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Abstract 

The quantum phase properties of radiation in the Jaynes-Cummings model for an electric dipole transition are examined. 
It is shown that due to the conservation of the angular momentum the quantum “phase information” is coherently transmitted 
from the atom to radiation and vice versa. @ 1997 Elsevier Science B.V. 

The quantum phase in the Jaynes-Cummings model 

(JCM) has been examined in a huge number of pa- 
pers (see, for a review, Refs. [l-3]). Most of them 

are based on the approach proposed in the pioneer- 

ing paper by Dirac [4] and developed by a number 
of authors. Among the principal contributions to this 

approach Refs. [5-101 should be mentioned. In this 
approach, the Hermitian phase and/or cosine and sine 
of the phase operators are expressed in terms of the 
Weyl-Heisenberg algebra of photons or, equivalently, 
via the proper phase states. In spite of a number of 
interesting and important results, the basis and inter- 
pretation of this approach still meet some difficulties 

(e.g. see Ref. [ Ill) . 

Another approach, directly connected with the 
analysis of various experimental schemes for measur- 
ing phase properties, is based on the consideration of 
phase distributions [ 12- 151. The idea of determining 
the phase in terms of what can be measured in a real 
experiment has been developed recently in the oper- 
ational approach [ 161. The results of this approach 
amount to measuring the phase distribution for the 

signal field [ 17-191 and allow the existence of a 

unique intrinsic quantum phase [ 201. 

In a new approach [ 211, complementary, in some 
sense, to the operational approach, the quantum phase 
of radiation is treated in terms of what can be gener- 
ated by a source. Since the vacuum state of the field 

has a uniform phase distribution, it is natural to sup- 
pose that the photons obtain their phase properties 

in the process of generation and then transport these 
properties to a detecting device. Hence, the phase of 

the radiation should be determined by some proper- 
ties of the source. The use of the angular momentum 

conservation in the process of radiation seems to be a 

reasonable way to describe the phase properties, be- 

cause all other conservation laws do not contain any 
nontrivial phase dependence [ 22,231. 

In the present paper, we turn our attention to a de- 
tailed discussion of the source-based approach [ 2 I] 
in terms of the JCM, describing an electric dipole 
(E(l)) transition. Using the polar decomposition of 
the atomic SU(2) algebra [ 241, we determine the 
phase properties of the angular momentum of the ex- 
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cited atomic state. Then, we employ the angular mo- 
mentum conservation to determine the quantum phase 
properties of the radiation. 

We restrict ourselves to the electric dipole (EC’ ‘) 
transition. According to the selection rules for E(‘) 
transition, the angular momenta of initial and final 
states differ by 1 and the states have opposite par- 
ity. We choose the angular momentum of the excited 

atomic state as j = 1. Then, for the ground state, 
j’ = 0. The quantum numbers, determining projections 

of the angular momentum on the Z-axis are m = 0, 
i 1 and m' = 0, respectively. Thus, the two-level atom 
has a triple degenerated excited state. The transition 

(j= I,m=O)++(j'= 0, m' = 0) creates a pho- 
ton with linear polarization directed along the Z-axis 

while the transitions (j = 1, m = fl) ++ (j’ = 0, 

m' = 0) give rise to the circularly polarized photons 
with positive and negative helicity respectively (see, 

e.g., Ref. [ 251). We denote the atomic states as fol- 
lows: lint,) = Ij = 1, m = 0, &l), IlG) = Ij’ = 0, 
m' = 0). Then, the JCM under consideration is speci- 

fied by the Hamiltonian 

H=& oa,$,,, + SOL,, + ig( Loa,,, - azRcnI) 1 , 
rl,=- I 

g = D c4w;/hVw” 
J (1) 

where R,p - ~~a)(~~~, the operators a,, af describe 
the electric dipole photons, w is the radiation fre- 
quency. wo is the transition frequency, and g is the 

coupling constant, depending on the effective dipole 
factor D and the volume of quantization V. Simi- 
lar Hamiltonians have been considered in many prob- 

lems of quantum optics and solid state physics (see 
Refs. [ 26,271 and references therein). 

