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The electronic structure and superconductivity of layered organic materials based on the
bis(ethylenedithio)tetrathiafulvalene molecule (BEDT-TTF, hereafter ET) with essential intra-ET
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agreement with the measured non-activated temperature dependences of the superconducting
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INTRODUCTION

Condensed organics have constituted a branch of
condensed matter science since the discovery of
conductivity1,2 and superconductivity3 in organic
matter. The electron donor ET molecule can form
a wide class of salts,4 the most attractive for funda-
mental science and applications being the k-ET2X
family. Despite the similarity in electronic and
crystal structures and the same carrier concentra-
tion of half a hole per ET molecule, the k-ET2X
family includes semiconductors, normal metals
and superconductors with critical superconducting
temperatures as high as Tc � 13 K. Its crystal

motif is made by ET�2 dimers arranged in a crossed
dimer manner in ET layers, separated by alternating
polymerized X7 anion sheets with a sheet period-
icity of about 15 AÊ . The ET2 dimers are ®xed at
lattice plane sites in a near-triangular con®gura-
tion. The elementary cell is a-by-

�����
3a
p

rectangular
and includes two ET2 dimers (hereafter the lattice
constant a� 1). The intermolecular distance within
an ET2 dimer is 3.2 AÊ , while the separation
between neighbouring ET2 dimers is about 8 AÊ .

In this work the analysis of the normal and
superconducting phases of k-ET2X salts is based
on the assumption that their properties are
governed by the scale of UET5 1 eV (intra-ET
electron±electron repulsion), t0 � 0.2 eV (intra-
ET2 carrier hopping), t1,2,3 � 0.1 eV (inter-ET2
carrier hopping between nearest molecules of
neighbouring dimers)5,6 and t � 3� 1074 eV
(interlayer hopping). The dispersion relations are
presented in Section 2 for a realistic k-ET2X lattice
symmetry. On the basis of the Hubbard model with
two ET�2 sites per unit cell, the insulating state is
obtained for the k-ET2X family and a phase
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transition to metal is observed in Section 3. Besides
the discussion about the nature of the super-
conducting mechanism, the anisoptropic pairing
of di�erent symmetries is studied within the BCS
approximation in Section 4. In Section 5 the
relation between the superconducting electronic
DOS and the topology of the Fermi surface is
discussed. In Section 6 it is shown that nodes of the
superconducting order parameter are responsible
for the description of such quantities as the non-
activated superconducting speci®c heat and
13C NMR.

TIGHT-BINDING ELECTRONIC
ENERGY DISPERSIONS

In the tight-binding approach7 for a triangular
lattice the electronic energy dispersion relations are
of the form E+

p � + t0 � ep, where

ep � t2 cos py

+ cos�py=2�
����������������������������������������������������
t21 � t33 � 2t1t3 cos�

���
3
p

px�
q

1

In the limitating case of completely isotropic
hopping (t1,2,3 � t) the dispersions of Eqn. 1 are

ep=t � e+p � cos py

+ 2 cos� py=2� cos�
���
3
p

px=2� 2

Around the G-point of the Brillouin zone (BZ) the
energy dispersion relations of Eqn. 2 become

e�p � 3 ÿ 3p
2=4

eÿp � ÿ1 � �3p2x ÿ p
2
y�=4

To consider non-zero energy dispersion along the
c-direction, we need to take into account the
essential ET2 layers shown in Fig. 1. Assuming a
small interlayer carrier hopping t along the c-axis
(t1,2,3 � t), we can obtain the general energy
dispersion relations as

o1;2
p � e�p +

t
t
cos

pzc

2

����������������
3 � 2e�p

q
o3;4

p � eÿp +
t
t
cos

pzc

2

����������������
3 � 2eÿp

q 3

These carrier energy dispersions are di�erent
from cited ones such as e � e+p � t? cos� pzc�. It
is easily seen from Eqn. 3 that the e�ective carrier
hopping t ? � � cos(pzc/2)/ cos(pzc) increases with
increasing interlayer separation c, in agreement
with experimental visualization.8 The Fermi sur-
face corresponding to the spectral branches
(Eqn. 3) of electronic energies has a corrugated
topology, in contrast with the conventional two-
dimensional Fermi surface derived on the basis of
the energy dispersion relations of Eqn. 27 with
neglect of the interlayer hopping t.

