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ABSTRACT: A numerically efficient technique for the analysis and design of MMIC circuits
is introduced and applied to some realistic problems. The formulation is based on the

( )method of moments MoM in the spatial domain, and utilizes closed-form Green’s
functions. Incorporating the closed-form Green’s functions into the MoM has resulted in an
efficient and accurate CAD algorithm. This is because use of the closed-form Green’s
functions not only eliminates the calculation of the spatial-domain Green’s functions, but
also makes it possible to evaluate the MoM matrix elements analytically We have demon-
strated the application of this method here for some stripline and microstrip geometries,

(and compared the results with those obtained from commercial EM software, em Sonnet
)Software, Inc. Q 1997 John Wiley & Sons, Inc. Int J Microwa©e Millimeter-Wa©e CAE 7: 344–358,

1997.
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INTRODUCTION

With the advent of monolithic microwave inte-
Ž .grated circuits MMICs , printed structures in a

planar layered medium have gained a lot of inter-
est. They are rugged, easy to produce, and repro-
ducible, which make them attractive for MMICs.
In addition, they also have low cross-section and
weight, which makes them useful in airborne ap-
plications. Thus, development of a rigorous and
efficient technique to characterize such structures
has become an important issue in computational
electromagnetics. Basically, there are two ap-
proaches in the characterization of printed struc-

Ž .tures: i approximate but numerically efficient
w x Ž .methods, like quasistatic methods 1]3 ; and ii
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accurate but computationally expensive methods
Ž . w xlike the method of moments MoM 4 , the finite

w xelement method 5 , and the finite-difference
w xtime-domain method 6 . Among these ap-

proaches, the spatial-domain and the spectral-
domain MoM are the most commonly used nu-
merical techniques for accurate analyses of
printed geometries.

In this study, the spatial-domain MoM employ-
ing subdomain basis functions is used to solve the

Ž . w xmixed potential integral equation MPIE 7]9
for current distribution on the conductors, which
are immersed in a planar layered medium, as
shown in Figure 1.

Using the spatial-domain Green’s functions in
the MoM for a planar layered medium requires
numerical integration of Sommerfeld integrals
w x10 , which is a very time consuming process. But,
it was recently recognized that the Sommerfeld
integrals can be approximated analytically, which
provides the closed-form spatial-domain Green’s
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Figure 1. A typical printed geometry.

w xfunctions 11 . With the use of these closed-form
Green’s functions in conjunction with the
spatial-domain MoM, the computational effi-
ciency of the MoM is significantly improved for
small- and moderate-size geometries. In addition,
when the closed-form Green’s functions are em-
ployed in the MoM, the resulting MoM matrix
elements can also be evaluated analytically, which
further improves the computational efficiency of

w xthe technique 12 .
So far, the technique is discussed from the

analysis point of view, but, in designing a printed
circuit, optimization plays an important role as
well. An optimization algorithm, in general, re-
quires the simulation program to analyze the
modified geometry at each iteration. Meanwhile,
if the simulation program needs to analyze the
modified geometry from scratch, the optimization
algorithm would be computationally expensive
even though the simulation program is efficient.
Therefore, to assess the numerical efficiency of a
simulation technique it is necessary to consider
the suitability of the technique for optimization.
The technique that we present here is very suit-
able because the effects of newly added or re-
moved metallic regions are handled very fast by
adding an additional row]column pair to or re-
moving a row]column pair from the original ma-
trix for each additional basis function, respec-
tively. In addition to the efficient filling of the
MoM matrix of the modified geometry, the solu-
tion time of the modified matrix equation can
also be improved by using the solution of the
matrix equation in the previous iteration through
the method known as the order recursive Gauss-

w xian elimination approach 13 .

In the next section, application of the spatial-
domain MoM to the solution of the MPIE is
briefly explained from a theoretical point of view,
and the use of the closed-form Green’s functions
is introduced, without giving the details. Then,
assuming that the surface current density is ob-
tained, the de-embedding of the circuit parame-
ters, such as input impedance and S-parameters,
is explained. Then, in the fourth section, some
practical passive MMIC components are charac-
terized to illustrate the use of the proposed
method, and the results are compared with those
obtained from commercial EM software, em
Ž .Sonnet Software, Inc. . The final section presents
the conclusions.

