
Camp. B&hem. Physiol. Vol. 118A, No. 4, pp. 1241-1245, 1997 
Copyright 0 1997 Elsevier Science Inc. All tights reserved. 

ELSEVIER 

ISSN OJOO-9629/97/$17.00 
PI1 S@i00.9629(97)00224~7 

The Spontaneous Hemin Release 
from Lu~bricus terrestris Hemoglobin 

M. L. Smith,’ J. Puu~,~ P. I. Ohlsson,-’ and K. G. Paul” 
‘IATRIC RESEARCH INSTITUTE, 2330 SOUTH INDUSTRIAL PARK, TEMPE, AZ 85282 U.S.A.; 

*CHEMISTRY DEPARTMENT, BILKENT UNIVERSITY, 06533 BILKENT-ANKARA, TURKEY; AND ‘UNIVERSITY 
OF UUE~;, DEPARTMENT OF MEDICAL CHEMISTRY AND BIOPHYSICS, S-901 87 UME.& SWEDEN 

ABSTRACT. The slow, spontaneous release of hemin from earthworm, Lumbn’cw terrestris, hemoglobin has 

heen studied under mild conditions in the presence of excess apomyoglobin. This important protein is surprisingly 
unstable. The reaction is best described as hemin released from the globin into water, followed by quick en- 

gulfment by apomyoglobin. The energetics of this reaction are compared with those of other types of hemoglo- 

hins. Anomalously low activation energy and enthalpy are counterbalanced by a negative entropy. These values 

reflect significant low frequency protein motion and dynamics of earthworm hemoglobin and may also indicate 

an open structure distal to the heme. This is also supported by the infrared spectrum of the carbonyl hemoprotein, 

which indicates several types of distal interactions with the bound CO. The reported low heme to polypeptide 

ratio for this protein may be due to facile heme and hemin release hy the circulating protein. C‘OMP BIOCHEM 
PHYSIOL 1 lSA;4:1241-1245, 1997. 0 1997 Elsevier Science Inc. 
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INTRODUCTION 

The circulatory hemoglobin of earthworm is present as a 

free protein, in contrast to vertebrates where Hb is con- 

tained within the erythrocyte membrane, and is much less 

protected from interactions with the vascular wall and for- 

eign agents. This protein has a high molecular weight, 3.9 

to 4.4 ML>a, is a multimeric protein composed of at least 

five different subunit types, some of which do not appear 

to bind heme (5,.?0). These are arranged in self-organized 

and self-limiting fashion into a gigantic protein containing 

about 220 subunits (11,13). The large size of these extracel- 

lular oxygen carriers is thought to be necessary; Hbs of 

smaller mass would force the osmotic pressure higher than 

the organism could bear. These large Hbs exhibit high li- 

gand-binding cooperativity with nso from 3.3 for L. terreshis 

(18), up to 9.5 for Eiseniu foetidu and Pheretimu hilgendorf; 
Hbs, depending upon pH, Ca*+ and Zn2+ concentrations 

(6,8,9). In place of chloride ion and sugar phosphates, 

which are effecters of mammalian and avian Hbs, pH and 

dibasic cations appear to play the roles of allosteric effecters 

Address reprmt requests to: M. L. Smith, Chuparoso Research, 1148 S. Quail 
St., Mesa, AZ 85206. Tel. +I-602-832-0622; E-mail: 76602.2047@ 
compuserve.com. 

Abbreuiati~s-Hemoglobin, Hh; myoglohin, Mb; apohemoglohin, 
apoHh; qwmy~~glohin, apoMh; holometmyoglohin, holoMh; Hill coeffi- 
cient, niJ; infrared, 1R. 

Received 25 January 1997; revised 16 April 1997; accepted 24 April 
1997. 

for these Hbs. Isolated earthworm Hb appears to be an un- 

stable hemoprotein which rapidly releases hemin into the 

solvent. 

Free hemin and globin cannot be tolerated by higher ver- 

tebrates and can lead to a variety of complications through 

increased Heinz body formation including hemolytic ane- 

mia (1). It is known that the heme in Hb is rapidly oxidized 

to hemin by a range of drugs and common chemicals includ- 

ing phenols, hydrazines, and nitrites with clinical complica- 

tions (7). Hemin is also continuously formed in the blood 

of apparently healthy individuals as a product of chloride 

assisted oxidation of hemoglobin at a rate of l-2% daily 

(19). Using apoMb as the hemin sink, we have shown that 

the spontaneous release of hemin from the p chains of hu- 

man Hb and single point mutants is a continuous process 

with a half-life of only a few hours (14). This system mea- 

sures only the hemin release and is independent of hemin 

apoMb combination (4). 