The $!I( 2) algebra, describing the angular momen- 

tum of the excited atomic state, is characterized by the 
generators 

J, = R+~+ - R__, 

J+ = v%R+o+ Roe>, 

J_ = h-( Ro+ + R-o) . (2) 

The enveloping algebra of (2) contains the Casimir 

operator 

J2 = 2( R,, + Roe + R__) = 2 x 1, (3) 

where 1 is the unit operator in the three-dimensional 
space of the excited atomic state. The existence 
of (3) permits us to determine the polar decomposi- 

tion of (2) using the unitary exponential of the phase 
operator E such that J+ = J,E and J- = E + J, where 
Jr is the Hermitian radial operator [24]. It follows 
from (2) and (3) that 

E= J+/ih+e’*R_,, Jr= &Cl- R__), (4) 

where + is an arbitrary real parameter describing the 
atomic reference phase. Employing Eq. (4) then gives 

the cosine and sine of the atomic phase operators of 
the form 

G /SE+ 
A- 

2 

= i&(1+ + J_) + &(e’@R_+ +e~‘~R+_), 

E-E+ 
s/, = ~ 

2i 

= -!---(J+ -J_) + A(e’*R_+ -e’@R+_). 
2i& 

(5) 

Clearly (5) are the Hermitian operators, Ci + S$ = 1, 
and [CA, SA] = 0. 

The sub-algebra SU( 2) in the Weyl-Heisenberg al- 
gebra corresponding to the Et” photons is determined 

by the generators [ 28,251 

M, = c maia,,, 

n1=-I 

M+=dZYa~a~+ao+a-), 

M- =JZ(ao+a+ +a+_ao). (6) 

It is clear that [J, + M,, H] = [ Jk + M*, H] = 0. 
However, there is a principal difference between the 

SU( 2) algebra (2) and the sub-algebra (6). Precisely, 
unlike Eq. (3), the Casimir operator M2 of (6) can- 
not be defined as a C-number in the whole Hilbert 
space describing the radiation field. Therefore, the po- 
lar decomposition of the field angular momentum (6) 
cannot be determined. 

At the same time, the conservation of the total angu- 
lar momentum [J + M, H] = 0 permits us to choose 
the operator constructions which complement the co- 
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sine and sine operators (5) with respect to the inte- 
grals of motion. These constructions clearly are [ 211 

c =K” M+-+-M- 
R 

2 ( fi 
+ e’+af_a+ + e-‘*a:,_ 

> 
, 

&cj =K” M+-M- 
R 

C 2i Jz 
+ e’@a+_a+ - e-‘*a:,_ , 

J 
(7) 

where Kc, K, are some constants. Since the photons 
in the process of generation take away the angular 
momentum of the excited atomic state one can choose 

to interpret the operators (9) as the cosine and sine of 

the phase of the angular momentum of radiation. 
In analogy to (5), the Hermitian operators (7) com- 

mute with each other. Hence, they can be measured at 
once. They also commute with the total photon num- 
ber n = C,, aia, and do not commute with any of 

II,,, = + a,, anI. 
As an ordinary JCM, model ( 1) can be solved ex- 

actly. Consider first the case when the atom is pre- 
pared initially in a linear mixture of two excited states 

p / I+) +q1 / -), where p, q are complex parameters such 

that IpI2 + 1qj2 = 1. The field is initially in the vacuum 
state. Then the radiation of two circularly polarized 

modes occur. As can be seen from the definitions (7)) 

the terms with Mi do not contribute to the average 
cosine and sine in this case. The time-dependent av- 

erages of (7) are 

Kc (CR)r = -( e”a+a+ + e- 
2 

i+aTa_)t, 

KS ifi+ (SR)I = Y(e U_U+ - e 
21 

-i9a+_a+),, . (8) 

These averages formally coincide with the time- 
dependent Stokes parameters [29] describing the 
cosine and sine of the classical phase difference be- 
tween two circularly polarized modes shifted by an 
arbitrary reference phase $. Thus, the definition (7) 
is consistent with the classical definition of the phase 
difference between two modes with the opposite he- 
licities. Explicit forms of the averages (8) clearly are 

(SK), = Ipql sin’gtsin(6+_ + #> . (9) 

Here 6+_ z arg p - arg q and we put w = 00 for sim- 
plicity. Parameters Kc, K, = 1 due to the conservation 

laws 

(CA + CR), = Ipq1 cos(8+- + $>v 

@A + ~R)I = Ipq1 sin(a+- f 9) . 