INSULATOR–METAL PHASE
TRANSITION

The k-ET2X insulating problem can be described in
the frame of the half-®lled Hubbard model with
two ET�2 sites per unit cell in the ET2 lattice. We
employ the X-operator technique of Refs. 5, 6, 9
and 10 for generalized Hubbard11±Okubo12

operators XB
A � jBihA j projecting multielectron

A states of the crystal cell r to B states. Then the
local, r� r0, Green function acquires the form

D
0
ab�rt; r

0
t
0� � dr;r0G

0
a�rt; r

0
t
0�h�XaXÿa�+i0

Fig. 1. Scheme of crystal structure of neighbouring ET2 layers:
inverted triangles, ET2 dimers of one layer; circles, projection of
ET2 dimers of neighbouring layer
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In the Matsubara o-representation it can be
rewritten as

D
0
a�B A��on� � f aG

0
a�B A��on� �

f a
ÿion � eA ÿ eB

4

where the subscripts a(B A) denote the transitions
A! B in the discrete spectrum of the non-
pertubative Hamiltonian H0 and the correlation
factor9,10,13±15

f a � h�XaXÿa�+i0 � hXA
Ai+ hXB

Bi � nA + nB

is determined by the Boltzmann populations nA,B
of the H0 eigenstates A and B with expansions of
the Fermi operators given by

as �
X
a�B A�

gaXa 5

according to the tight-binding approach for
correlated electrons,11,12 the band spectra should
be derived from the equation

X
a

g
2
aD

0
a�on� �

X
a�P GS�

g
2
af a

ÿion ÿ e
�

X
a�GS P�

g
2
af a

ÿion � e

� ÿ 1

te+p
:

6

Then one can get from Eqn. 6 the correlated
antibonding branches

x+p � �t2=2� e+p +
���������������������������������
�e+p �2 � �2e=t2�2

q� �
: 7

From the tight-binding correlated bands,
Eqn. 7, it follows that intra-dimer electron inter-
actions are responsible for the insulating gap,
i.e. D � x��min e�p � ÿ xÿ�max e�p �. Taking into
account the energy ranges ÿ15 e�p 5 3 and
ÿ3=25 eÿp 5 1 of uncorrelated carriers in Eqn. 2
and the dispersion relations of Eqn. 7, one can
evaluate the band gap as

D �
� ������������������������

9 � �2e=t2�2
q
�

����������������������������������
�3=2�2 � �2e=t2�2

q
ÿ 9=2

�
t2=2:

8

With the assumptions e � UET2
=2 � t0 � 0:2 eV

and t2 � 0.1 eV the magnitude of this band gap is
in agreement with the measured activation energy
Eg� D/2 � 102 meV in k-ET2X semiconduc-
tors.16,17

A metallic dimerised ET2 layer in k-ET2X can be
represented by a lattice of sites ET2 � ETaETb with
degenerate energy levels of orbitals `a' and `b',
namely the doubly degenerate Hubbard model
with a hole concentration n of around unity.5 The
ground state and polar populations are hX00

00i � n0
and hXs0

s0i � hX0s
0si � n1 respectively. The complete-

ness relation for the fourfold degenerate ground
state yields the concentrations n0 � 17 n and
n1 � n/4. The desired spectrum of one-particle
excitations follows from the pole of the Green
function as

xa;bp � f ep ÿ m � �1 ÿ 3n=4�ep ÿ m 9

where ep refers to the dispersion from Eqn. 1, 2 or 3.
In the general case of k-fold degeneracy of the

GS in the unperturbed Hamiltonian H0 the Mott±
Hubbard phase transition is governed by singular-
ities of the two-particle vertex Gab for small
momentum transfer.18 One can derive the critical
point of the insulator±metal phase transition as19

t2
e

� �
crit
� t2

UET2
=2

 !
crit

� 4p
4 ���
3
p ���������������������

15p2 � 64
p � 0:66: 10

(Note that for a square ET2 lattice the phase
transition critical point is 0.43. 6)