Hemin transfer from an intact donor protein to an ac- 

ceptor protein is illustrated in a reaction triangle in Fig. 1. 

Some donor- or holoproteins can be observed in two forms: 

a form that displays the normal, native activity and a form 

that displays much less enzymatic activity. The barrier for 

hemin release is measurably lower for the inactive form of 

hemoprotein than from the active, but slower hemin releas- 

ing holoprotein. The active and inactive holoforms occupy 

the two left comers of the transfer triangle. The equilibrium 

between these two forms of holoprotein can be perturbed 
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FIG. 1. Diagrammatic relationship between the protein spe- 
ties and energies of hemin release. Note that the energy of 
the products, at right, are only slightly lower than the energy 
of the reactants, at left. The activation energy, at the top, is 
many times larger than the overall reaction energy. 

by changes in temperature, prolonged aqueous storage or 

addition of certain ligands to the system. Addition of apo- 

myoglobin to the system moves the equilibrium toward the 

third corner, with production of holoMb and apodonor pro- 

tein. It was previously shown that the hemin leaves the do- 

nor protein during spontaneous fission and the apoMb does 

not interact with the donor protein (15). The observed en- 

ergetics are, therefore, characteristic only of the donor pro- 

tein. We have observed at least two forms of earthworm 

Hb, both rapidly undergo fission under mild conditions, ex- 

hibiting relatively low activation energies and enthalpies. 

The rate of hemoprotein fission is greater for the oxidized 

form of earthworm hemoglobin than for any other protein 

so far observed. 

EXPERIMENTAL 

About 100 earthworms were washed in water, decapitated 

and the blood squeezed into a beaker containing a few ml 

of standard buffer; 50 mM phosphate, 1 mM EDTA, pH 7.0. 

The mixture was centrifuged, filtered then concentrated to 

1.5 mM heme under nitrogen. Part of this preparation was 

gassed with CO for 15 min, injected into an IR cell with 

CaF? windows and the IR spectrum collected on a DIGI- 

LAB 15/90E spectrometer fitted with a liquid nitrogen 

cooled detector. Citrated blood from a domestic rabbit was 

centrifuged and washed several times with isotonic saline. 

The packed red blood cells were gassed with CO for 15 min 

before injection into the IR cell. The data were resolved 

into component curves using the program SAAM II, cour- 

tesy of the University of Washington. The remainder of the 

earthworm Hb was chromatographed down a 40 X 1 cm 

column of G-25 Sephadex’ (Pharmacia) equilibrated with 

standard buffer. This portion was frozen in liquid nitrogen, 

as beads, until further use. Earthworm hemoglobin can be 

chromatographed after thawing with no observable insolu- 

ble residue and the elution profile is consistent with high 

molecular weight and little subunit dissociation. 

A typical kinetic experiment was begun by thawing a few 

beads of the frozen Hb, while the buffer was incubated in 

a thermostated quartz cuvette in a Beckmann DU-7 spectro- 

photometer. The apoMb was separately incubated for 15% 

20 min in a water bath. A small amount of the earthworm 

Hb was added to the buffer, then heme was always oxidized 

to hemin by addition of a single grain of KjFe(CN),. The 

reaction was initiated by addition of a small amount of 

apoMb (0.5 mM) and the formation of holoMb followed at 

409 nm overnight, which was at least three half-lives. Some 

reactions were followed by repeated scanning from 370 to 

450 nm; isosbestic points were observed at 391 and 425 nm. 

From 25 to 52 data pairs were collected for each determina- 

tion and the data were analyzed using the programs SYS- 

TAT” and RS/ l@‘. A portion of the earthworm hemoglobin 

was aged by refrigeration in standard buffer from 10 to 14 

days. Rabbit maintenance, procedures and experimentation 

were conducted in conformity with humane guidelines of 

Sweden. 

