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Confined-phonon effects in the band-gap renormalization of semiconductor quantum wires

C. R. Bennett
Department of Physics, University of Essex, Colchester, CO4 3SQ, United Kingdom
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We calculate the band-gap renormalization in quasi-one-dimensional semiconductor quantum wires includ-
ing carrier-carrier and carrier-phonon interactions. We use the quasistatic approximation to obtain the self-
energies at the band edge that define the band-gap renormalization. The random-phase approximation at finite
temperature is employed to describe the screening effects. We find that confined LO-phonon modes through
their interaction with the electrons and holes modify the band gap significantly and produce a larger value than
the statice0 approximation.@S0163-1829~98!01007-8#
o
ti
io
tic
m
is

re

ex
tio
pa

s
ul
ns
ga

th
t
a
er
y
on

1D

-
te
to

ll

n
a

n

ity
red
s

le
in
in

ee-

e-
res,
in-
e
the
We

n to
nd

ion
we

he
-
iza-
ur
s,

n of
of

sing
di-

non

ces
s,

ing
and
hin
I. INTRODUCTION

A dense electron-hole plasma being formed in a semic
ductor under intense laser excitation comprises an interes
many-body system. Screening of the Coulomb interact
among the charge carriers renormalizes the single-par
properties. A notable phenomenon is the band-gap renor
ization ~BGR! as a function of the plasma density, which
important to determine the emission wavelength of cohe
emitters as being used in semiconductors.1 As a substantial
amount of carrier population may be induced by optical
citation, the renormalized band gap can affect the excita
process in turn and lead to optical nonlinearities. In this
per we investigate the density dependence of the BGR
quasi-one-dimensional~Q1D! photoexcited semiconductor
including the phonon effects. The band gap for 2D and b
systems is found to decrease with increasing plasma de
due to exchange-correlation effects. The observed band
are typically renormalized by;20 meV within the range of
plasma densities of interest, which arise chiefly from
conduction-band electrons and valence-band holes. In
Q1D structures based on the confinement of electrons
holes, the electron-hole plasma is quantized in two transv
directions, thus the charge carriers essentially move onl
the longitudinal direction. Recent progress in fabricati
techniques such as molecular-beam epitaxy~MBE! and litho-
graphic deposition have made possible the realization
such quasi-one-dimensional systems.2 Band-gap renormal-
ization as well as various optical properties of the Q
electron-hole systems have been studied3–9 similar to the
bulk ~3D! and quantum-well ~2D! semiconductors.10–15

Some experimental results9 indicate that the BGR in quan
tum wires is somewhat smaller than that predic
theoretically4,5 and LO-phonon-carrier interaction effects
explain the discrepancy were suggested.16 Polaronic correc-
tions to the BGR were also investigated for quantum we
and quantum wires.17

One of our main motivations comes from the rece
experiments8 in which the carrier density dependence of
quasi-one-dimensional electron-hole plasma confined
GaAs quantum wires is investigated. Comparing the ba
570163-1829/98/57~7!/3994~6!/$15.00
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gap data with the available calculations, Cingolaniet al.8

pointed out the need for more realistic calculations. Dens
dependence of the BGR in Q1D systems was first conside
by Benner and Haug3 within the quasistatic approximation a
previously employed for 2D and 3D systems.10–13 Hu and
Das Sarma4 also calculated the BGR, neglecting the ho
population and considering an electron plasma confined
the lowest conduction subband only. These results are
rather close agreement with the measurements,8 although the
analysis of experimental data was performed using a fr
carrier model.

The aim of this paper is to study the carrier density d
pendence of the band-gap renormalization in quantum wi
when carrier-carrier and carrier-phonon interactions are
cluded. We first show that for the quantum-wire model w
use, the total band-gap renormalization is determined by
screened-exchange and Coulomb-hole contributions.
then demonstrate that within the quasistatic approximatio
the self-energies, the explicit treatment of carrier-carrier a
carrier-bulk phonon interactions does not reduce to thee0
approximation and gives a larger BGR. When the interact
of carriers with the confined phonon modes is considered,
obtain a similar magnitude for the BGR. We employ t
dielectric continuum model18 to describe the phonon con
finement effects and incorporate the many-body renormal
tion effects due to electron-phonon interactions within o
formalism. In low-dimensional semiconductor structure
phonon confinement is an essential part of the descriptio
electron-phonon interactions. Since the early observation
confined phonons in GaAs/AlAs superlattices,19 the phonon
modes in microstructures have been attracting increa
attention.20 Among the various macroscopic pictures, the
electric continuum~DC! model18,21 offers a simple frame-
work to address the phonon confinement effects. The pho
modes in the DC model are~i! an infinite set of confined
modes with vanishing electrostatic potentials at the interfa
which oscillate at the bulk LO-phonon frequency of GaA
and ~ii ! a set of modes with electrostatic potentials attain
maxima at the interfaces. We include both the confined
interface phonon modes in our calculation, envisioning a t
wire of GaAs embedded in a barrier material of AlAs.
3994 © 1998 The American Physical Society
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57 3995CONFINED-PHONON EFFECTS IN THE BAND-GAP . . .
The rest of this paper is organized as follows. In the n
section we give a brief outline of the static screening a
quasistatic approximations. In Sec. III we present our res
for the BGR in Q1D electron-hole plasmas interacting w
LO phonons. Finally, we conclude with a brief summary
our main results.