In terms of the conducting bandwidths WU
and the dimer band splitting DE� 2t0, it is known
that the empirical ratio WU/DE� 1.1±1.220 separ-
ates k-ET2X insulators from metallic k-ET2X
compounds. Taking into account the antibonding
bandwidth 4.5t2 , the empirical relation can be
considered as t2/t0� 0.48±0.54, which agrees
fairly well with the calculated phase critical point
of Eqn. 10, (t2/t0)crit� 0.66 �UET2

� 2t0�. We can
conclude, for example, that k-ET2Cu[N(CN)]2Cl
with the characteristic ratio t2/t0� 0.3220 should
be an insulator near the insulator±metal phase
boundary. Recently it was reported that
k-ET2Cu[N(CN)]2Cl insulator undergoes the
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phase transition to metal under a moderate hydro-
static pressure of 30 MPa.21

In conclusion of this section we estimate the
in¯uence of intra-dimer phonons on the e�ective
Hubbard energy for the simplest exactly solvable
model of the dimer with electron hopping corre-
lated by phonons:

H � ob�b � l�b� � b��n1 � n2�
ÿ �t0 � t~0�b� � b��

X
s

c
�
1sc2s � h:c:

ÿ �
� U

X
i�1;2

ni"ni# 11

To obtain the e�ective Hubbard interaction in the
dimer, one should determine the ground state
energies for one and two electrons in a dimer.
Using the one-electron basis for the wavefunction
in the case of one electron, the wave function of the
dimer has the form

C � f 1�b��c�1 � f 2�b��c�1
� �j0iel 
 j 0iph

In this electron basis the SchroÈ dinger equation
takes the matrix form

Hel±phF

�
ob�b � l�b� � b� ÿ�t0 � ~t0�b� � b��
ÿ�t0 � ~t0�b� � b�� ob�b � l�b� � b�

 !

�
f 1�b�� j 0i
f 2�b�� j 0i

 !
� E

f 1�b�� j 0i
f 2�b�� j 0i

 !
12

The system of equations can be diagonalised into
bonding and antibonding orbitals

f a � �f 1�b�� � f 2�b���=
���
2
p

f b � �f 1�b�� � f 2�b���=
���
2
p

The corresponding branches of the spectrum are

E
�1;b�
n � on ÿ �l ÿ ~t0�2

o
ÿ t0

E
�1;a�
n � on ÿ �l � ~t0�2

o
ÿ t0

13

Depending on the values of the parameters of
the electron±phonon interaction, either of the
branches can be the lower one: E�1b�n 5E�1;a�n if
t04 2gtÄ0/o. The similar problem for two electrons
in a dimer can be solved exactly for ®nite intra-ET
electron correlations, UET�1. In this case the
electron basis is reduced to two functions and the
wavefunction of the dimer can be chosen as

C � c
�
1"c
�
2#f 1�b�� � c

�
2"c
�
1#f 2�b��

h i
j 0iel 
 j 0iph

Then the doubly degenerated spectrum is

E
�2�
n � on ÿ 4l2

o
14

Thus

U
eff
ET2
� 2t0 �

2 ~t20
o
ÿ 2l2 � 4l ~t0

o

for t0 5 2l ~t0=o

and

~U
eff
ET2
� ÿ2t0 ÿ

2l2

o
� 2 ~t20 � 4l~t0

o

for t0 4 2l~t0=o

These expressions can be positive as well as
negative. We assume the realistic case Ueff

ET2
4 0.

SUPERCONDUCTING PAIRING IN ET2
LAYER MODEL

As can be seen from Eqn. 9, 1 or 2, band structure
e�ects are important when the Fermi surface is
near the BZ (this is the case for the k-ET2X family),
where the in¯uence of the crystal potential is
strong.

