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Energy spectrum for two-dimensional potentials in very high magnetic fields
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A method, analogous to supersymmetry transformation in quantum mechanics, is developed for a particle in
the lowest Landau level moving in an arbitrary potential. The method is applied to two-dimensional potentials
formed by Diracé scattering centers. In the periodic case, the problem is solved exactly for rational values of
the magnetic fluxin units of flux quantumper unit cell. The spectrum is found to be self-similar, resembling
the Hofstadter butterflyPhys. Rev. Bl4, 2239(1976]. [S0163-182607)06436-9

In recent years, the energy spectrum of two-dimensionavalues are very small in comparison to inter-Landau-level
electron systems have attracted great interest, because of tbeparation. The method can be used for any potential, as far
relevance of the problem to the magnetotransport propértiess the particle is confined into the lowest Landau level. After
and in particular to the quantum Hall effectt is believed — presenting the method, the case of Difdscattering centers
that the physics of the integer quantum Hall effect is gov-Will be solved for periodic distribution.
erned by the interaction of electrons with a disordered poten- The Hamiltonian for a particle of mass and chargey,
tial, which leads to a localization of the eigenfunctions. Ob-moving in two dimensions in the presence of magnetic field
served conductance steps can be explained by a sequenceBof VXA, perpendicular to the plane and potentigl is
localization-delocalization transitions. Quantization of thegiven byH=Hq+V, where
Hall conductance due to periodic potentials has also been )
studied®* In this case, the presence of steps is explained by Y 1 ( _ SA) o
the gaps in the energy spectrum. 0 P C '

There are two opposite approaches to the problem of an
electron moving in a periodic potential: the tight-binding andUsing the symmetric gaugé=3Bxr and complex coordi-
the nearly-free-electron methods. In the first approach, theatesz=X+iY = qB/2fc(x+iy), wherer=(x,y), the un-
magnetic field is introduced via Peierls substitution, whereperturbed Hamiltonian can be written &k=a'a, where
the matrix elements are multiplied by éxg/%ic) [A-dI].°>  a'=—a/9z+2z*/2. Since[a,a’]=1, the energy eigenvalues
On the other hand, in the case of nearly free electrons, thare given byE,=#Aw(n+ 1/2), wherew=qB/2mc (q is as-
Landau-level structure is essential, and the lattice potential isumed to be positiyjeand n=0,1,2,.... The ground-state
introduced via intra- and inter-Landau-level scattering matrixyave functions are of the fom(z)e*\ZIZ/Z_ Heref(z) is any
elements. The duality between the position and the momemnalytic function ofz. A basis for the infinitely degenerate
tum in quantum mechanics leads to S|m|Ia_r|t|¢s between thground state is formed by
two methods. In the presence of a magnetic field, the secular

equations for the two limits, the tight-binding and the nearly- Zm 5
free-electron approach, with certain approximations, are dm(z,2°)= e 472, 2
identical® The characteristic feature of the problem is that m!

the secular determinant for the limit of infinite crystals can,yith m=012. .. When the magnetic field is very high the
be reduced to a finite determinant, when the magnetic fluyayticle is confined into the lowest Landau level. This is a
per unit cell is a rational number in units of the flux quantum.qqq4 approximation as long as the potential is small in com-

. . . . AT
The tight-binding case was studied by Azbeland  ,arson to Landau-level splittinw. The problem is reduced
Hofstadter; who showed that the system has a complicateqy the diagonalization of the matri¥, whose entries are

self-similar spectrum. given by
In this work, an approach is developed for a particle in the
lowest Landau level moving in an arbitrary potential. The
method is used to obtain the energy spectrum in the presence (m|V|m’>=f f I,V (2,2%) pm(2,2%)d%z,  (3)
of Dirac § potentials. The difficulty with the Diraé poten-
tial is that, even if the inter-Landau-level couplings are smalwhered?z=dx dy. Let A andB be defined by
and can be neglected, there is a strong intra-Landau-level

mixing. The formalism developed in this study leads to an Am oz =dn(2,2°)VV(2,2*), 4
eigenvalue problem where the coupling between distant sites “)
become negligibly small. Moreover, since the problem is for- B,z m= VV(Z,2°) pn(2,Z%).

