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Interpolation techniques to improve the accuracy 
of the plane wave excitations in the finite 
difference time domain method 
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Abstract. The importance of matching the phase velocity of the incident plane wave to the 
numerical phase velocity imposed by the numerical dispersion of the three-dimensional (3-D) 
finite difference time domain (FDTD) grid is demonstrated. In separate-field formulation 
of the FDTD method, a plane wave may be introduced to the 3-D computational domain 
either by evaluating closed-form incident-field expressions or by interpolating from a 1-D 
incident-field array (IFA), which is a 1-D FDTD grid simulating the propagation of the 
plane wave. The relative accuracies and efficiencies of these two excitation schemes are 
compared, and it has been shown that higher-order interpolation techniques can be used to 
improve the accuracy of the IFA scheme, which is already quite efficient. 

1. Introduction 

The finite difference time domain (FDTD) method 
was suggested three decades ago as a numerical tech- 
nique to solve time-dependent Maxwell's equations 
[Yee, 1966], whose general solution could not be ob- 
tained otherwise. With the increase of computing 
power available to the scientists in recent years and 
owing to the efficiency, flexibility, and the ease of im- 
plementation of the FDTD method, it has become 
one of the most popular solution techniques in the 
area of computational electromagnetics. 

New extensions and enhancements of the FDTD 

method are continuously being introduced in order 
to employ the technique in the solution of new prob- 
lems [Taftore, 1988; Taftore and Umashankar, 1989; 
Kunz and Luebbers, 1993; Taftore, 1995; Shlager 
and Schneider, 1995], perhaps as never envisaged 
by the original developers. Electromagnetic scatter- 
ing problems, where the objects are placed in un- 
bounded media and illuminated by plane waves, are 
also among the wide variety of problems solved by 
using the FDTD method. The FDTD method does 
not automatically incorporate the radiation bound- 
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ary condition; therefore it is more suitable for the 
solution of problems involving geometries enclosed 
in conducting or otherwise impenetrable boxes, such 
as closed waveguides, shielded microwave integrated 
circuits (MICs) and cavities [DePourcq, 1985]. How- 
ever, due to the importance of the scattering prob- 
lems in the computational electromagnetics, they 
were the first problems to be solved using the FDTD 
method [Yee, 1966], even before the concept of 
absorbing boundary conditions (ABCs) was intro- 
duced. Later on, the development of the early ABCs 
[Merewether, 1971; Lindman, 1975] and the solu- 
tion of scattering problems [Taftore and Brodwin, 
1975; Mur, 1981] progressed hand in hand. 

Although the FDTD method was originally devel- 
oped [Yee, 1966] as a "time domain" method and 
other electromagnetic solution techniques exist for 
"frequency domain" problems [Harrington, 1982; 
Miller et al., 1992], the FDTD method is frequently 
employed in obtaining the sinusoidal steady state so- 
lutions of complicated electromagnetics problems ex- 
cited with time-harmonic sources [Taftore and Brod- 
win, 1975; Taftore, 1980; Mur, 1981; Umashankar 
and Taftore, 1982; Taftore and Umashankar, 1983; 
Tafiove et al., 1985]. This is mainly due to the sim- 
plicity of the FDTD method and its ability to model 
complicated inhomogeneities with ease and at no ex- 
tra cost. Sinusoidal excitation within the FDTD 

method is used even for some problems that need to 
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be solved over a finite frequency band. An example 
is the computation of the radar cross section (RCS) 
of an object at multiple frequencies. 

Being a computational method, the FDTD method 
produces results with finite accuracy. If this accu- 
racy is sufficient for a given application, the results 
are considered to be reliable. In the past, 1-2 dB 
of accuracy was targeted with the FDTD method 
[Tafiove, 1980; Tafiove et al., 1985], and this accu- 
racy was sufficient for the engineering applications 
considered at that time. Noting that 1-dB accuracy 
corresponds to 12% error in the signal and 26% error 
in the power, we can conclude that the range of ap- 
plications, where this much error is still acceptable, 
is getting narrower. Recently, FDTD solutions with 
subdecibel accuracy have become possible due to the 
progress in the following areas: 

1. More accurate ABCs have been developed to 
reduce the reflection error while keeping the problem 
size at reasonable levels [B•renger, 1994, 1996a, b]. 