Since there is no loss in generality in choosing $ = 0, 

one can see from (9) that the evolution of the Stokes 
parameters is completely determined by the param- 

eters of the atomic subsystem p, q and g. Although 

the averages (S), (9) are independent of M*-terms 
in (7)) these terms contribute to the variances 

K(CR> = sin2@[ i( l + ]pq]cos6+_) 

- lpq12cos2(S+_ + #) sin2 gt] , 

K(sR) = sin2gt[ $_( l - lpq/ toss+_) 

- (pq12 sin2(6+_ + +) sin’gt] . 

Let us stress here that Vt(Ci + Si)t = 1 while (Ci + 
Si), = sin2 gt. The above consideration can be easily 

generalized to the case of the initial state (pi I+) + 

q/j-) + rllO))lO,O, 0) with IpI2 + (q12+ (r-l2 = 1. For 
example, instead of (9) we get 

(CR), = [ b-1 cm a+0 + 19’1 cos 6-0 

+ Ipq/ cos(6+- + +) I sin2gt, 

(&)r = [Iprl sina+ f Iqrl sina_0 

+ Ipqj sin(6+- + @) I sin2gt. 

Here S+a = argp - argr and 6-c = argq - argr, 

and the evolution of the cosine and sine (7) is again 
completely determined by the atomic parameters. 

Let us emphasize that there is a deeper connection 

between the operators (7) and Stokes parameters than 
the above-mentioned forma1 coincidence (8). Actu- 
ally, the polarization properties of E(l) radiation are 

described by the polarization tensor with nine com- 
ponents (see, e.g., Ref. [ 301) These components are 
specified by five parameters. Three of them determine 
the total intensity and intensities of the allowed modes. 
Two additional parameters determine the phase dif- 
ferences between the modes S,,,,,+i, C,,, &,Z,m+i = 0. 

The quantum operators, corresponding to the phase- 
dependent “generalized Stokes parameters” coincide 
with CR/K, and SR/K.~, respectively. At the same time, 
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according to the construction, these operators corre- 
spond to the cosine and sine of the azimuthal phase 

of the angular momentum. Therefore, it seems to be 
quite natural to determine the coefficients in (7) by 

the condition (Ci + Si) = 1 in the case of an unspeci- 

fied multi-atom source. In fact, this condition is simi- 
lar to the normalization of the standard Stokes param- 

eters, leading to the definition of sine and cosine of 
the phase difference [ 29,301. It should be mentioned 
that. in the case of one mode in the vacuum state, the 

set of five “generalized Stokes parameters” is reduced 

to the standard set of four Stokes parameters. Let us 
also stress that, although the linearly polarized com- 

ponent of E” ’ radiation has an extremely weak in- 

tensity in the far zone and can be considered in the 

vacuum state, it cannot be neglected because it influ- 

ences the vacuum fluctuations due to the structure of 
the operators (7). 

This fact permits us to consider the atom under the 

influence of an external field. Suppose for simplicity 
that the field consists of two circularly polarized com- 
ponents in a coherent state each. The atom is supposed 
to be initially in the ground state. Then, the above con- 
dition gives Kc = K, = K = (ii + ii+fi_)-‘/2, where 

tih - la&l2 denotes the initial mean number of pho- 

tons with corresponding helicity and fi = ii+ + fi_. 
Then, the time-dependent wave function of the system 

has the form 

P’(t)) = c P(n+,n-)[cos(g~t)IIG) 
11, .n_ 

+ (4l+) +~-II-))S(n+,n->lln+,O,n-), 

(10) 

where n = n+ + n_ and 

5(n+, n-) = 
W&n + 1) e-i(n+l)ot 

JnTi . 

