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ABSTRACT

Frequency control is a vital component of a secure and robust power grid and it ought to be closely moni-
tored. Frequency control consists of two main components; primary and secondary control and their con-
tributions are usually aggregated in the active power generation data of a plant, which is acquired via
Supervisory Control And Data Acquisition. In many cases, such as in Turkey, they are demanded to be
evaluated separately due to different impacts on power system or different financial policies. However,
this is not usually a straightforward process since primary and secondary response cannot be obtained
distinctly.

In this work, Extraction of Primary and Secondary Control (EPSCon) algorithm is introduced to extract
primary and secondary response over active power generation data. Based on time and frequency domain
characteristics of primary and secondary response, EPSCon is developed on a Expectation-Maximization
type recursive scheme employing Generalized Cross Correlation and ¢' Trend Filtering techniques.
Favorably, EPSCon uses a simple plant model built upon basic governor and plant load controller techni-

cal characteristics as an initial estimate of primary and secondary response.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Load-frequency control (LFC), is an essential requirement for a
secure and robust power system [1]. Due to increasing size and
complexity of power systems [2] and the liberalization of the elec-
tricity supply industry [3], it became inevitable to monitor and
evaluate frequency control performed by plants. As focused in this
paper, primary and secondary frequency control are two main
parts of LFC. They have often different remuneration policies
[4]. Nevertheless, in a typical Supervisory Control And Data
Acquisition (SCADA) application, as in the Turkish system, primary
and secondary responses are not acquired distinctly but as an
aggregation in the active power generation data of a plant. Using
signal processing techniques, this paper introduces Extraction of
Primary and Secondary Control (EPSCon) algorithm to extract
primary and secondary control components from active power
generation data, allowing distinct evaluation and remuneration
of primary and secondary control.

LFC aims to stabilize system frequency within limits around
nominal frequency by properly adjusting the MW outputs of the
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generators [5]. Primary frequency control is the automatic
response of turbine governors against deviations in system fre-
quency. It depends on the speed-droop characteristics [5] of a plant
and performed within a few seconds [6]. Secondary frequency con-
trol is dictated by the Automatic Generation Control (AGC) based
on the Area Control Error (ACE). For the purposes of this paper,
Turkish system is based on a single control area and the system fre-
quency is monitored by the national control center. EPSCon utilizes
the reference model introduced in [7] to characterize primary and
secondary response of typical power plant in Turkish power sys-
tem. Secondary frequency control is based on up/down ramp rates
of generating plants and realized within the time frame of minutes
[8]. In this work, the signals denoting primary and secondary fre-
quency control are referred to as primary and secondary frequency
response, respectively.

In the literature, there are many studies regarding optimal
load-frequency control strategies, e.g. classical approaches
[9-11] or recent techniques [12-16]. Monitoring of power systems
draws also attention of many researchers such as estimation of
required power generation to balance the load [17], estimation of
stability index [18] or assessment of the security of the power
system [19]. However, to the best of our knowledge, there is only
a limited work [20] on the separate estimation of primary and
secondary response components over measured power generation
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data. The motivation behind separate estimation lies on the fact
that even though primary and secondary response cannot be
individually measured, transmission system operators (TSOs)
may have different financial policies. For instance, correct provi-
sion of primary and secondary control performed by plants are dif-
ferently remunerated, or primary and secondary control shall be
subject to different penalties, since unavailability of these services
may pose different system-wide events. Furthermore, some plants
are not obliged to secondary control yet they ought to perform pri-
mary control. Primary response component of such plants have to
be extracted from total power generation to be able to evaluate
primary response for remuneration or penalty.

EPSCon provides separate offline estimates of primary and sec-
ondary response of a plant from (total) active power generation
data available in SCADA. Time and frequency domain characteris-
tics of primary and secondary response are investigated. Based
on the observations that secondary response can be modeled as a
piecewise linear signal and it has a much sparser derivative com-
pared to primary response, ¢! trend filter [21] is used to filter out
primary response from active power generation. It is possible to
improve the estimation performance by initially predicting pri-
mary response using the reference model introduced in [7] and
subtracted from the active power generation before ¢' trend filter.
It is also observed that the reference model provides close esti-
mates of primary response with a time delay and attenuation.
Such time delay and attenuation is computed by the correlation
between predicted and modeled primary response. A recursive
mechanism is used to improve the accuracy of time delay and
attenuation computations iteratively. Owing to recursion, better
estimates of primary and secondary response are acquired in each
iteration. Simulations are provided with synthetic and real data to
demonstrate that EPSCon converges to reliable estimates of
primary and secondary response after a few iterations.

This paper is organized as follows: In Section ‘Nomenclature’,
signals used in the present research are summarized. In
Section ‘Time and frequency domain analysis of frequency control’,
primary and secondary frequency response are analyzed in time
and frequency domain, providing constraints for the design proce-
dure of EPSCon. In Section ‘Modeled primary and secondary
response’, a frequency control model is introduced to enhance
estimation accuracy. In Section ‘EPSCon algorithm’, EPSCon algo-
rithm is presented. In Section ‘Experimental results’, experimental
results with both synthetic and real data are illustrated. Finally,
conclusions are drawn in Section ‘Conclusions’.

