advantages of 
employing the bandpass SDM are that the global stability of the SDM can be 
guaranteed if the frequency spectrum of the input of the loop filter does not contain an 
impulse located at the natural frequency of the loop filter. Moreover, the conditions for 
the occurrence of limit cycle and fractal behaviors are derived, so these unwanted 
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behaviors can be avoided accordingly. Simulation results show that the bandpass SDM 
can achieve higher SNR and tonal suppression than that of the lowpass SDM. 
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Figure 1. The block diagram of an interpolative SDM. 
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Figure 2. Magnitude responses of both the lowpass and bandpass SDMs. 
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Figure 3. Stability region of the linearized closed loop transfer function of the second order bandpass 

interpolative SDM (The red region refers to the unstable region and the blue region refers to the strictly 
stable region.). 
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Figure 4. Diagrams showing how the state vectors move towards an invariant set when 

(a) fractal and (b) irregular chaotic patterns occur. 

 
Figure 5. Phase portraits of the SDMs when (a) fractal and (b) irregular chaotic patterns 
occur. (c) Transformed phase portrait of the SDM when a conical-like chaotic pattern 

occurs. 
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Figure 6. Phase portraits when (a) fractal, (c) irregular and (e) conical-like chaotic 

patterns occur. (b), (d) and (f) are the corresponding mapped phase portraits. 
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Figure 7. (a) S  and (b) R  when a fractal pattern occurs. (c) S  and S \ , and (d) R  

and R \  when an irregular chaotic pattern occurs. 
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Figure 8. Tonal suppression of (a) the lowpass SDM and (b) the bandpass SDM. (c) 

Ratio of the improvement of the tonal suppression. 

 
Figure 9. Magnitude spectra of the output sequences of the lowpass and bandpass 

SDMs. 

(c) 
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Figure 10. SNRs of the lowpass and bandpass SDMs. 