Experiments imply that, in k-ET2X super-
conductors, anisotropic singlet d-type pairing
with nodes of the order parameter given by
Dd(p) / cos px7 cos py (so called dx2ÿy2 -pairing)
or another one (dxy) occurs at the Fermi surface.
They are also consistent with anisotropic singlet s*-
pairing with nodes Ds(p) / cos px � cos py with-
out a sign change or minimum of the gap on the
Fermi surface, but in the same direction in the BZ
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as in the case of d-pairing. To determine the type of
Cooper pairing, we start from correlated Green
functions to apply the formalism.22

Here we assume a triangular ET2 lattice and
express the Fermi operators via X-operators in the
e�ective pairing Hamiltonian. For a particular
triangular lattice with a single-point basis of the
k-ET2X model the general form of attractive inter-
action between fermions, namely

V�p ÿ p
0� � 2V

 
cos� py ÿ p

0
y�

� cos

���
3
p � px ÿ p0x� � py ÿ p0y

2�

� cos

���
3
p � px ÿ p0x� ÿ � py ÿ p0y�

2

!
; 15

conserves a symmetry of elementary excitation
dispersions (Eqn. 2) irrespective of the super-
conducting pairing mechanism. Its expansion
over the basis functions of irreducible representa-
tions of the point symmetry group of the triangular
lattice is

V�p ÿ p
0� � 2V

X6
i�1

Zi�p�Zi�p0�; 16

where

Z1�p� �
1���
3
p cos py � 2 cos

py

2
cos

���
3
p

px
2

 !

Z2�p� �
2���
6
p cos py ÿ cos

py

2
cos

���
3
p

px
2

 !

Z3�p� �
���
2
p

sin
py

2
sin

���
3
p

px
2

Z4�p� �
1���
3
p sin py � 2 sin

py

2
cos

���
3
p

px
2

 !

Z5�p� �
2���
6
p sin py ÿ sin

py

2
cos

���
3
p

px
2

 !

Z6�p� �
���
2
p

cos
py

2
sin

���
3
p

px
2

Here the basis functions Z1(p), Z2(p) and Z3(p)
describe respectively anisotropic singlet s*-pairing,
dx2 ±y2 -pairing and dxy-pairing. The basis functions
Z4,5,6 (p) are linear combinations of the basis
functions for the two-dimensional representation
corresponding to triplet p-pairing.

From the standard BCS equation for the super-
conducting order parameter, i.e.

D�p� �
X6
i�1

DiZi�p�;

we obtain the following equation for Tc :����dij ÿ 2V
X

p;a�+

tanh�xap=2Tc�
2xap

DjZi�p�Zj�p�
���� � 0:

17

Because the oddness of the integrals in Eqn. 17
with respect to the momentum py , only super-
conducting pairing of Z1(p) with Z2(p) and of Z4(p)
with Z5(p) can be allowed. In Eqn. 17 the aniso-
tropic singlet pairings of the d- and s*-type break
down to one-dimensional dxy-pairing and
mixed�s* � dx2ÿy2�-pairing. Knight shift measure-
ments23,24 indicate only a singlet form of electron
pairing in k-ET2X superconductors.

Applying the logarithmic approximation, one can
get that for dxy-pairing the superconducting critical
temperature Tc satis®es an equation of the form

1 � �2V=f �F33 ln�oc f =2T c� 18

with a cut-o� energy parameter oc . Recalling that
the correlation factor f � 1

4, it immediately follows
that the corresponding coupling constant is
lxy� 8VF33(1.47), where F33(1.47)� 2.09/p2 for
a realistic value of m/f�ÿ0.415. The super-
conducting critical temperature for the order
parameter of mixed symmetry s* � dx2ÿy2 is
speci®ed by the quadratic equation���� 1 ÿ 8VF11ln�oc=8T c� ÿ8VF12ln�oc=8T c�
ÿ8VF12ln�oc=8T c� 1 ÿ 8VF22ln�oc=8T c�

����� � 0;

19

where Fij are expressed via values of elliptic
integrals of the ®rst, second and third
kinds: F11(1.47)� 1.60/p2, F22(1.47)� 0.36/p2 and
F12(1.47)�ÿ0.48/p2. Then the mixed symmetry
coupling constants are evaluated as ld

x2ÿy2�s� �
# 1998 John Wiley & Sons, Ltd. Adv. Mater. Opt. Electron. 8, 53±60 (1998)
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8VF1;2, with F1� 1.76/p2 and F2� 0.20/p2. That is,
both coupling constants are smaller in magnitude
than the coupling constant for superconducting
dxy-pairing. Hence it follows that the supercon-
ducting order parameter of the dxy-wave symmetry
is preferable for the k-ET2X superconductor model
under consideration.