Nomenclature

Table 1 covers the signals that are used either as input or as
output in EPSCon.

Time and frequency domain analysis of frequency control

Analysis of input signals is a crucial step before delving into
EPSCon algorithm covered in Section ‘EPSCon algorithm’. In this
section, both time and frequency domain based analyses are car-
ried out, which are widely used in the design procedure of
EPSCon. Active power generation of a plant (Pgey), sampled by
SCADA, is taken to comprise of (actual) primary (PPR,) and (actual)
secondary frequency response (PSR,) as follows:

Peen[n] = PPR[N] + PSR4 [n] + win], (1)

where w[n] is the noise in data which is commonly modeled as a
Gaussian variable and n is the discrete time index. Since the sig-
nal-to-noise ratio (SNR) is generally very high, w[n] will be
neglected in the remaining of this work. It should be emphasized

Table 1

Signals and their description used in the presented work.
Signal Description Availability
Afs Deviation in system frequency SCADA
Pser Power-set point levels send by AGC SCADA
Pcen Active power generation of a plant SCADA
PPRy (Actual) Primary response of a plant Unavailable
PPR, Estimated primary response of a plant Estimated
PPRy Modeled primary response Available
PSR4 (Actual) Secondary response of a plant Unavailable
p/sﬁA Estimated secondary response of a plant Estimated
PSRy, Modeled secondary response Available

that PPR4 and PSR, are not individually acquired but their combina-
tion Pggy is available through SCADA as a sampled analogue data. In
this work, based on Pggy signal, PPR, and PSR, are individually esti-

mated, which are represented as PPR, and PSR, respectively.

PPR4 is the dynamic response against system frequency (f)
deviations. Deviations in system frequency (Af,) is defined as
Af[n] = f,[n] — f,[n], where f, is the nominal frequency which is
50Hz for Union for the Co-ordination of Transmission of
Electricity (UCTE). Since the generation-load balance of a power
system is highly variable in time, Af, and PPR, are expected to vary
rapidly and consequently have considerable amount of high
frequency content. In Fig. 1, an acquired Af, and a representative
PPR, with their spectrum are shown. Spectrum of PPR, reveals
that it has substantially uniform spectrum. Thus, PPR, cannot be
associated with a specific frequency range.

PSR, is dispatched by power set-point (Psgr) values which are
sent by AGC. Psgr can be regarded as desired active power genera-
tion level with the assumption of steady-state f,, i.e., f;[n] = f,[n].
In this case, excluding primary response, active power generation
of a plant should follow Pgr, i.e., if Psgr remains constant, active
power generation ought to be equal to Pszr. Otherwise, power
generation of a plant is increased or decreased until Psgr level is
attained. Such a behavior is denoted as PSR,. Typically, PSR, is
the response when a plant is controlled by AGC. However, in this
work, (1) is assumed to be also valid for plants which are not con-
nected to AGC. In such a case, steady-state active power generation
is dictated locally with Psgr levels denoting daily declaration of
hourly active power generation schedule. With this extended
definition of PSR4 and Pgr, it is possible to estimate steady-state
active power generation of plants which are only responsible with
primary frequency control. As illustrated in Fig. 2, Psgr and PSR4 can
be modeled as piecewise linear signals.

Comparison of the spectra of PPR, and PSR, shows that fre-
quency content of PSR4 decays faster than PPR,4. Average of PSR,
is also much higher than average of PPR, since PSR, represents
levels of steady-state power generation, it usually has an average
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Fig. 1. Af,,PPR4 and their corresponding spectrum.
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Fig. 2. Pser, PSR, and their corresponding spectrum.
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Fig. 3. Derivative of PPR, and PSR,.

that is close to operational power generation of a plant.
Furthermore, as shown in Figs. 1 and 2, PPR, varies much less fre-
quently than PSR4. Hence, derivative of PSR, is expected to be
much sparser than derivative of PPR,, as illustrated in Fig. 3.

Modeled primary and secondary response

In the literature, to estimate primary and secondary response,
some models are used to represent basic governor and plant load
controller technical characteristics. For instance, a reference model
presented in [7] provides behaviors of primary and secondary fre-
quency responses that are assumed to fulfill correct provision of
frequency control. As illustrated in Fig. 4, modeled PPRy and
PSRy are computed via blocks which are fed by Af; and Psr,
respectively. Internal characteristics (e.g, speed-droop, deadband,
up/down ramp rates, etc.) of a plant are also taken into account
as detailed in [7].

PPRy and PSRy, may have considerably different behavior than
PPR,4 and PSRy, respectively. Still, PPRy and PSRy, can be regarded
as primitive estimates for PPR4 and PSR4. PPRy, may provide a pri-
ori information on PPR4, which can be exploited to enhance the
accuracy of estimation. Such an idea stems from the fact that pri-
mary frequency response is an automatic response against devia-
tions in f, so PPRy is not expected to be completely independent
from PPR,. Many comparisons of measured PPR, and PPRy have
revealed that they tend to be similar waveforms with different
amplitudes. Observations also revealed a presence of possible time
shift due to synchronization problems and measurement delays in
SCADA. Therefore, in this work, PPR, is regarded as:

Afs—)l PPR Block I—) PPR)f

Internal Unit
Characteristics

PSET——>| PSR Block |—> PSRys

Fig. 4. A reference model for representing primary and secondary response.