THEORETICAL BACKGROUND

The geometry of a general printed structure in a
multilayer medium is shown in Figure 1. The
layers are planar and assumed to be infinitely
wide in the horizontal plane, and the conductors
are lossless and infinitesimally thin. An e jw t time
dependence is assumed and suppressed.

The field components in a planar stratified
w xmedium can be expressed as 7 :

1 ­
AE s yjwG ) J qx x x x jw ­ x

=
­ J ­ J ­ Jx y zq q q Ž .G ) q G ) q G ) 1x y z­ x ­ y ­ z

1 ­
AE s yjwG ) J qy y y y jw ­ y

=
­ J ­ J ­ Jy x zq q q Ž .G ) q G ) q G ) 2y x z­ y ­ x ­ z

E s yjwG A ) J y jwG A ) Jz z x x z y y

1 ­ ­ JxA qy jwG ) J q G )z z z xjw ­ z ­ x

­ J ­ Jy zq q Ž .qG ) q G ) 3y z­ y ­ z

where G A and Gq are the spatial-x x, y y, z x, z z x, y, z
domain vector and scalar Green’s functions, re-
spectively; J , J , J are the surface current densi-x y z
ties; and ) denotes the convolution operator.
Because the traditional form of the Green’s func-

w xtions are employed in the formulation 14 , the
Green’s function of the scalar potential is not
unique for HED and VED. Therefore, the scalar
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Ž . Ž . qe qepotentials given in eq. 1 ] 3 are G s G for ax y
HED and Gqe for a VED. In the application ofz
the MoM, the surface current densities are ex-
panded in terms of some suitable basis functions,
and the resulting field expressions are tested by a
suitable class of testing functions. Here we have
chosen the rooftop functions as the basis and
testing functions on both horizontal and vertical
conductors, resulting in Galerkin’s MoM. For the
sake of illustration, the basis functions used for a
typical printed geometry are shown in Figure 2.
Hence, the MoM matrix equation is obtained
with typical matrix entries as:

² A :T , G ) Jx m x x x n

1 ­ ­ Jx nq Ž .q T , G ) 4x m x2¦ ;­ x ­ xw

² A :T , G ) Jz m z z z n

1 ­ ­ Jz nq Ž .q T , G ) 5z m z2¦ ;­ z ­ zw

where T , T and J , J denote the testingx m z m x n z n
² :and basis functions, respectively, and , desig-

nates the inner product. After solving the matrix
equation, the current distributions on the conduc-
tors are found and, from the current distribution,
the circuit parameters can be extracted.

Ž . Ž .If the inner-product terms in eqs. 4 and 5
are examined, it is seen that the spatial-domain
Green’s functions play an important role in the
calculation of the inner products. This is because
the spatial-domain Green’s functions are ob-
tained from the spectral-domain counterparts
through an integral transformation, called the
Hankel transform or the Sommerfeld integral in

w xelectromagnetics 15 . This transformation is given
as:

1
Ž2. ˜Ž . Ž . Ž .G s dk k H k r G k 6H r r 0 r r4p SIP

˜where G and G are the Green’s functions in the
spatial and spectral domains, respectively; H Ž2. is0
the Hankel function of the second kind; and SIP
is the Sommerfeld integration path. Because the
aim is to eliminate the numerical integration in

Ž .eq. 6 , the spectral-domain Green’s function is
approximated by complex exponentials, whose
Hankel transform can be performed analytically,
resulting in closed-form spatial-domain Green’s

w xfunctions 16, 17 .
The exponential approximation is performed

by using the generalized pencil of function method
Ž . w xGPOF 18 at three steps along the path shown
in Figure 3. This is an extension of the two-level

w xapproach introduced recently 17 , so the details
of this approximation scheme are not included

Ž .here one may refer to ref. 17 . However, we
should note that this multilevel approach elimi-
nates the need to extract the quasistatic images

Figure 3. The path used in exponential approxima-
tion.