II. MODEL AND THEORY

The quantum wire model we use is of cylindrical sha
with radiusR, and infinite potential barrier.22 The quantum
wire is made of material 1~GaAs! and the surrounding ma
terial 2 ~AlAs!. Such a model leads to an analyt
expression22 V(q)5(e2/2e0)F(q) for the Coulomb potentia
between the carriers within certain approximations.F(q) is a
form factor yielding ; ln(qR) behavior in the long-
wavelength limit, ande0 is the static dielectric constant~of
material 1!. The cylindrical wire model has the further ad
vantage of treating the confined phonon modes in a sim
way, as will be shown later. We assume that the lin
plasma densityN, is such that only the lowest subband
populated. This will hold22 when the parameterRs
51/(2pNR), exceeds;0.3. We assume that effective ma
approximation holds and for GaAs takeme50.067m, and
mh50.5m, wherem is the bare electron mass. Due to t
presence of an electron-hole plasma, assumed to be in e
librium, the bare Coulomb interaction is screened. The eq
librium assumption is justified since the laser pulse durati
are typically much longer than the relaxation times of t
semiconductor structures under study. Defining the static
screened Coulomb interaction asVs(q)5V(q)/«(q), we
consider the dielectric function in the random-phase appr
mation ~RPA!

«~q!5122V~q!(
i ,k

f i~k!2 f i~k1q!

e i~k!2e i~k1q!1 ih
, ~1!

where the indexi 5e,h, ande i(k)5\2k2/2mi are the single-
particle energies. Thus screening by both electrons and h
is accounted for within this approach. Assuming a homo
neously distributed electron-hole plasma in thermal equi
rium the electron and hole distribution functions are writt
as

f i~k!5
1

eb@e i ~k!2m i
0
#11

, ~2!

whereb51/kBT andm i
0 are the inverse carrier temperatu

and~unrenormalized! chemical potential of the different spe
cies, respectively. The plasma densityN determinesm i

0

through the normalization conditionN52(kf i(k).
Adopting the quasistatic approximation,10,11 which

amounts to neglecting the recoil effects relative to the plas
frequency in the full frequency dependent expressions,
may decompose10,11 the electron and hole self-energies in
screened exchange~sx! and Coulomb hole~Ch! terms:
S i(k)5S i

sx(k)1S i
Ch, where
t
d
ts

f

le
r

ui-
i-
s
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-
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e

S i
sx~k!52(

k8
Vs~k2k8! f i~k8!, and

S i
Ch5 1

2 (
k8

@Vs~k8!2V~k8!#. ~3!

The above set of equations have been derived10 from the
dynamical self-energy expressions by neglecting all rec
energies with respect to the plasma frequency. As in the c
of 2D and 3D calculations10–14 we assume that the BGR
results from rigid band shifts; i.e., the self-energies depe
only weakly on wave vectork. The band-gap renormaliza
tion is then given by

DEg5Eg82Eg5Se~0!1Sh~0!, ~4!

namely, the electron and hole self-energies calculated at
respective band edges. Within the same spirit, we may
culate the renormalized total chemical potential of t
electron-hole plasma usingmT5( i@m i

01S i(kF)#, in which
kF5pN/2 is the Fermi wave vector. The self-energy part
the above expression is also called the exchange-correla
contributionmxc to the chemical potential.