2. High-performance computers have become avail- 
able. Hence larger problems corresponding to denser 
FDTD meshes and higher-order FDTD algorithms 
[Fang, 1989; Deveze et al., 1992; Omick and Castillo, 
1993; Manry et al., 1995] can be solved to reduce 
the dispersion error due to the coarseness of the dis- 
cretization. 

3. Signal-engineering techniques have been intro- 
duced to condition the time dependence of the exci- 
tation to reduce the errors due to the high-frequency 
components of the excitation [ Giirel and O•uz, 1997]. 

In addition to the reflection, dispersion, and high- 
frequency errors, there are several other factors (such 
as geometry modeling, excitation modeling, etc.) af- 
fecting the accuracy of the FDTD solutions. In this 
paper, we will investigate the errors introduced to the 
FDTD solution through plane wave excitations. The 
errors due to the numerical dispersion of an incident 
plane wave with sinusoidal time dependence are in- 
vestigated in section 3 following Tafiove [1988, 1995]. 
The errors due to the numerical inaccuracies encoun- 

tered in the computation of an incident plane wave 
with arbitrary time dependence are investigated in 
section 4. 

2. Plane Wave Excitation Schemes 

For FDTD solutions of most scattering problems, 
an incident field, whose sources are outside the FDTD 
computational domain, needs to be simulated. This 
can be accomplished using either the total-field or the 

scattered-field formulations of Maxwell's curl equa- 
tions. The total-field formulation has larger dy- 
namic range compared with the scattered-field for- 
mulation [Tafiove, 1980]. In the scattered-field for- 
mulation, only the outgoing scattered waves need 
to be absorbed by the ABCs. On the other hand, 
the scattered-field formulation requires the evalua- 
tion of the incident fields everywhere on the surfaces 
of the impenetrable structures (e.g., conducting ob- 
jects) and everywhere in the volumes of the lossy 
or lossless penetrable structures (e.g., dielectric ob- 
jects). In order to exploit the advantages of each 
method while keeping the number of the incident- 
field evaluations at a minimum, the separate-field 
formulation is suggested [Mur, 1981; Umashankar 
and Tafiove, 1982; Merewether et al., 1980]. 

In the separate-field formulation, the computa- 
tional domain is divided into two parts, as shown in 
Figure 1, such that the total-field region contains all 
of the inhomogeneities and the scattered-field region 
is a homogeneous medium surrounding the total-field 
region. The two regions are connected by a mathe- 

Reference Point 

Hard Source 

Id Region 

Region 

PML IF 

Figure 1. The incident-field array (IFA) excitation 
scheme in the separate-field formulation. The one- 
dimensional (l-D) source grid (IFA) points in the 
direction of propagation. The incident-field values in 
the 3-D computational domain are interpolated from 
the closest two elements of the 1-D source grid (when 
linear interpolation is used). 
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matical boundary, on which a special set of "connect- 
ing equations" or "consistency equations" are used. 
These equations are related to Huygens' principle 
and the equivalence principle in electromagnetic the- 
ory [Merewether et al., 1980]. The incident fields 
are introduced to the computational domain in these 
consistency equations. Therefore the incident fields 
are computed only at the mathematical boundary 
that separates the two regions, and thus the num- 
ber of incident-field evaluations is independent of the 
sizes and types of the scatterers, as opposed to the 
pure scattered-field formulation. 

The accurate and efficient computation of the inci- 
dent fields is important for the accuracy of the solu- 
tion. Since the incident field is a known quantity, it 
is very practical to use closed-form expressions in the 
connecting equations. This simple method is called 
the "closed-form incident-field" (CFIF) computation 
scheme. The implementation of the CFIF scheme 
is simple, but it requires the computation of a very 
large number of complicated expressions, such as si- 
nusoids or exponentials. An efficient, FDTD-based 
method of computing incident fields was proposed by 
Tafiove [1995], which interpolates the incident-field 
values from a look-up table. The look-up table is a 
one-dimensional (l-D) grid excited by a hard source, 
which will be called the incident-field array (IFA) in 
this work. The incident wave is propagated in this 
source grid by the 1-D FDTD equations. This source 
grid or IFA is assumed to point in the direction of 
propagation of the incident wave, as shown in Fig- 
ure 1. 