For an e�ective pairing interaction V� 0.022,
made dimensionless by the inter-dimer hopping
integral t, the ratio of superconducting critical tem-
peratures of interest is T

dxy
c =T s�� d

c x2ÿy
2 � 1:65.

With the same V value and assuming that the cut-
o� energy parameter oc is equal to the inter-dimer
hopping integral, i.e. oc� t � 0.1 eV, in the
logarithmic approximation, we can estimate the
superconducting transition temperature Tc as 10 K
for dxy-wave pairing. This value is a reasonable
magnitude for k-ET2X superconductors.

SUPERCONDUCTING ELECTRONIC
DENSITYOF STATES

For the energy range E4 0 the electronic density
of states (DOS) in the superconducting phase of
principal interest is de®ned by

r+s �E� �
���
3
p

4p2

Z p

ÿp
dpy

Z p=
��
3
p

ÿp ��
3
p

� d�E ÿ
�������������������������
�x+p �2 � D2

p�
q

dpx 20

with the order parameter Dp� D0 sin(py/2)
sin(

���
3
p

px/2) and one-particle energies given by
Eqn. 9.

The magnitude of Dp is small in the neighbour-
hood of four nodes on the Fermi surface inside the
®rst BZ near the straight lines px� 0, py� 0. In
Eqn. 20 let us expand the xp and Dp magnitudes in
terms of variations from the values at the nodes of
the order parameter Dp� 0 on the Fermi surface
m(px , py). One ®nds that close to the node px� 0,
py� 2 cos71� ������������������������

3=4 � m=2ft
p

7 1/2) on the electron
section x�p � 0 of the Fermi surface the DOS is

r�s �E� �
E

2pD0ft sin
2� py=2��2 cos� py=2� � 1�

� b�E 21

In a similar manner, close to the node py� 0,
px� (2/

���
3
p

) cos71 (1/27 m/2ft) on the hole section
xÿp � 0 of the Fermi surface the DOS is

rÿs �E� �
E

2pD0ft sin
2� ���

3
p

px=2�
� bÿE 22

Within the conventional isotropic superconducting
gap of s-type the DOS is equal to zero. As one
would expect, Eqns. 21 and 22 show that for an
anisotropic dxy-order parameter the superconduct-
ing electronic DOS is linearly proportional to the
energy near the nodes on the Fermi surface. It
is signi®cant that the Fermi surface portions with
di�erent curvatures contribute di�erent coe�-
cients, b7/b� � 3, for the calculated value of
m/tf�ÿ0.415.

CHARACTERISTICS OF
ANISOTROPIC

SUPERCONDUCTING PHASE

The superconducting electronic DOS obtained in
the previous section makes it possible to derive the
temperature dependences of the electronic speci®c
heat and spin±lattice relaxation time of conduction
electrons in the ET2 plane. The linear dependences
(Eqns. 21 and 22) of DOS on energy in the super-
conducting condensate lead to a quadratic temp-
erature dependence of the electronic speci®c heat,
namely

Cs � 2
X
p;d

xap
@NF

@T

� 2

Z 1
0

�b� � bÿ�E2 @NF

@T

� �
dE

� 9�b� � bÿ�z�3�T2

� 10:8�b� � bÿ�T2
23

for a unit cell of the ET2 layer. Here z(3) is the
Riemann z-function. Putting into Eqn. 23 the
reasonable parameters t� 0.12 eV, D0� (2.5±
3.5)Tc

25,26 and Tc� 10 K for k-ET2X salts, we
obtain the superconducting speci®c heat per
mole as Cm� aT2, where the coe�cient
a � 10:8NA�b� � bÿ�k3B=2 (NA is Avogadro's
number and kB is Boltzmann's constant) can vary
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between 1.59 and 2.23 mJ K73 mol71. Such a
values are in agreement with the results of
measurements in Ref. 27, where the experimental
magnitude of a has been estimated as 2.2 and less
than 3.53 mJ K73 mol71 respectively for super-
conductors k-ET2Cu[N(CN)2]Br with Tc� 11.6 K
and k-(ET)2Cu(NCS)2 with Tc� 10 K.