Figure 2. Basis functions used for a typical printed geometry.
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and the surface-wave poles, which further im-
proves the computational efficiency of the deriva-
tion of the closed-form Green’s functions. The
reason for the extension of the two-level ap-
proach to the three-level approach can be ex-
plained as follows: When a vertical conductor is
used, such as shorting pins or via holes, the fields
due to the current on this conductor have to be
evaluated over a very small distance, r, requiring
a very accurate approximation for large k . So,r

the third region is added onto the two-level
approach to give enough emphasis to the ap-
proximation for large k , without increasing ther

computational complexity of the whole approxi-
mation. As a result of this approximation, the
spectral-domain Green’s functions are obtained
in the following form:

N N1 21
yb k yb k1 n z 2 n zG̃ ( a e q a eÝ Ý1n 2 n½j2kz ns1 ns1

N3
yb k3n z Ž .q a e 7Ý 3n 5

ns1

Once the spectral-domain Green’s functions are
represented as the sum of complex exponentials,

Ž .each exponential term in eq. 17 can be trans-
formed to the spatial domain via the Sommerfeld
identity:

eyj k r 1 eyj k z < z <

Ž2. Ž . Ž .s dk k H k r 8H r r 0 rr 2 j kSIP z

yielding the following Green’s function expression
in the spatial domain:

N Nyj k r yjk ri 1 n i 2 n1 2e e
G ( a q aÝ Ý1n 2 nr r1n 2 nns1 ns1

N yj k ri 3n3 e
Ž .q a 9Ý 3n r3nns1

2 2 2 2' 'where r s r y b , r s r y b , r1n 1n 2 n 2 n 3n
2 2 2 2''s r y b , and r s x q y . Next, the3n

closed-form representation of the spatial-domain
Ž .Green’s functions are substituted into eqs. 4 and

Ž .5 and the resulting integrals, for the convolution
and the inner product, are evaluated analytically
as described in ref. 12. Hence, the use of the
closed-form Green’s functions in the MoM re-
sulted in an accurate simulation technique with
no numerical integration involved, giving rise to a

very efficient and yet accurate EM simulation
software.

Although the approach just described seems
straightforward, it has some difficulties in cases of
geometries with vertical conductors. Because the
spectral domain Green’s functions are sampled
for the purpose of approximation, the variables z
and z9 have to be fixed to the observation and
source planes, respectively. Therefore, the result-
ing closed-form spatial-domain Green’s functions
become valid only for these specific source and
observation points. In cases of only horizontal
conductors, this poses no problem because the
source and observation planes are already fixed.
However, in the case of a vertical conductor, eq.
Ž .5 shows that one needs to integrate along z9 for
the convolution integral and along z for the
inner-product integral. If the technique just de-
scribed is used directly, the exponential approxi-
mation needs to be performed for every integra-
tion point of z and z9, which would result in an
extremely inefficient approach to incorporate a
vertical conductor. Instead, the Green’s functions

Ž .for the vertical electric dipole in eq. 5 are writ-
ten as the inverse Hankel transform of their
spectral domain representations, and the integrals
on z and z9 variables are performed analytically
in the spectral domain. Then, the resulting func-
tions are transformed to the spatial domain as
just described and the remaining integrals are
evaluated analytically as before. Note that the
spectral-domain Green’s functions consist of ex-
ponential functions of z and z9 which permits the

wanalytical integration in the spectral domain 16,
x19 . In the approach just described, the number of

basis functions selected in the z-direction is not
limited; therefore, the lengths of the vertical con-
ductors can be arbitrarily long.

METHOD OF DE-EMBEDDING OF
PORT DISCONTINUITIES

Because there exists fringing, reactive, and
evanescent fields in the vicinity of source and
load terminals, circuit parameters, like input
impedances and S-parameters, are obtained by
removing these higher order effects from the

w xcalculations, which is called de-embedding 20 .
The EM simulation technique presented in this

Ž .work uses impressed current sources see Fig. 2
w xto characterize N-port circuits 21 .

Because the current densities on the conduc-
tors, including the port transmission lines, have
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already been calculated, the current on each port
transmission line is written as the linear combina-
tion of complex exponentials by using the GPOF
as follows:

N

Ž . wŽ . x Ž .I l f I exp a q j b l 10Ý i i i
is1

where l is the distance along the port transmis-
sion line. If the magnitudes of higher order modes
on the port transmission lines are sufficiently
small, the current can be expressed by only two
exponentials with complex coefficients corre-
sponding to the incident and reflected current
waves at the corresponding ports. Then, the S-
parameters are calculated from the coefficients of
these exponentials and transferred to the desired

w xreference planes 22 . These S-parameters are
inherently normalized and referenced to the char-
acteristic impedances of the port transmission
lines. Note that, by using this method, the propa-
gation constants on the transmission lines are
also found, which enables us to extract the effec-
tive permittivity at each frequency of operation.
However, in some cases, it might be numerically
difficult to extract the propagation constant and
the unknown coefficients of the exponentials with
sufficient precision from the same current sam-
ples by direct application of GPOF. This situation
occurs in MMIC structures where the electrical
length of the port transmission line is very small.
In that case, one can find the propagation con-
stant from a sufficiently long test transmission
line which has the same characteristics as the
original port transmission line, and then use this
propagation constant to fit the current on the
original line with complex exponentials through a

w xlinear least-squares algorithm 23 . Finally, the
S-parameters obtained are converted to the S-
parameters with the reference impedance of
50 V.