The implementation of the IFA scheme is explained 
in detail by Tafiove [1995, pp. 121-124]; however, it 
will also be outlined here for completeness. A refer- 
ence point of the IFA, depicted as R in Figure 1, coin- 
cides with the initial-contact point on the total-field 
region. Then, a position vector r, extending from the 
reference point R to the point of interest, is 'defined. 
When an incident-field value has to be computed at 
a particular point in the 3-D computational domain, 
first the relative position of that point is determined 
on the source grid. This is done by computing the 
projection of r on the direction of the wave vector 
kine, that is, p- kine' r. Let P denote the greatest 
integer that is less than or equal to p. Then, the 
indexes of the closest 1-D vector elements are deter- 

mined as P and P + 1. The desired incident-field 

value is interpolated from these 1-D vector elements. 
Figure I depicts the case of linear interpolation us- 
ing the closest two points in the source grid as origi- 

nally suggested by Tafiove [1995]. In this work, well- 
known Lagrange's polynomial interpolation formula 
is used for both linear and higher-order interpola- 
tions. Higher-order interpolations require more than 
two points from the IFA, for example, second-order 
interpolation uses the points indexed as P- 1, P, 
and P + 1. The efficiency of the IFA scheme is due 
to the fact that both the 1-D FDTD propagation in 
the IFA and the interpolation operations on the con- 
necting boundary require simple multiplications and 
additions instead of the evaluation of complicated 
expressions. 

3. Numerical Dispersion in Plane 
Wave Excitation 

In this section, FDTD errors caused by the nu- 
merical dispersion of an incident plane wave with si- 
nusoidal time dependence are investigated following 
Tafiove [1988, 1995]. Any plane wave with arbitrary 
incidence can be generated with the separate-field 
formulation but with a limited accuracy. One major 
source of error is the numerical dispersion. As the 
incident wave propagates through the 3-D computa- 
tional grid, its phase velocity is changed due to the 
discretization. That is, the numerical phase velocity 
•p of the wave is different than its theoretical phase 
velocity Vp. For this reason, there exists a phase dif- 
ference between the total and the incident fields on 

the total-field/scattered-field boundary, which pro- 
duces an error signal in the FDTD equations. 

The direction-dependent numerical phase velocity 
in the 3-D grid is related to the numerical wavenum- 
ber k through 

•(•, •) - •0/•(•, •). (•) 

The numerical wavenumber •c satisfies the discretized 
dispersion relation 

sin 2 
2 

•cyAy 
sin 2 (2) 

•xx sin 2 
2 

+ [•zSin(•z•Z)] 
in the 3-D FDTD grid, where •x, •v, and •z are 
the x, y, and z components of k. The theoreti- 
cal wavenumber used in the expressions of the CFIF 
computation scheme should be replaced by the nu- 
merical wavenumber •c, which is the solution of equa- 
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tion (2). By doing so, the theoretical and numerical 
phase velocities are matched and the dispersion error 
is significantly decreased. 

In order to quantify the errors created in the plane 
wave generation process, the excitation and propa- 
gation of waves in a homogeneous media are consid- 
ered. A 3-D empty computational domain composed 
of 30 x 30 x 30 Yee cells and terminated by eight-cell- 
thick perfectly matched layers (PML) is set up for 
this purpose. The PML walls are designed to have a 
theoretical normal reflection ratio R(0) of 10 -4 and 
parabolic conductivity profile. The space sampling 
period is A -- 0.625 cm. The time step is selected 
at the Courant stability limit as At - 12.081 ps. 
Separate-field formulation is employed with a total- 
field region of 18 x 18 x 18 cells and a six-cell-thick 
scattered-field region. The incident plane wave val- 
ues are computed with the CFIF scheme. The plane 
wave is incident at 0 - 90 ø and •5 = 45 ø. The in- 
cident electric field is polarized in the z direction, 
and its amplitude is unity. The incident magnetic 
field is polarized in the direction of & -•. The time 
dependence of the incident plane wave is given by 

e(t) = w(t) sin (2•rf0t), 

where f0 = 1 GHz and w(t) is either the unit step 
function or a Hanning window defined as 

0, t <_ 0, 

- 0.5- 0.5 cos 0 < < 
1, otherwise. 

(4) 

Note that w(t) becomes a unit step function when 
L - 0. For L > 0, the Hanning windows help reduce 
the FDTD errors due to the high-frequency compo- 
nents of the excitation signal by smoothing the time 
dependence of the incident plane wave [Giirel and 
O•uz, 1997]. 