In the ET molecule centre the 13C nuclear
magnetic momentum damps out through the
conduction electrons under NMR conditions. The
corresponding spin±lattice relaxation rate R� 1/
T1 is de®ned in the superconducting phase by the
relation28

Rs

Rn

� 2

T

Z w

0

�b� � bÿ�2E2

�r�m��2

� exp�E=T�
�exp�E=T� � 1�fexp��E � ��=T � � 1g dE 24

where � is the frequency of the oscillating magnetic
®eld, r denotes the normal DOS on the Fermi
level and w is the cut-o� energy for the linearly
energy-dependent superconducting DOS. When it
is considered that radio frequency � � 10 MHz�
1074 K, at lower temperatures T � w we can
calculate the result

Rs

Rn

� 2T2b2x�2�
r2�m� 1 ÿ �

T

ln2

x�2�
� �

25

For the normal phase, Rn � T in accordance with
the Korringa law; as a consequence, we ®nd that
for the superconducting phase the spin-lattice
relaxation rate has a cubic low-temperature
dependence of the form Rs � T3.

Electron±electron correlations in¯uence the
coe�cients b� and b7 in Eqns. 21±24 via the
factor f � 1

4 and the renormalised chemical poten-
tial. The derived temperature dependence in
Eqn. 25 di�ers from the activated dependence
Rs � exp(ÿD/T) at low temperatures in supercon-
ductors with s-pairing and it has been observed in
k-ET2X salts29±31 at T � Tc .

CONCLUDING REMARKS

An analytical formulation of the electronic
structure in one-dimensional organic compounds
has allowed us to analyse various phenomena with

a prediction of several e�ects. The k-ET2X salts
can be ®rstly modelled as a correlated electron
system with doubly degenerate sites in the tri-
angular ET2 layer, where ET2 dimers are con-
sidered as entities with two degenerate energy
levels. Strong electron correlations renormalise
the hopping integrals and chemical potential
owing to the correlation factor f� 17 3n/4 in
Eqn. 9 and lead to correlated narrowing of the
carrier energy band in the paramagnetic state.
Also from Eqn. 9 it follows that the magnetic
breakdown gap between the closed and open
portions of the Fermi surface is x�p ÿ xÿp � 2f
cos� py0=2� j t1 ÿ t3 j � j t1 ÿ t3 j =4 � 4 meV (at
the Fermi momentum py0 � 2p/3) for a realistic
di�erence of non-azimuthal hopping integrals t1,3 .
This gap value is in agreement with the experi-
mental magnitude in Refs. 32±35.

Close to the nodes of the superconducting order
parameter on the Fermi sections the superconduct-
ing DOS (Eqns. 21 and 22) is proportional to the
excitation energy. As a result, the number of
elementary excitations has a power dependence on
temperature. Because of this, the superconducting
speci®c heat is quadratic with respect to tempera-
ture (Eqn. 23) and the spin±lattice 13C relaxation
rate is cubic (Eqn. 25) at low temperature.

The calculated cubic temperature dependence of
the spin±lattice relaxation rate (Eqn. 25) due to
conduction electrons is in agreement with exper-
iments29±31 on nuclear magnetic spins of central
carbon isotopes in ET at low temperatures
T � Tc . The absence of the Hebel±Slichter peak
at T4Tc can be explained by Maleyev scenario
UET � t1,2,3 .

36

The correlation factor f� 17 3n/4 (n� 1 is the
number of holes per dimer) a�ects the super-
conducting condensate properties. In Ref. 20,
according to ESR signals, a Cu2� concentration
change has been measured in the anion layer
of k-ET2Cu2�CN�3 � k-ET1ÿx

2 Cu�2ÿxCu
2�
x �CNÿ�3:

An increase in paramagnetic Cu2� ions decreases
the concentration 17 x of hole carriers in the ET2
layer and leads to an increase in the correlation
factor f and a decrease in Tc according to Eqns. 18
and 19.

In the normal phase the factor f renormalises
the dispersion relations of Eqn. 9 for correlated
carriers. This suggests a fourfold narrowing of the
energy band with a possible di�erence in optical
and cyclotron electron masses37±39 and decrease
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in the cross-section of hole orbits in k-ET2Cu
[N(CN)2]Br.
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