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Energy spectrum for two-dimensional potentials in very high magnetic fields

Z. Gedik and M. Bayindir
Department of Physics, Bilkent University, Bilkent 06533 Ankara, Turkey

~Received 10 March 1997; revised manuscript received 29 May 1997!

A method, analogous to supersymmetry transformation in quantum mechanics, is developed for a particle in
the lowest Landau level moving in an arbitrary potential. The method is applied to two-dimensional potentials
formed by Diracd scattering centers. In the periodic case, the problem is solved exactly for rational values of
the magnetic flux~in units of flux quantum! per unit cell. The spectrum is found to be self-similar, resembling
the Hofstadter butterfly@Phys. Rev. B14, 2239~1976!#. @S0163-1829~97!06436-9#
n
f

tie

v
te
b
c
he
e
b

f a
nd
th

er

t
al
tri
e
th
u
ly
ar
a

an
flu
m

te

th
he
en

a
ev
a
it

or

th
da
en

vel
s far
ter

eld

s

e

e
a

m-
In recent years, the energy spectrum of two-dimensio
electron systems have attracted great interest, because o
relevance of the problem to the magnetotransport proper1

and in particular to the quantum Hall effect.2 It is believed
that the physics of the integer quantum Hall effect is go
erned by the interaction of electrons with a disordered po
tial, which leads to a localization of the eigenfunctions. O
served conductance steps can be explained by a sequen
localization-delocalization transitions. Quantization of t
Hall conductance due to periodic potentials has also b
studied.3,4 In this case, the presence of steps is explained
the gaps in the energy spectrum.

There are two opposite approaches to the problem o
electron moving in a periodic potential: the tight-binding a
the nearly-free-electron methods. In the first approach,
magnetic field is introduced via Peierls substitution, wh
the matrix elements are multiplied by exp@(iq/\c) *A•dl#.5

On the other hand, in the case of nearly free electrons,
Landau-level structure is essential, and the lattice potenti
introduced via intra- and inter-Landau-level scattering ma
elements. The duality between the position and the mom
tum in quantum mechanics leads to similarities between
two methods. In the presence of a magnetic field, the sec
equations for the two limits, the tight-binding and the near
free-electron approach, with certain approximations,
identical.6 The characteristic feature of the problem is th
the secular determinant for the limit of infinite crystals c
be reduced to a finite determinant, when the magnetic
per unit cell is a rational number in units of the flux quantu
The tight-binding case was studied by Azbel’7 and
Hofstadter,8 who showed that the system has a complica
self-similar spectrum.

In this work, an approach is developed for a particle in
lowest Landau level moving in an arbitrary potential. T
method is used to obtain the energy spectrum in the pres
of Dirac d potentials. The difficulty with the Diracd poten-
tial is that, even if the inter-Landau-level couplings are sm
and can be neglected, there is a strong intra-Landau-l
mixing. The formalism developed in this study leads to
eigenvalue problem where the coupling between distant s
become negligibly small. Moreover, since the problem is f
mulated in real space, the distribution of Diracd potentials
can be arbitrary. In spite of the sharpness of the potential,
assumption that a particle is confined into a single Lan
level is consistent with the result that shifts in energy eig
560163-1829/97/56~19!/12088~4!/$10.00
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values are very small in comparison to inter-Landau-le
separation. The method can be used for any potential, a
as the particle is confined into the lowest Landau level. Af
presenting the method, the case of Diracd scattering centers
will be solved for periodic distribution.

The Hamiltonian for a particle of massm and chargeq,
moving in two dimensions in the presence of magnetic fi
B5¹3A, perpendicular to the plane and potentialV, is
given byH5H01V, where

H05
1

2m S p2
q

c
AD 2

. ~1!

Using the symmetric gaugeA5 1
2 B3r and complex coordi-

natesz5X1 iY5AqB/2\c(x1 iy), wherer5(x,y), the un-
perturbed Hamiltonian can be written asH05a†a, where
a†52]/]z1z* /2. Since@a,a†#51, the energy eigenvalue
are given byEn5\v(n11/2), wherev5qB/2mc ~q is as-
sumed to be positive! and n50,1,2,. . . . The ground-state
wave functions are of the formf (z)e2uzu2/2. Here f (z) is any
analytic function ofz. A basis for the infinitely degenerat
ground state is formed by

fm~z,z* !5
zm

Apm!
e2uzu2/2, ~2!

with m50,1,2,. . . . When the magnetic field is very high th
particle is confined into the lowest Landau level. This is
good approximation as long as the potential is small in co
parison to Landau-level splitting\v. The problem is reduced
to the diagonalization of the matrixV, whose entries are
given by

^muVum8&5E E fm* ~z,z* !V~z,z* !fm~z,z* !d2z, ~3!

whered2z5dx dy. Let A andB be defined by

Am,zz* 5fm* ~z,z* !AV~z,z* !,
~4!