Ideally, the fields in the total-field region of the 
FDTD grid should be exactly the same as the in- 
cident plane wave, and the field variables in the 
scattered-field region should be identically equal to 
zero. However, owing to the approximate nature of 
the FDTD method, numerical field variables are ex- 
pected to deviate from their ideal counterparts. The 
deviation, that is, the error, can be computed at each 
time step, in every cell, and for any field component. 
Figures 2a and 2b show the maximum value of the 
error in the E• component over both the total-field 
and scattered-field domains at each time step. Fig- 

ure 2a is obtained using the theoretical wavenumber 
k, whereas Figur_e 2b is obtained using the numeri- 
cal wavenumber k. These error results are obtained 

by using Hanning windows of lengths L = 0, 0.25T0, 
0.5T0, 0.75T0, To, 1.5T0, and 2T0, where To = lifo 
is the period of the sinusoidal time dependence of 
the incident plane wave. The input signal is multi- 
plied by a smoothing window at early times in or- 
der to decrease the errors due to the abrupt change 
at the onset of the input signal which has high- 
frequency components [Giirel and Oyuz, 1997]. The 
zero-length window corresponds to no smoothing at 
the input. Figures 2a and 2b show that the high- 
frequency errors are dominant when no window is 
used. Increasing the window length to L = 0.25To 
improves the results. Figure 2a shows that no fur- 
ther improvement is obtained as the window length is 
further increased using the theoretical wavenumber. 
This is due to the threshold of dispersion errors at 
this level. On the other hand, Figure 2b shows that 
threshold level due to the dispersion errors can be 
significantly reduced using the numerical wavenum- 
ber so that the improvements on the maximum error 
become visible as the window length is increased be- 
yond L - 0.25T0. Note that the window length af- 
fects the high-frequency errors but not the dispersion 
errors, and these results testify to the importance of 
using the numerical wavenumber • in the CFIF com- 
putation scheme. 

The numerical dispersion parameters are employed 
in a different way in the IFA computation scheme. 
The numerical phase velocities of the incident waves 
in both the 1-D and the 3-D grids are calculated us- 
ing equations (1) and (2). Then, the ratio of these 
velocities is used to modify the permittivity and the 
permeability values used in the FDTD equations of 
the 1-D source grid as 

At 1/2 _ Hn-1/2 H'n+m+l/2 - inc, mq-1/2 4' InC• 

'Op(O -- O, q5 -- 0)] 
X (E?nc, m - E?nc, m+l) , (5) 

At n+l n 
Einc, m -- Einc, m + 

Op(O -- O, (/5 -- O) A •5 0 ¸p(O, qS) 
(H,n+l/2 _ Hn+ •/2 X \ inc, m--i/2 inc, re+l/2) ' (6) 

This modification results in the equalization of the 
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Figure 2. Plots of maximum error on Ez obtained by using different lengths of smoothing 
windows and (a) theoretical and (b) numerical wavenumbers. 
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numerical phase velocities in the two grids, which 
is crucial for an accurate excitation of the 3-D grid 
by the 1-D IFA [Taftore, 1995]. Results obtained 
using the IFA excitation scheme with the numerical 
wavenumber and employing various orders of inter- 
polation are presented in the next section. 

4. Incident Field Array (IFA) With 
Higher-Order Interpolation 

The top row of error plots shown in Figure 3 is ob- 
tained by using the numerical wavenumber and em- 
ploying linear interpolation as originally suggested by 
Taftore [1995]. By comparing these relatively high 
error levels with those of Figure 2b for the same win- 
dow lengths, one can easily conclude that although 
the IFA computation scheme is quite efficient, it is 
not as accurate as CFIF. However, it is possible to in- 
crease the accuracy of the IFA scheme by increasing 
the interpolation order in the computations. When 
the interpolation order is increased, the incident-field 
values are related to more points in the 1-D source 
grid. The geometry of the IFA scheme using cubic 
(4-point) interpolation is shown in Figure 4. As the 
IFA computation of an incident-field value uses more 
1-D vector elements, the quality of the output also in- 
creases. In a linear (two-point) interpolation scheme, 
a straight line is assumed to pass through the two 
points. This is a rough estimate for curved func- 
tions such as sinusoidals. Higher-order polynomials, 
such as parabolas or cubic curves, are more suitable 
to model the variation of the incident wave. There- 

fore increasing the interpolation order decreases the 
error in the IFA computations. This improvement 
is depicted in Figure 3, where the results obtained 
by using Hanning windows of lengths 0.5 To, To, and 
2 To are shown for linear, quadratic, cubic, and fifth- 
order polynomial interpolation schemes. With the 
fifth-order interpolation, it is possible to achieve re- 
sults close to the CFIF results. Using a half-period- 
long Hanning window and a fifth-order interpolation 
scheme, the resulting error level is very close to that 
of the CFIF result, for which the same length of 
smoothing window is used. Moreover, the IFA tech- 
nique is still efficient with respect to the CFIF tech- 
nique, as will be discussed in the next section. 