RESULTS 

The infrared spectrum of carbonyl earthworm Hb exhibits 

a strong band with a maximum at 1951 cm-‘, which is the 

energy commonly observed for COHbs ( 12). This spectrum 

can be resolved into at least four bands, three of these being 

of lower energy and strength than the primary band at 195 1 

cm-‘, Fig. 2. The band width, at half height, of the primary 

band at 1951 cm-‘, is 23 cm-‘, which is much broader than 

observed for most other Hbs, which exhibit narrow bands, 

8 cm-‘, at 1951 cm-’ (12). Much smaller bands were ob- 

served at 1936, 1913, and 1903 cm-‘, though this lowest 

energy absorbance is very small and may not be real. 

The hemin release data were best fit as either a single 

first order or two simultaneous first order hemin transfers, 

by both programs. Close inspection of the plotted data re- 

vealed three or four simultaneous reactions of very slightly 

different rates, however the curve fitting procedures used 

did not give us greater confidence in results from a multiple 

first order fit than the simple fit of a single first order reac- 

tion, so the single rate constant is used in discussion. In 

addition, a slow, linear absorbance increase was observed at 

the end of the experiments which was presumably due to 

precipitation of some apoHb and made estimation of the 

end absorption difficult, as has been observed for human Hb 

(14). This slow reaction was not further studied. 

The overall rate constant at 298”K, 1.9 X lo-! min ‘, 

was larger than for any other native protein so far studied 

and about twice as fast as hemin release from human Hh A 
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FIG. Z. Infrared spectra of earthworm COHb, top, and do- 
mestic rabbit COHb, in the CO stretch region. The circles 
are the data points used for curve resolving. The dashed 
lines are the resolved curves and the solid lines represent the 
linear combinations of the resolved curves. 

(Table 1). The Ahrrenius plots of the release rates as a func- 

tion of inverse temperature are shown in Fig. 3. The activa- 

tion energy for the isolated earthworm Hb is 89 5 9 kJ 

tno-’ and only 50 +- 10 kJ mo-’ for the aged protein, both 

being much lower than fission of Hb A ,0 chains, 124 k] 

tnolP’. These low activation energies are counterbalanced 

by negative activation entropies. The free energies of acti- 

vation, AC;“+, were calculated as 93 and 91 kJ molP’ for 

the freshly isolated and aged proteins, respectively, which 

is insigniiicantly lower than observed for Hh A p chains or 

legume Hh. This separation of free energy into enthalpy and 

entropy is strictly valid only for rigid potentials and care 

should be taken with interpretation of these quantities. 

DISCUSSION 

The IR spectrum indicates the binding site for gaseous li- 

gands in earthworm Hb is little different from other COHhs, 

consistent with a proximal histidyl (I&and 5) to the heme 

Fe(II) and a distal histidyl group neighboring the CO for 

most subunits. The minor CO stretch at 1936 cm.-’ is con- 

sistent with distal histidyl substitution by glutamyl, as in 

the opossum (Did&his marsupialis) with yC0 at 1943 cm- ’ 
or with a distal situation similar to that of domestic rabbit 

with CO at 1929 cm-‘, possibly caused by a “tighrer tit” 

of this distal group with the distal histidyl (12). The CO 

stretches of peroxidases with histidyl as L5 and histidyl and 

arginyl residues distal to the Fe(I1) are observed from 1938 

down to 1903 cm-‘, some of the CO stretch(es) of CC cyto- 

chrome I?450 with a cystidyl L5 are ohserved at Iower encr- 

gies than COHb (10). The absence of signiticant ah- 

sorbance between 1960-1970 CIK’ indicates that the 

protein surrounding the heme was primarily in the native 

conformation; CO hemopn)teins from proteins rcconstitu- 

ted with heme and containing some nonnative hetnoprt,- 

tein, almost invariably exhibit a hand in this regit)n despite 

chromatography to remove excess hemin (lb), denaturation 

also results in absorbance between 1960-1970 ctn-’ (10). 