mulated in real space, the distribution of Dirdgotentials . . +

can be arbitrary. In spite of the sharpness of the potential, théhereforeV=AB. For positiveV(z,z*), A=B'. Now con-
assumption that a particle is confined into a single Landagider the operatov=BA. Any eigenvalueE associated with
level is consistent with the result that shifts in energy eigenthe eigenkety) of the operatoV =BA is also an eigenvalue
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of the operato’V=AB, except Whem@):o_ The corre- For regularly distributed impurities the problem can be
sponding ket is given byy)=E Y2A|y). Similarly, any handled by introducing periodic solutions. For simplicity the
eigenvalueE associated with the eigenkiey of the operator ~ Sauare Iattlcg case WI|'| be investigated. Gen(_erallza'\tmn to an
V=AB is also an eigenvalue of the operaibft BA, except arbitrary lattice is straightforward. Now, the impurity posi-

when BJy)=0, and the corresponding ket is given by A8 SR B (L e e
|)y=E~Y2B|y). Therefore it is enough to diagonalixé '

instead ofV, to find the energy eigenvalues, except for the Vv b [(M=—m')2+(n—n")?
ground state. This method is analogous to supersymmetric <mn|\7|m’n’>= —Oex;{—w—(
m

quantum mechanics pioneered by WitteBubstitution ofA $o 2
andB yields
+i(mn’—nm’)”, (8)
- V(Z,Z*) 12 % _|5|219_ |52
<ZZ*|V|Z'Z'*>=( ) e?? z|%12—|2'|4/2 . . . .
where ¢ is the magnetic flux passing through a unit delt

(5) ratio of the area of the system to the number of states).is
When ¢/ ¢, is a rational number the system becomes peri-

WhenV(z,z*) is negative,Vz BA is not Hermitian, but the odic. Let/ ¢o=a= p/,q,/wherep gndq.are relatively prime
ntegers thekmn|V|m’n’) is left invariant under § trans-

eigenvalues are still real. The method can be applied to an>/ ; | Iatt ; h el
problem in the lowest Landau level, but its advantages willations along lattice axes. |f is even, the matrix elements

(V(z’ z’*)) 112 flux per impurity, and ¢ is the flux quanturmnote that the
—Q ]

be demonstrated for the potential become periO(_jic with perioq instead of 2. In any case, as
long asa is rational, the eigenvectofsk) have the property
that
V(N)=Vo2 8(r=rp). (6) _
! (R7|nk)=(07|nk)e'* R, (9

In this case,z and z' become discrete variables, and the

matrix to be diagonalized is whereR fixes the 21X 2q (or gXq) unit cell andr denotes

the position of the impurity in the cell. Hemre is an integer

_ Vv (band index andk is a two-dimensional vector. Hence the

(V]j)= —er7 ~lal?i2-lz2 (7)  problem is reduced to determination of the coefficients
m (07|nk), which satisfy

It is interesting to note that the matrix elements are very

similar to those of the tight-binding problem. Phase is noth- > V. (K){07' [nk)=E(07|nk), (10
ing but the usual Peierls factqfi|V|j) and(m|V|m’) have T

the same spectrum except for the ground stateN; dde the
number of impurities antll be the number of states, both of
which go to infinity, so thalN;/N— p. HenceV andV have
N; and N eigenvalues, respectively. The larger one has T/TT,(k)ZE <R7-|T/|07-')eik'R_ (12)
IN; — N[ zero eigenvalues. N; <N, N—N; eigenvalues o¥/ R

will be zero.V filters the nonzero eigenvalues d. How-

where

Given the flux ratioe, the energy eigenvalues,, can be

e e U by digonalzing . mairi Y. (1) Hoveer
~ ) ) ) Mhis does not imply that there will beg4 energy bands. If

the extra zeros. Oncé is diagonalized, the eigenfunctions of 4 problem is formulated in the Landau gauge, the addi-
V can be constructed by actigon the eigenvectors 6f.  tional symmetry can be seen easily. It turns out that unit cell
The impurities can be distributed in an arbitrary way. has dimensions g, and hence there will bg bands. The