The results of this section imply that together with 
the aliasing errors due to high-frequency components 
[Giirel and O•uz, 1997] and the numerical dispersion 
[Taftore, 1995], the interpolation order has a signifi- 
cant role in determining the error level in the plane 

wave excitations. As long as the smoothing windows 
suppress the high-frequency components sufficiently 
and the phase velocities are matched, the maximum 
error level can be controlled by varying the interpo- 
lation order. 

The usefulness of the error-reducing techniques 
presented in this section are demonstrated using plane 
wave excitations with sinusoidal time dependence. 
However, the applicability of these higher-order in- 
terpolation techniques is not limited to the sinusoidal 
time dependence; they are valid for any arbitrary 
time dependence of the plane waves. 

5. Efficiency of the IFA 
A simple experiment is set up to test the efficiency 

of the IFA technique with higher-order interpolation. 
One million sinusoidal functions are computed with 
closed-form expressions, and the computation time 
is compared with the time spent to perform one mil- 
lion linear, cubic, and fifth-order polynomial inter- 
polations. The experiment is carried out on a Sun- 
SPARC10 workstation. The computation times are 
given in Table 1. 

Clearly, even the fifth-order interpolation is more 
efficient than computing a simple sinusoidal function. 
If a smoothing window is used, which means that a 
second sinusoidal term has to be computed, or if an 
incident wave with a more complicated expression 
is propagated, the computation time for the CFIF 
scheme increases; however, the computation times 
remain the same for the IFA scheme regardless of 
the input expression. 

By examining Table I and Figure 3 together, one 
can see the trade-off between the accuracy of the re- 
sults and the efficiency with which they are com- 
puted. It is important to know that the IFA scheme 
is more efficient than the CFIF scheme even when 

fifth-order interpolation is used to obtain highly ac- 
curate results. 

The computational complexity of an n-dimensional 
FDTD problem with a total of N grid points is 
O(Nn+l/n), where the extra factor of O(N l/n) is 
due to the number of time steps [Chew, 1990]. 
Therefore, for a 3-D FDTD problem, the compu- 
tational complexity is O(N 4/3) since the number of 
time steps is proportional to N 1/3. The interpola- 
tion operations are carried out on a closed surface, 
namely, on the total-field/scattered-field boundary. 
On this connecting boundary, the interpolation oper- 
ations are performed at O(N 2/•) grid points for N 1/• 
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Figure 3. Plots of maximum error levels obtained by using various window lengths and 
interpolation orders. 
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Figure 4. The IFA excitation scheme with in- 
creased interpolation order. Incident-field values in 
the 3-D computational domain are interpolated from 
the closest four elements on the 1-D source grid. 

time steps. Hence the interpolation operations have 
a total computational complexity of O(N), which is 
lower than the complexity of the 3-D FDTD algo- 
rithm. Therefore, no matter how high the order is, 
the interpolation scheme does not add any significant 
computational cost to the FDTD algorithm. 

6. Scattering Results With 
Higher-Order Interpolation 

The effects of using higher interpolation orders can 
be demonstrated by a scattering prbi•em. A square 
metal plate of size 20 x I x 20 Yee cells is modeled 
for this purpose. The plate lies on the x-z plane, in 
the middle of a computational domain consisting of 

Table 1. Computation Times for the CFIF 
Scheme and the IFA Scheme Using Various 
Orders of Interpolation 

Scheme Time, s 

CFIF 5.46 
IFA 

Linear 0.57 

Cubic 2.11 

Fifth-order 3.99 

40 x 20 x 40 cells, which is divided into a total-field 
region of 28 x 8 x 28 Yee cells and a six-cell-thick 
scattered-field region. The incident plane wave is 
identical to the one in section 3. 