Table 1 also presents the results from studies of the hemo- 

protein fission of several oxygen carriers and pernxidases, 

which exhibit a dG0i about 10 k-J mol ’ larger than any 

oxygen carrier. We suggest that this difference is due to the 

difference in water coordination in the hctne pocket. The 

highly polar groups present in the pocket of peroxiditses ap- 

pear to control the water(s) in a manner that both increases 

electron availnhility at iron and discourages hemoprotein 

fission. It is interesting that the earthworm Hh exhibits the 

shortest half life for protein tission of any native hemoprot- 

ein so car examined. There are two possible reasons for this 

property (a) the flexibility of the polypeptide, with demands 

for communication between subunits that is required in Hbs 

for cooperative dioxygen binding (h) the high mash of the 

Hh molecule which offers more channels for concentrating 

energy to the heme pocket required for hemin release. Rea- 

son (a) is supported by the IR data of 23 cm ’ band width 

for the primary absorbance, which suggests a much more 

open distal pocket, allowing more facile heme release. 

There also appears to be a trend towards higher rate> of 

protein t&on with increasing molecular weight, supporting 

reason (b). Perhaps the low frequency dynamics with high 

kinetic energies are more allowed in high MW proteins. If 

so, other invertebrate, giant Hhs are probably alscj relatively 

unstable. 

Previous studies indicated that the energy barrier for he- 

min release consists of two parts; Fe-L5 bond breakage and 

hemin salvation (15). Th e f rce energies of hemin and par- 
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TABLE 1. Kinetic parameters for hemin release from Lumbricus terrestrik, other hemoglobins and a peroxidase 

Temp. range Rate constant AH=‘? AC?? AS”t 
Protein (“C) (min-’ X 10’) (Wmol) (Wmol) (J/mol.“K) 

L tena tris 14-30 19 t- 4 87 -t 9 93 -22 

Aged terrestris 20-37 38 -c 6 48 5 IO 91 -146 
Human Hb A 25-42 7.7 120 95 82 
Glycine soya (soybean) Hb >23 7.1 130 95 117 

Armoracia rust&u (horseradish peroxidase) C 30-45 0.24 131 104 91 

phyrin fission differ by about 10 kJ mol-‘, which was as- 

signed to the Fe-L5 bond. The remaining 80-90 kJ mol-’ 

was interpreted being due to the energy required to solvate 

porphyrin-that is the difference in surface energies of 

aquated porphyrin and porphyrin buried within the protein. 

The AC;“? found here for the native earthworm Hb is con- 

sistent with this interpretation. Facile hemin exchange is 

the mechanism used to control the activity levels of the 

proteins tryptophan-2,3-dioxygenase (3), and prostoglandin 

endoperoxidase synthetase (17). Heme release may not be 

important for the well-being of L. terrestris, but a continuing 

problem to be tolerated in exchange for a lowered osmotic 

pressure and a freely circulating Hb. 

The results show that spontaneous release of hemin oc- 

curs even from an important protein that freely circulates 

in blood. The results also show that oxidized earthworm Hb 

undergoes hemoprotein fission more readily than any other 

hemoprotein and this rate of self destruction increases dur- 

3.20 3.25 3,30 3.35 3,40 3,45 3,50 

~/TX 1O-3 K 

FIG. 3. Arrhenius plot of the first order rate constants for 
hemin release from native (+) and aged (0) earthworm Hb, 
with the temperature ranges as given in Table 1. The lines 
shown are the linear best fits. 

ing storage. This is probably due to a combination of a Ii- 

gand binding site more open to solvent than other hemoglo- 

bins and to greater kinetic energies associated with low 

frequency molecular motions in giant proteins. This may be 

a partial explanation for the reported unsaturation of heme 

binding sites for this oxygen carrier (20). 
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This evork was supported in parart by grants from Norrkmds Gasaktie- 
b&g, Magn. Bergds Stiftelse, umf the Swedish Medical Research 

Council (3X-6522,7130). 

References 
1. 

2. 

1. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

Bunn, H.F.; Forget, B.C. Hemoglobin: Molecular, (;enetic 

and Clinical Aspects. Philadelphia, PA: W.B. Saunders Com- 

pany; 1986:573-587. 

Darawshe, S.; Tsafadyah, Y.; Daniel, E. Quatemary structure 

of erythrocruorin from the nemotode Ascaris sum. Evidence 

tor unsaturated haem-hinding sites. Biochem. J. 242:689-694; 

1987. 

Feigelson, P.; (;reengard, 0. A microsomal iron-porphyrin ac- 

tivator of rat liver tryptophan pyrrolase. J. Biol. Chem. 236: 

15.3%157;1961. 

Hargrave, MS.; Barrick, D.; Olson, J.S. The association rate 

constant for heme binding to glohin is independent of protein 

structure. Biochemistry 35:11293-l 1299;1966. 