The problem of an electron in a magnetic field interactingsymmetric gauge leads to a simple formulation of the prob-
with point impurities has been discussed extensively in thgem but in the meantime some symmetries are obscured.
literature.”" It has been shown that the zeros of the wave | Fig. 1 energy bands for=2 and =2 are plotted.
function can be adjusted to coincide with the locations of th here are three and seven enerav bands. respectively. Usin
scatterers if the concentration of the scatterers is low enough. : i 9y ) T P Y- 9
This corresponds to thdl,<N case discussed above. The the relation|y)=E~"*A|y), it is possible to find the corre-
presence oN— N, energy eigenvalues unaffected by the im- sponding eigenfunctior) of the original problem. Sl_nce
purities is a direct consequence of the dimensionality of thd/(") Pelongs to the lowest Landau level it must be in the
matrix to be diagonalized. Furthermore, the method gives théorm of f(z)e 142 where f(z) is any analytic function.
full energy spectrum for any distribution of impurities. It Analytic functions are determined by their zeros. Consider-
must be noted that Diraé potentials have some peculiarities ing the translational invariance of the system one expects to
in two dimensions. They do not cause scattering, irrespectivBave regularly distributed zeros. Figure 2 shows the contour
of their strength. However, in the presence of a magneti®lots of |¢Ar)| for a=2. This value of the flux ratio is very
field energy and length scales are introduced, and they leagbecial in that all of the matrix elementsanV|m'n’) be-
to nontrivial spectra. come real, and the problem reduces to a tight-binding sys-
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FIG. 3. Energy eigenvalues vs magnetic flix units of flux
quantum per unit cell for square lattice.

tem. For this particular case, energy eigenvaligsand
eigenfunctionsy, can be found explicitly in terms of the
theta function

o

03(z]7)= >, exp(mirndexp2nmiz), (12)

which vanishes ar= (I +1/2)+ (m+ 1/2)7, wherel andm
are any integers. It can be shown that

FIG. 1. Energy bands over one-quarter of the magnetic Brillouin

zone for(a) a:‘g‘ and (b) a=l—70. The energy eigenvaluds, are
plotted in units ofVy /.
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FIG. 2. Contour plots of 4 (r)| for a=2. Zeros are marked
with *. (a) ke=k,=0, (b) ky=+m/2 andk,=0, (c) k=0 and

k=772, and(d) k,=k,= \/m/2.

LD 2')0 o 2') (13)
=— 0| —|2i ——|2i
K3 \2ar 3 \2a
and
z+ik z—k
2,7%)=ce 142 i gy —= i), 14
‘//k( ) 3 I\/E 3 \/ﬂ ( )

whered is the lattice constant andlis chosen to normalize
I (z,2*) properly. ¥y (z,z*) has regularly distributed zeros.
For k=0, the zeros of the twa@; functions coincide, and
they become double zeros. Hot 0, they shift by an amount
—ik, andk,, respectively.

Figure 3 shows energimeasured in units o¥ /) ver-
sus the flux ratio for the square lattice. Here the labedsd
k have been suppressed, i, values have been projected
on to the energy axis. The energy spectrum is found to be
self-similar, i.e., the same pattern is repeated with a different
size and in a slightly distorted shape. With increasing flux
ratio, the spectrum is squeezed since the amplitude of the
matrix elements decreases with distance in a Gaussian way.

In conclusion, a method for the evaluation of the energy
spectrum of a particle in the lowest Landau level, moving in
an arbitrary potential, has been developed. The problem of
Dirac & scattering centers has been solved for demonstration.
The periodic case was found to have a self-similar spectrum.
The method is very general, since it can be applied not only
to any distribution of impurities but any potential, as far as
the particle is confined into the lowest Landau level. For the
random distribution of scatteret$the calculated density of
states is in perfect agreement with the analytic result of
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