The results presented in Figure 5 show the ampli- 
tude of the z component of the induced surface cur- 
rent Jz at an arbitrary point on the plate. The am- 
plitudes of Jz signals are computed at every time step 
with a two-point amplitude-detection scheme, as out- 
lined in the appendix. The amplitude plots of Fig- 
ures 5a-5d are obtained by using linear, quadratic, 
cubic, and fifth-order interpolation schemes, respec- 
tively. A Hanning window of length 0.5 To is used in 
all simulations. Figure 5 shows the improvement in 
the convergence error of the [Jz[ variable as the in- 
terpolation order is increased. The results obtained 
with two-point interpolation in Figure 5a converge 
to a completely different value than the others. The 
amplitudes of the steady state oscillations in Fig- 
ure 5b are decreased to a much lower level in Fig- 
ure 5c by changing the interpolation from quadratic 
to cubic. Increasing the interpolation order to 5 in 
Figure 5d makes no significant improvement on the 
results obtained by cubic interpolation in Figure 5c. 
However, there is a slight difference in the ampli- 
tude levels that the two signals converge to. These 
results demonstrate various degrees of improvement 
obtained by using progressively higher orders of in- 
terpolation. Compared with the steady state value 
depicted in Figure 5d, the errors in Figures 5a-5c 
are 0.14%, 0.0021%, and 0.00062%, respectively, for 
the induced surface current on the patch. Similarly, 
the RCS values computed from the currents of Fig- 
ure 5a are 0.13% in error compared with the that of 
the Figure 5d. 

7. Conclusions 

In this paper, we have demonstrated that match- 
ing the phase velocity of the incident plane wave to 
the numerical phase velocity imposed by the numer- 
ical dispersion of the 3-D FDTD grid is crucial for 
obtaining accurate plane wave excitation. This ob- 
servation holds for both the CFIF and the IFA exci- 

tation schemes in the separate-field formulation. In 
general, the IFA scheme is more efficient than, but 
not as accurate as, the CFIF scheme. We have shown 
that it is possible to increase the accuracy of the 
IFA scheme by using higher-order interpolation tech- 
niques in the process of transferring the incident-field 
values from the 1-D IFA grid to the 3-D FDTD grid. 
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Figure 5. Amplitude plots for Jz at a single point on the surface of a metal plate us- 
ing a Hanning window of length L - To/2. The interpolation schemes are (a) linear, 
(b) quadratic, (c)cubic, and (d)fifth-order. 

These higher-order interpolation techniques can be 
used for the excitation of plane waves with arbitrary 
time dependence. 

Appendix: Two-Point Amplitude and 
Phase Detection 

Figure 5 presents amplitude plots of a current com- 
ponent as the result of a scattering problem. The 
amplitudes and phases of the sinusoidal steady state 
signals are computed with a simple but accurate 
method. Assuming a discrete sequence obtained by 

sampling a pure sinusoidal signal, the amplitude and 
phase values can be extracted from two consecutive 
samples. The signal values at these time steps can 
be written as 

Asin (a•tl -]- •b) -- ½1, (A1) 
Asin(wt2-Fc•) - c2, (A2) 

where the time instants tx and t• are related to each 
other by 

t2 -- tl -F At. (A3) 

Thus we have a nonlinear system of two equations 
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with two unknowns. The unknown parameters are A 
and •5, the amplitude and phase of the signal. Solv- 
ing equations (A1) and (A2) for these two unknowns 
yields 

•5 arctan (cot coat c2 ) - cscwAt - t•, (A4) 
c1 

A - csc wAtV/(c• sin war)2+ (Cl cos war - c2)2. (A5) 
Note that most of the trigonometric operations in 
the above are independent of t•, t2, c•, and c2. Thus 
they can be computed only once and used several 
times. Then, equations (A4) and (A5) require the 
computation of one inverse tangent and one square 
root operators. Therefore equations (A4) and (A5) 
can be efficiently used at any two consecutive time 
instants, perhaps at every FDTD time step. By do- 
ing so, one can easily and efficiently keep track of 
the convergence of the signals to their steady state 
values, without having to wait several periods of the 
signal after the convergence. 

Equations (A4)and (A5)are derived assuming 
perfect sinusoidals. Thus any perturbations on the 
finite difference data distort the phase and ampli- 
tude computations. However, this distortion is in 
the same order as the amplitude of the error on the 
input signal. Therefore the two-point algorithm does 
not decrease the accuracy set by the FDTD method. 
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