Bzz* ,m5AV~z,z* !fm~z,z* !.

ThereforeV5AB. For positiveV(z,z* ), A5B†. Now con-
sider the operatorṼ5BA. Any eigenvalueE associated with
the eigenketuc̃& of the operatorṼ5BA is also an eigenvalue
12 088 © 1997 The American Physical Society
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of the operatorV5AB, except whenAuc̃&50. The corre-
sponding ket is given byuc&5E21/2Auc̃&. Similarly, any
eigenvalueE associated with the eigenketuc& of the operator
V5AB is also an eigenvalue of the operatorṼ5BA, except
when Buc&50, and the corresponding ket is given b
uc̃&5E21/2Buc&. Therefore it is enough to diagonalizeṼ,
instead ofV, to find the energy eigenvalues, except for t
ground state. This method is analogous to supersymm
quantum mechanics pioneered by Witten.9 Substitution ofA
andB yields

^zz* uṼuz8z8* &5S V~z,z* !

p D 1/2

ezz8* 2uzu2/22uz8u2/2

3S V~z8,z8* !

p D 1/2

. ~5!

WhenV(z,z* ) is negative,Ṽ5BA is not Hermitian, but the
eigenvalues are still real. The method can be applied to
problem in the lowest Landau level, but its advantages w
be demonstrated for the potential

V~r !5V0(
i

d~r2r i !. ~6!

In this case,z and z8 become discrete variables, and t
matrix to be diagonalized is

^ i uṼu j &5
V0

p
ezizj* 2uzi u

2/22uzj u
2/2. ~7!

It is interesting to note that the matrix elements are v
similar to those of the tight-binding problem. Phase is no
ing but the usual Peierls factor.^ i uṼu j & and ^muVum8& have
the same spectrum except for the ground state. LetNi be the
number of impurities andN be the number of states, both o
which go to infinity, so thatNi /N→r. HenceṼ andV have
Ni and N eigenvalues, respectively. The larger one h
uNi2Nu zero eigenvalues. IfNi,N, N2Ni eigenvalues ofV
will be zero. Ṽ filters the nonzero eigenvalues ofV. How-
ever, if Ṽ itself gives zero eigenvalues, the situation must
examined carefully to distinguish the zero eigenvalues fr
the extra zeros. OnceṼ is diagonalized, the eigenfunctions o
V can be constructed by actingA on the eigenvectors ofṼ.
The impurities can be distributed in an arbitrary way.

The problem of an electron in a magnetic field interact
with point impurities has been discussed extensively in
literature.10–15 It has been shown that the zeros of the wa
function can be adjusted to coincide with the locations of
scatterers if the concentration of the scatterers is low eno
This corresponds to theNi,N case discussed above. Th
presence ofN2Ni energy eigenvalues unaffected by the im
purities is a direct consequence of the dimensionality of
matrix to be diagonalized. Furthermore, the method gives
full energy spectrum for any distribution of impurities.
must be noted that Diracd potentials have some peculiaritie
in two dimensions. They do not cause scattering, irrespec
of their strength. However, in the presence of a magn
field energy and length scales are introduced, and they
to nontrivial spectra.
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For regularly distributed impurities the problem can
handled by introducing periodic solutions. For simplicity th
square lattice case will be investigated. Generalization to
arbitrary lattice is straightforward. Now, the impurity pos
tions are given byrmn5d(m,n), wherem andn are integers
andd is the lattice constant. The matrix elements becom

^mnuṼum8n8&5
V0

p
expF2p

f

f0
S ~m2m8!21~n2n8!2

2

1 i ~mn82nm8! D G , ~8!

wheref is the magnetic flux passing through a unit cell~or
flux per impurity!, andf0 is the flux quantum~note that the
ratio of the area of the system to the number of states isp!.
When f/f0 is a rational number the system becomes pe
odic. Letf/f05a5p/q, wherep andq are relatively prime
integers then̂ mnuṼum8n8& is left invariant under 2q trans-
lations along lattice axes. Ifp is even, the matrix element
become periodic with periodq instead of 2q. In any case, as
long asa is rational, the eigenvectorsunk& have the property
that