It is seen that the parameters p, q, describing as 
above the population of the excited sub-levels, sat- 

isfy the conditions p N exp(iS+), q N exp(iS_), 

S,,, = arg an, so that the induced atomic phase dif- 
ference is 6+_ = 6, - a-. The averaging with the 
function ( 10) then gives 

(CR), = K ‘“_+“- (n) cos(S+_ + $1 , f 
n 
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n 
(II) 

Here 

&,(cR) = ;K2(fi + ~COS6+_). 

&,(SR) = ;K2(ii - mCOS6+_), 

_ _ 
PC = K2Fcos2(8+- +t,b) , 

& = K2!+ sin2(6+- + fl) , 

Q is the standard Mandel’s factor determined for the 
total intensity Q = ( (n2), - (n)f - (n)r)/(n),, and 

M oci 

(n), = A - C C p(n_ )p( n+> sin’gtJ;;, 

(n2), = fi + fi2 + fJ FpCn- )p(n+) sin2gth 
n_=on,=a 

- 2fi g F pCn_ )p(n+) sin2gtJnS1. 
n_=o n+=o 

The time-averaged Mandel’s factor is always positive 
here, which shows the super-Poisson number distribu- 
tion for the total field. Since (CR), and V,( CR) can be 
transformed into (SR), and &( SR), respectively, by the 

change 6+_ -+ S+_ + kr/2, it is enough to examine 
only one pair of these functions. In Fig. 1, the Rabi 

oscillations of V, ( CR) are shown in dependence on 
6+_ at rl, = 0. At small a+_, the collapses and revivals 
behave quite typically for JCM, while the increase of 
S+_ leads to a confluence of the nearest revivals. The 
Rabi oscillations of (CR), have similar behavior. It 
should be emphasized that, unlike the previous case 
of single-atom radiation when the atomic phase in- 
duces the phase of the field, here the field phase de- 
fined through the complex amplitudes (YA induces the 
atomic phase (via the complex atomic amplitudes in 
Eq. ( IO) ) . This again clearly demonstrates the one-to- 
one correspondence between atomic and field phases. 
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Fig. I. Evolution of the variance of the field cosine operator as a 

function of scaled time ts = gt/(2p( A- + A+ ) ‘1’ ) for ii* = 25 

and g = 1. Graphs from up to down correspond to the relative 
phases S = 0’. 45’. 75’. 90°, respectively. 

Let us briefly discuss the obtained results. In all the 
cases examined, the definition of the quantum phase 

properties of E (‘) radiation via the conservation of the 

angular momentum leads to the natural physical re- 
sults. First of all, the phase properties of radiation are 

completely determined by the atomic parameters. In 

fact, Eqs. (9) and ( 11) show the same dependence on 
the atomic phase difference a+_, although the phase 

of the atomic transition in ( 11) is induced by the ex- 
ternal field. In other words, the field and the atomic 
detector interact via photon exchange in a phase coher- 

ent way. This result agrees with the assumption made, 
that the phase of light measured in an experiment is a 

property of the source transported by the phonons to 

the detector. 
In the case of only two circularly polarized cavity 

modes, the average cosine and sine (7) coincide with 

the normalized time-dependent Stokes parameters, de- 
termining classical phase difference between the two 
modes. As can be seen from ( 11)) in the strong clas- 
sical limit when ii+, fi_ -+ oo, the quantum fluctua- 
tions of CR and SR vanish and the phase determined 
by (7) coincides exactly with the classical phase dif- 
ference. One can also see that if only one of n* -+ 00 
while the second mode is in the quantum state, the 
variances ( 11) do not vanish and achieve the satura- 
tion which can never exceed l/2. In the vacuum state, 
both variances ( 11) have the value l/2 which agrees 
with the principle of uniform phase distribution over 
the vacuum. It is a straightforward matter to check 

that the above consideration is also valid in the case of 
nonvanishing intensity of the linearly polarized mode. 

The above results show that the average cosine and 
sine (7) can be detected by quantum polarization mea- 
surements [ 3 11. It follows from ( 11) that the vari- 
ances of CR and SR can be measured in the same way 
as the Mandel’s Q-factor. Due to the commutativity of 

the operators (9) and total number of photons II, the 

averages (6) and Q can be measured simultaneously. 
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