In the case of the electron-phonon system, we take
bare Coulomb interaction to beV(q)5(e2/2e`1)F(q) ~note
that the high-frequency dielectric constant of material
GaAs, is used! and include the phonon-mediated carrie
carrier interactionVph(q,v)5(lMq,l

2 Dl(q,v) where the
sum is over all the phonon modes present. HereMq

2 is the
effective 1D carrier-phonon matrix element, which depen
on the type of phonon modes, andDl(q,v)52vl,q /(v2

2vl,q
2 ) is the phonon propagator, with phonon dispersi

vl,q . The effective carrier-carrier interaction within th
RPA is given by23

W~q,v!5
V~q!1Vph~q,v!

12@V~q!1Vph~q,v!#@Pe~q,v!1Ph~q,v!#

5
V~q!

«TOT~q,v!
, ~5!

where Pe,h(q,v) is the noninteracting density-density re
sponse function for electrons and holes@see also Eq.~1!#.
The above equation defines the total dielectric function
the system in the presence of phonons, which can also
written as23

«TOT~q,v!5F11
Vph~q,v!

V~q! G21

2V~q!@Pe~q,v!

1Ph~q,v!#. ~6!

If the interaction of the charge carriers with the dispersio
less bulk phonon modes in 1D is considered, with the ma
elementMq

25V(q)(12e` /e0)vLO/2, the static effective in-
teraction W(q,v50) does not reduce to th
e0-approximation result. This is whene` is replaced bye0 in
the bare Coulomb interaction, and the carrier-phonon in
actions are not included explicitly24 (Vph50). In our case the
Coulomb-hole term contains the difference between the
ergy of the electron inside the plasma and in the semic
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3996 57C. R. BENNETT, K. GÜVEN, AND B. TANATAR
ductor. Since we are in a quasistatic approximation the la
term containse` not e0 as in the statice0 approximation.

Within the DC model,Vph(q) is the sum of both the con
finedVph

conf and all interfaceVph
IF,n mode potentials, which can

interact in an electronic ground-state transition. The confi
LO-phonon mode potentials in the wire are given by21,25

Vph
conf~q,v!5

e2

2e`1
(

n
S 12

e`1

e01
DvLO1@48J3~x0n!/x0n

3 #2

J1
2~x0n!~q2R21x0n

2 !

3
2vLO1

v22vLO1
2

. ~7!

In the above expressionJn(x) is the Bessel function of orde
n, and x0n is the nth root of J0(x). The interface phonon
mode potential for moden is21,25

Vph
IF,n~q,v!5

e2

2e`1

e`1

qRI0~qR!I 1~qR!A~vqn!

3F48
I 3~qR!

~qR!3 G2 2vqn

v22vqn
2

, ~8!

where

A~v!5
]e1~v!

]v
2

e1~v!

e2~v!

]e2~v!

]v
, ~9!

ande1,2(v) are the GaAs~1! and AlAs ~2! phonon dielectric
functions, given bye i(v)5e` i(v

22vLOi
2 /v22vTOi

2 ), vqn

are the interface mode frequencies,18 and I n(x) is the nth
order modified Bessel function of the first kind. The confin
phonons have the GaAs zone center frequency wherea
interface modes have dispersive frequencies which lie in
reststrahlband of the wire and barrier materials.18 These are
labeled as GaAs interface and AlAs interface modes depe
ing on their frequency. Only the lowest-order confined a
interface modes interact in a one-subband approximation
more detailed description of DC phonon modes interact
with Q1D electrons is given by Bennettet al.21 and Wang
and Lei.25

Finally, in the case of the electron-phonon system,
should subtract the polaronic renormalization~of the band
edges! Dp from the band-gap renormalizationD Eg , as was
done for 2D systems,24 since this is already included bu
cannot be measured by experiment.Dp is obtained from per-
turbation theory in the one carrier limit at zero temperat
as

DB52
2

pS 12
e`

e0
DvLO (

i 5e,h
E dq

V~q!

q2/2mi1vLO

~10!

for bulk phonons and

DDC5
4

p (
i 5e,h

F E dq
Vph

conf~q,0!

q2/2mi1vLO1

1(
n
E dq

Vph
IF,n~q,0!

q2/2mi1vqn
G ~11!
er

d

the
e

d-
d
A
g

e

e

for DC phonons. Unlike in 3D and 2D systems, in 1D
closed form expression forDp is not possible17 because of
the nature of the form factors contained inV(q) andVph(q).