^Rtunk&5^0tunk&eik•R, ~9!

whereR fixes the 2q32q ~or q3q) unit cell andt denotes
the position of the impurity in the cell. Heren is an integer
~band index! and k is a two-dimensional vector. Hence th
problem is reduced to determination of the coefficie
^0tunk&, which satisfy

(
t

Ṽtt8~k!^0t8unk&5Enk^0tunk&, ~10!

where

Ṽtt8~k!5(
R

^RtuṼu0t8&eik•R. ~11!

Given the flux ratioa, the energy eigenvaluesEnk can be
found by diagonalizing 4q234q2 matrix Ṽtt8(k). However,
this does not imply that there will be 4q2 energy bands. If
the problem is formulated in the Landau gauge, the ad
tional symmetry can be seen easily. It turns out that unit c
has dimensions 13q, and hence there will beq bands. The
symmetric gauge leads to a simple formulation of the pr
lem but in the meantime some symmetries are obscured

In Fig. 1 energy bands fora5 4
3 and a5 10

7 are plotted.
There are three and seven energy bands, respectively. U
the relationuc&5E21/2Auc̃&, it is possible to find the corre
sponding eigenfunctionc~r ! of the original problem. Since
c~r ! belongs to the lowest Landau level it must be in t
form of f (z)e2uzu2/2, where f (z) is any analytic function.
Analytic functions are determined by their zeros. Consid
ing the translational invariance of the system one expect
have regularly distributed zeros. Figure 2 shows the cont
plots of uc~r !u for a52. This value of the flux ratio is very
special in that all of the matrix elements^mnuṼum8n8& be-
come real, and the problem reduces to a tight-binding s
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FIG. 1. Energy bands over one-quarter of the magnetic Brillo

zone for ~a! a5
4
3 and ~b! a5

10
7 . The energy eigenvaluesEk are

plotted in units ofV0 /p.

FIG. 2. Contour plots ofuck(r )u for a52. Zeros are marked
with * . ~a! kx5ky50, ~b! kx5Ap/2 and ky50, ~c! kx50 and
ky5Ap/2, and~d! kx5ky5Ap/2.
tem. For this particular case, energy eigenvaluesEk and
eigenfunctionsck can be found explicitly in terms of the
theta function

u3~zut!5 (
n52`

`

exp~p i tn2!exp~2np iz!, ~12!

which vanishes atz5( l 11/2)1(m11/2)t, wherel and m
are any integers. It can be shown that

Ek5
V0

p
u3S kx

A2p
U2i D u3S ky

A2p
U2i D ~13!

and

ck~z,z* !5ce2uzu2/2u3S z1 ikx

iA2p
U i D u3S z2ky

A2p
U i D , ~14!

whered is the lattice constant andc is chosen to normalize
ck(z,z* ) properly.ck(z,z* ) has regularly distributed zeros
For k50, the zeros of the twou3 functions coincide, and
they become double zeros. ForkÞ0, they shift by an amoun
2 ikx andky , respectively.

Figure 3 shows energy~measured in units ofV0 /p! ver-
sus the flux ratio for the square lattice. Here the labelsn and
k have been suppressed, i.e.,Enk values have been projecte
on to the energy axis. The energy spectrum is found to
self-similar, i.e., the same pattern is repeated with a differ
size and in a slightly distorted shape. With increasing fl
ratio, the spectrum is squeezed since the amplitude of
matrix elements decreases with distance in a Gaussian w

In conclusion, a method for the evaluation of the ener
spectrum of a particle in the lowest Landau level, moving
an arbitrary potential, has been developed. The problem
Dirac d scattering centers has been solved for demonstrat
The periodic case was found to have a self-similar spectr
The method is very general, since it can be applied not o
to any distribution of impurities but any potential, as far
the particle is confined into the lowest Landau level. For
random distribution of scatterers,16 the calculated density o
states is in perfect agreement with the analytic result

n

FIG. 3. Energy eigenvalues vs magnetic flux~in units of flux
quantum! per unit cell for square lattice.
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Brezin, Gross, and Itzykson.17 For a continuous potential, th
matrix elements are labeled by continuous indices, and he
the proposed approach may not be as practical as it is in
Dirac d type potential case.
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