For a two-port network, the matrix relation,
used to find the S-parameters, can be written in
the following form:

q q yI I 0 0 yIS11 12 1111
q q y0 0 I I yIS11 12 1212 Ž .s 11q q yI I 0 0 yIS21 22 2121
q q yS0 0 I I yI2221 22 22

where Iq and Iy are the current coefficients fori j i j
incident and reflected waves, respectively, for ith
port excitation and jth port observation. Note
that, in calculating the S-parameters, it is not

necessary to terminate the ports because, both
the transmitted and reflected waves are consid-
ered in the calculations. To calculate the S-
parameters of a general N-port network with
characteristic impedances Z at port i, the fol-0 i

lowing pseudo-code, which fills the matrices in eq.
Ž .11 , is given here for convenience:

A ¤ 0
n ¤ number of ports

for i s 0, 1, 2, . . . , n y 1
begin

for l s 0, 1, 2, . . . , n y 1
begin

for m s 0, 1, 2, . . . , n y 1
begin

q Ž .A ¤ I )sqrt Zi) nqm , lqm) n il 0 l

end
y Ž .B ¤ yI )sqrt Zi) nql i l 0 l

end
end

Note that this derivation of the S-parameters
does not require the knowledge of the character-
istic impedances of the port transmission lines.
However, the need to convert these S-parameters
to the S-parameters with a known reference

Ž .impedance usually 50 V makes it necessary to
know the characteristic impedances of the port
transmission lines. Because a rigorous calculation
of the characteristic impedance of a microstrip
line in a multilayer medium is quite time consum-
ing, a method based on a quasi-TEM approach is
used here, which provides a closed-form expres-
sion for the characteristic impedance of a mi-

w xcrostrip line and a stripline 24, 25 . This method
is valid when the transverse components of the
current densities on the port transmission lines
are very small as compared with the longitudinal
components, which is usually the case for MMICs.
Note that the characteristic impedance found
from the quasi-TEM approach does not change
with frequency, whereas, in reality, it changes

w xwith frequency 26, 27 . By using a frequency-
dependent effective permittivity in the closed-
form expression for the characteristic impedance,
the quasi-TEM approximation is somewhat ex-
tended.

EXAMPLES

In this section, some examples are given and the
results are compared with those obtained from

Ž .em Sonnet Software, Inc. . One can refer to
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Ž .Figure 4. Geometry of the hybrid coupler showing the ports not to scale .

w xCarroll and Chang 28 for general information
on em software. The first three examples are the
structures which have multilayer metalization, and
the last example is a microstrip line with a shunt
short-circuited stub to demonstrate the use of the
vertical connection. The S-parameters provided
here are normalized with respect to 50-V refer-
ence impedance.

As a first example, a multilayer 3-dB 908 hybrid
coupler is analyzed. The geometry and layer in-
formation of the coupler are given in Figures 4
and 5, respectively. The results obtained from the
method presented in this article show very good
agreement with the results obtained with em soft-

Ž .ware Figs. 6 and 7 .

The next example is a coupled-line band-pass
filter whose geometry and layer information are
given in Figures 8 and 9, respectively. In design-
ing edge-coupled filters, it might be necessary to
have small spacings}in other words, large cou-
plings, between the resonant elements, which
would make the production of such filters very
difficult. This difficulty can be circumvented by
implementing such coupled lines in a stripline

w xgeometry with broadside coupling 29, 30 . Here,
by using this concept, a third-order band-pass
filter is designed by following the design proce-
dure based on the even- and odd-mode
impedances of the coupled lines, which are avail-

w xable in the literature 25 . The analysis of this

Figure 5. Layer information for the hybrid coupler shown in Figure 4.
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Figure 6. Magnitudes of S and S of the hybrid coupler shown in Figure 4.13 14

Figure 7. Phases of S and S of the hybrid coupler shown in Figure 4.13 14
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Ž .Figure 8. Geometry of the band-pass filter showing the ports not to scale .

filter is performed by using the method described
here and by the em software, and the results are
in perfect agreement, as shown in Figure 10 and
11. Note that the response of the filter can be
further improved without substantially increasing
the computation time by using a fully automated
optimization algorithm.