III. RESULTS AND DISCUSSION

We now present our results on the band-gap renormal
tion in Q1D quantum wires, concentrating on the dens
range ofN51052107 cm21. We first discuss the screened
exchange and Coulomb-hole contributions to the BGR w
out subtracting the polaronic renormalization. Figure
showsDEg as a function ofN for a quantum wire ofR
550 Å, at T50. We do not include the phonon effects e
plicitly, but use thee0 approximation for material 1 for the
time being. The rationale for this approximation, as argu
by Das Sarma, Jalabert, and Yang,24 is that the effect of
high-frequency phonons is to screen the Coulomb inter
tion, which is accounted for by the replacement ofe` by e0.
The dashed and dotted lines denote the screened-exch
and Coulomb-hole contributions, respectively, whereas
solid line is the total BGR. There are several notewort
features. For the cylindrical quantum-wire model we use,
Coulomb-hole contribution is important in determining th
total DEg . In a different wire model, Benner and Haug3

found the density dependence ofDEg is not as strong as
ours, and it is mainly determined by the screened-excha
contribution. Our finding here is also in contrast with th
situation in 2D and 3D systems, where the BGR is to a la
extent determined by the Coulomb-hole contribution.26 The
slight upturn in the Coulomb-hole contribution at high de
sities is a peculiar effect, perhaps related to the 1D chara
of the system. Similar behavior was also found in a differe
quantum-wire model.27 Since the analysis of the photolum
nescence measurements depends on the theoretical m
used to extract the observed BGR, a direct comparison w
experimental data is difficult. However, it is conceivable

FIG. 1. The band-gap renormalization in thee0 approximation
as a function of plasma densityN, for a quantum wire ofR550 Å,
and atT5100 K. The dashed and dotted lines indicate the screen
exchange and Coulomb-hole contributions, respectively, whe
the solid line stands for the totalDEg .



-
a

ac
ie
at
ll
o
in
la

kl
a

s
d
th
c
-
on
g
on

as
e,
A
em
ti
ni
ts
t
e
tw

on
t

r a

nd
4

use
ved
e
s to
in

ll
nd

on
ap-

um
ns

57 3997CONFINED-PHONON EFFECTS IN THE BAND-GAP . . .
have drastically differentN dependence for the BGR, de
pending on the degree of confinement as described by v
ous models.

We next investigate the effects of carrier-phonon inter
tion on the BGR. For this purpose, the bare carrier-carr
and carrier-phonon-mediated interactions should be tre
on an equal footing. If one were to use the dynamica
screened effective interaction within the RPA, the phon
effects would be discerned. In quantum-well systems, tak
also the finite-width effects into account, Das Sarma, Ja
ert, and Yang24 have found thate0 approximation is suffi-
cient to describe the phonon interaction effects for wea
coupled polar materials. However, the calculations of D
Sarma, Jalabert, and Yang24 show that the phonon effect
tend to increase the magnitude of BGR. Dan and Bechste16

calculated the LO-phonon effects in Q1D systems, within
quasistatic approximation. They found that phonon effe
reduce the magnitude ofDEg . We believe that this discrep
ancy partly stems from the fact that the static dielectric c
stant e0 appears in the Coulomb interaction, even thou
they treat the carrier-carrier and carrier-phonon interacti
on an equal footing.

We compare the result of thee0 approximation and the
result using the phonon potentials for bulk GaAs phonons
Fig. 2. Both results have the same form but using the qu
static approximation gives a larger BGR because we hav
least in part, included some effect of a finite frequency.
discussed in the previous section, the self-energy in the s
conductor, which appears in the Coulomb hole term, s
containse`1. Our results indicate an increase in the mag
tude of BGR upon the inclusion of explicit phonon effec
similar to the situation24 in 2D. Since our approach is no
fully dynamical but quasistatic the effect may have be
slightly overestimated and the true BGR lies between the
extreme results.

Using the phonon potentials for confined LO-phon
modes and interface phonon modes, we next calculate
BGR within the quasistatic approximation. Our results fo

FIG. 2. The band-gap renormalization for aR550 Å wire at
T5100 K using the quasistatic approach with bulk GaAs phon
~solid! and thee0 approximation for material 1~dashed!.
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quantum wire of radiusR550 Å are shown in Fig. 3. The
solid, dotted, and dashed lines representDEg calculated us-
ing carrier-DC phonon, carrier-bulk GaAs phonon, a
carrier-bulk AlAs phonon interactions, respectively. Figure
shows the same curves againstR with N5106 cm21. We
assume confined LO phonons to be dispersionless, but
the dispersion relations for interface phonon modes deri
within the DC model.21,25 Also, we have not deducted th
polaronic renormalization. The DC phonon result appear
lie very close to the bulk GaAs phonon result. This is
contrast to earlier works28 and to the approximate sum rule,29

which is known to hold for the DC model, namely, for sma
R the DC result should give the bulk AlAs phonon result a

s
FIG. 3. The band-gap renormalization within the quasistatic

proach including DC phonons~solid line!, bulk GaAs phonons~dot-
ted line!, or bulk AlAs phonons~dashed line! with R550 Å and
T5100 K.