Hendrickson, W.A.; Royer, W.E., Jr. Principles in the assem- 

bly of annelid enjthrocruorins. Biophys. J. 49:177-l 89;1986. 

Igarashi, Y.; Kimura, K.; Kajita, A. Calcium-dependent allo- 

steric modulation of the giant hemoglobin from the terrestrial 

oligochate, Eisenia for&. Biochem. Int. lo:61 l-618;1985. 

Nagel, R.L.; Ranntty, H.M. Drug induced oxidative denatur- 

ation of hemoglobin. Sem. Hematol. X:269-7&1973. 

Ochiai, T. L>issociation and oxygen equilibrium properties of 

earthworm hemoglobin. Arch. B&hem. Biophys. 226: 11 l- 

117;1983. 

Ochiai, T.; Hoshina, S.; Us&, I. Zinc as modulatc\r cbi oxy- 

gematirm function and stabilizer of quaternary structure in 

earthworm hemoglohin. Biochim. Biophys. Acta 1203: 3 1 O- 

314;1993. 

O’Keeffe, D.H.; Ehel, R.E.; Peterson, J.A.; Maxwell. J.C.; 

Caughey, W.S. An infrared spectroscopic study of carbon 

monoxide bonding to ferrous cytochrome P-450. Biochemistry 

17:5845-5852;1978. 

Ownhy, D.W.; Zhu, H.; Schneider, K.; Beavis, R.C.; Chiat, 

B.T.; Riggs, A.F. The extracellular hemoglobin of the esrth- 

worm Lumbricus terrestris. Determination of suhunit stoichi- 

omen-y. J. Biol. Chem. 268:13539-13547;1993. 

Potter, W.T.; Hazard, J.H.; Choc, M.(;.; Tucker, M.P.; 

Caughey, W.S. Infrared spectra of carhonyl hemc>glohins: 



Earthworm Hemoglobin Hemin Dissociation 1245 

Characterization of dynamic heme pocket conformers. Bio- 
chemistry 29:6283-6295;1990. 

13. Royer, W.E., Jr.; Hendrickson, W.A. Molecular symmetry of 
Lumbricus erythrocruorin. 263:13762-13765;1988. 

14. Smith, M.L.; Hjortsberg, K.; Romko, P.H.; Rosa, 1.; Paul, K.G. 
Mutant hemoglobin stability depends upon location and na- 
ture of single point mutation. FEBS Lett. 169:147-150;1984. 

15. Smith, M.L.; Paul, J.; Hjortsberg, K.; Ohlsson, P.1.; Paul, K.G. 
Hemeprotcin fission under nondenaturing conditions. Proc. 
Nat. Acad. Sci. USA 88:882-886~1991. 

16. Smith, M.L.; Paul, J.; Ohlsson, P.I.; Paul, K.G. Correlation 
between reduction potential, CO stretch frequency and CO 
half-handwidth in hemoproteins. Biochemistry 23:6776- 
6785;1984. 

17. Uuno. R.; Shimizu, T.; Kondo, K.; Hayaishi, 0. Activation 

mechanism of prostaglandin synthetase hy hemoproteins. J. 
Biol. Chem. 257:5584-5588;1982. 

18. Vinogradov, S.N.; Sharma, P.K.; Qahar, A.N.; Wall, J.S.; 
Westrick, ].A.; Simmons, J.H.; Gill, S.J. A dodecamer of glo- 
bin chains is the principal functional subunit of the extracel- 
lular hemoglobin of Lumhricus terrestris. J. Biol. Chem. 266: 
13091-13096;1991. 

19. Wallace, W.J.; Maxwell, J.C.; Caughey, W.S. A role for chlo- 
ride in rhe autoxidation of hemoglobin under condition> simi- 
lar to those in erythrocytes. Biochem. Bic>phys. Res. C<>mm. 
57:1104-1110;1974. 

20. Zhu, H.; Hargrove, M.; Xie, (2.; Nozakl, Y.; Linhe, K.; Smith, 
S.S.; Olson, J.S.; Riggs, A.F. Stoichiometry ot a&units and 
heme content of hemoglobin from the carthw<Jrm Lumhriczcs 
trrrestris. J. Biol. Chem. 27 1:29999- 3O006;1996. 