Another example is a proximity-coupled mi-
crostrip patch antenna, whose geometry and layer
information are given in Figures 12 and 13, re-
spectively. Because the major disadvantage of mi-
crostrip antennas is the small bandwidth, this can

be improved by using a proximity-coupled feed
w xstructure 31 , as shown in Figure 12. Note that a

tuning stub at the feeding line is used to match
the antenna to the characteristic impedance of
the line. Here, the antenna is analyzed with and
without the tuning stub with reference planes at
the stub position and at the antenna edge, respec-
tively, and the results are provided in Figures 14
and 15. It should be noted that the analysis of a
radiating structure by using em requires some
conditions to be satisfied: namely, the size of the
box must be increased, the top cover must be

Figure 9. Layer information for the band-pass filter shown in Figure 8.
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Figure 10. Magnitudes of S and S of the band-pass filter shown in Figure 8.11 21

Figure 11. Phases of S and S of the band-pass filter shown in Figure 8.11 21
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Figure 12. Geometry of the proximity-coupled microstrip antenna showing the input port
Ž .not to scale .

terminated in 377 V, and the free space above
the structure should be made slightly lossy. Even
then, the results obtained show some artifacts
Ž .Fig. 14 , and the computation time increases
significantly because of the increased number of
unknown for the larger box. The results obtained
by the approach presented in this article agree
quite well with the results obtained from the em
software, except the artifacts, but there is a slight
shift in the position of the experimental curve

that could be attributed to de-embedding of the
experimental data.

Finally, a microstrip line with a shunt-short-
Ž .circuited stub Fig. 16 is analyzed. The thickness

Ž .of the substrate is 0.02032 cm s 8 mils , and
« s 4. It should be noted that the use of vias orr

shorting pins in the em software has some restric-
Ž .tions: i the assumption of uniform current distri-

Ž .bution along the vertical connection; and ii limi-
tation on the length of the vertical conductor

Figure 13. Layer information for the proximity-coupled microstrip antenna shown in
Figure 12.
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Figure 14. G of the proximity-coupled microstrip antenna shown in Figure 12 withoutin
Ž w x.tuning stub square: MPIE; circle: em; triangle: measured 31 .

Figure 15. G of the proximity-coupled microstrip antenna shown in Figure 12 with tuningin
Ž w x.stub circle: MPIE; triangle: measured 31 .
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Ž .Figure 16. Geometry of a short-circuited microstrip line showing the ports not to scale .

Figure 17. Magnitudes of S and S of the microstrip line shown in Figure 16.11 21
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Figure 18. Phases of S and S of the microstrip line shown in Figure 16.11 21

Ž .small fraction of a wavelength . On the other
hand, the method presented here has no such
restrictions, and can handle any length of the
vertical conductors with the rooftop basis func-
tions to represent the current. The results ob-
tained from both methods are shown in Figures
17 and 18, and they are in good agreement for
this very short shorting pin.

CONCLUSIONS

In this article, we have presented an efficient and
accurate technique for EM simulations of printed
geometries in multilayer media. The technique is
based on the spatial-domain MoM used with the
closed-form Green’s functions. It was applied to
some printed geometries, and it was demon-
strated that the results obtained are in good
agreement with the results obtained from a pro-
fessional electromagnetic analysis software. The
advantages of this technique can be stated as

Ž . Ž .follows: i it is very suitable for optimization; ii
Ž .it can handle radiating structures efficiently; iii

the vertical connections with arbitrary lengths can
Ž .be easily modeled: and iv it has the potential of

being the most efficient EM software for passive
MMIC components.
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Microwä e Theory Tech., Vol. 44, March 1996, pp.
438]445.

22. T. K. Sarkar, Z. A. Maricevic, and M. Kahrizi, ‘‘An
Accurate De-Embedding Procedure for Character-
izing Discontinuities,’’ Int. J. MIMICAE, Vol. 2,
1992, pp. 135]143.

23. R. Kipp and C. H. Chan, ‘‘Triangular-Domain Ba-
sis Functions for Full-Wave Analysis of Microstrip
Discontinuities,’’ IEEE Trans. Microwä e Theory
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