FIG. 4. The band-gap renormalization as a function of quant
wire radius within the quasistatic approach including DC phono
~solid line!, bulk GaAs phonons~dotted line!, or bulk AlAs phonons
~dashed line! with N5106 cm21 andT5100 K.
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3998 57C. R. BENNETT, K. GÜVEN, AND B. TANATAR
for largeR the bulk GaAs phonon result. The phonon pote
tials do reduce to the bulk phonon results at the appropr
limits, however, the AlAs bulk limit is not reached becau
the dependence is onqR and the integration overq is infi-
nite. This implies that in the quasistatic case the BGR
controlled by shorter wavelength modes than is usually
case. Thus, the result using DC phonons only reduces to
result with AlAs bulk phonons for very small radii.

Subtracting the polaronic effects leads to another inter
ing result. The polaron shift (DDC) tends towards the sma
radius limit of the sum rule for the DC model for large
values ofR than the quasistatic approximation. Thus, su
tracting polaronic effects produces a result where the B
including DC phonons is smaller than both of the bulk ph
non cases. This does not contradict the approximate
rule, since the result is the difference between the quasis
approximation and polaronic shifts that independently sat
the sum rule. Our results with polaronic shifts subtracted
illustrated in Fig. 5. The decrease in magnitude for all
cases is similar to that obtained by Das Sarma, Jalabert,
Yang24 for 2D systems.

The main shortcoming of the present calculation is
quasistatic approximation employed to obtain the s
energies. However, the confined and interface phonon c
tributions to the BGR can be estimated. A more compl
theory should take the full frequency dependence of the v
ous phonon potentials which appear in the total dielec
function«(q,v), and perform an internal frequency integra
similar to the case in 2D systems.14,24

IV. SUMMARY

In this paper, we have examined the effects of carr
phonon interactions on the band-gap renormalization in p
toexcited Q1D semiconductor structures. Within the qua
static approximation and the RPA, the carrier-bulk L
phonon interactions are different from thee0 approximation
and produce a larger BGR. The full dynamic result should
between these two results. When we consider the confi
LO-phonon modes and interface phonon modes, descr
within the dielectric continuum model, we find that th
carrier-phonon interaction effects do not increase sign
s.
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cantly the magnitude of the band-gap renormalization wh
compared to band-gap renormalization including bulk Ga
phonons. However, excluding the polaronic effects, wh
cannot be measured experimentally, a smaller BGR is
tained for the DC phonon modes than for the bulk phono
Extension of our calculations to multisubband cases wo
be interesting.
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FIG. 5. The band-gap renormalization as a function of quant
wire radius within the quasistatic approach including DC phono
~solid line!, bulk GaAs phonons~dashed line! with N5106 cm21

andT50 K. The thin curves are just the quasistatic result while
thick curves do not include the polaronic energy shift.
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17K. Güven and B. Tanatar, Phys. Rev. B51, 1784 ~1995!; Phys.

Status Solidi B197, 369 ~1996!; S. Das Sarma and M. Stopa
ibid. 36, 9595 ~1987!; W. Xiaoguang, F. M. Peeters, and J.
Devreese, Phys. Status Solidi B133, 229 ~1986!.

18R. Enderlein, Phys. Rev. B47, 2162~1993!.
19A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. R

Lett. 54, 2111~1985!.
.

v.

20M. A. Stroscio, Phys. Rev. B40, 6428~1989!; M. V. Klein, IEEE
J. Quantum Electron.QE-22, 1760~1986!.

21C. R. Bennett, N. C. Constantinou, M. Babiker, and B. K. Ridle
J. Phys.: Condens. Matter7, 9819~1995!.

22A. Gold and A. Ghazali, Phys. Rev. B41, 7626 ~1990!; L.
Calmels and A. Gold,ibid. 52, 10 841~1995!.

23G. D. Mahan,Many Particle Physics~Plenum, New York, 1981!.
24S. Das Sarma, R. Jalabert, and S.-R. Eric Yang, Phys. Rev. B39,

5516 ~1989!; 41, 8288~1990!.
25X. F. Wang and X. L. Lei, Phys. Rev. B49, 4780~1994!.
26H. Haug and S. Schmitt-Rink, J. Opt. Soc. Am. B2, 1135~1985!;
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