PPR,[n] = /"PPRy[n — ©*] + 0PPR,[n], 2)

where 6PPRy4 is an unknown signal representing the difference, 1" is
the attenuation factor and t* is the time delay satisfying:
> " (PPR4[n] — iPPRy[n — 7])* > Y (PPRa[n] — 2“PPRy[n — 7).
n n

(47, T*) pair is considered to be the supreme pair, yielding less or
equal difference between PPR, and PPRy, compared to any other
(4,7) pair.

Observations on PSR4 and PSRy, indicated that PSRy, has gener-
ally a straightforward relation with PSR, in the form of:

PSR[n] = PSRy[n] + 0PSRa[n], (3)

where 6PSR, may be regarded as unknown part of PSR4, which is
not covered by AGC or daily declaration of hourly active power
generation such as violations or internal power consumption of a
plant. Furthermore, as in the case of run of river power stations in
the French power grid [20], some power plants may not be obliged
to declare their daily power generation scheduling nor they are not
connected to AGC. In this circumstance, since Pgr is unavailable,
PSRy cannot be computed. In such cases, PSRy, is assumed to be
mean of Pggy.

EPSCon algorithm

In Section ‘Time and frequency domain analysis of frequency
control’, PPR4 has been characterized as a signal which has high
frequency variations yielding a substantially uniform spectrum
whereas PSR, is a piecewise linear low-pass signal. This situation
encourages us to first estimate PSR4 and then to acquire PPR, by

using (1). Let us define P§§A as:

PSR,[1] 2 PSRy [n] -+ 3PSRa[n], (4)
where 5PSR; is the estimate of 5PSR4. Then, PPR, is obtained by:
PPR,[1] 2 Pgex|[n] — PSRa[n]. (5)

Note that estimation of SPSR4 yields also an estimate of PSR4
and PPR, in a progressive order. In this work, 6P§ﬁ,4 is obtained as:

SPSRA[1) 2 L{Pen[n] — PSRy [n] — APPRy[n — 1}, (6)

Algorithm 1. EPSCon

Input: Pgey: Active Power Generation of a power plant,
PPR);: Modeled primary response,
PSRy Modeled secondary response
Output: ﬁ’R\Az Estimated primary response,
ﬁR\A: Estimated secondary response
1 6PSRa[n] = 0
2 while convergence is reached do
3 | PPRalnl = Poexln) = PSRyn] - 6PS Ra[n)
4 | 1[il = GCC_PHAT(PPR,[n], PPRy[n])

1 _ IPPRA[nIPPRy[n—l]
Al = PRIz

6 | O6PSRaln] =

L1 _Trend_Filter(Pgey[n] — PSRy[n] — APPRy[n—71])
7 if |7[i] — 7[i — 1]| < € and |A[i] — A[i — 1]| < & then

8 L convergence is reached

5

9 PSRx[n] = PSRy[n] + 6PSRA[n]
10 PPRa[n] = Pgeyln] — PSRaln]
1 return ﬁ’R\A and ﬁR\A

-
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where L is the operator that represents ¢! trend filter introduced in
[21], and (4,7) is pair computed through Generalized Cross
Correlation with Phase Transform (GCC-PHAT) time delay estima-
tion method presented in [22]. EPSCon algorithm is presented in
Algorithm 1 and the corresponding block diagram is given in Fig. 5.

The seventh line in Algorithm 1 defines the stopping criteria for
preset values of €; and e,.

The performance of EPSCon is evaluated by following bench-
mark functions:

ems 2 3 (PPRy[] — PPRy[m]) @
epsg = Z(PSRA (] — PSR, [n])zA (8)

n

Note that EPSCon yields the same estimation error for both pri-
mary and secondary responses:

eppp 2 Z (PPRA [n] — PPR, [n}) ’
- Z(PPRA 1)~ (Peen{n] — PSRy )’
5~ (PSR n — (P — PRl )
(PSR

= Z PSR[n] — PSRA[n])

= €psg-

It can be shown that unknown part of (3) can be estimated
accurately by (6) in EPSCon. To justify, let us expand (7) by (5):

eren = 3 (PPRaln] ~ (Peen[n] — PSRy[n]))’

- Z (PPRA n] ~ (Peenln] — (PSRuln] -+ 5PSR, [”D))z ®a)
- Z (PPRy[n

+(PSRM[n] + OPSR, [n]))2 (9b)

— (PPRA[n] + PSR [N)))?

= ((PSRM [n] — PSR4[n]) + 8PSR, [n])2

= " (PSRy[n] — (PSRy[n] + 6PSRa[])
+OPSR, [n])2 (9¢)
- Z(aFSTeA[n} — PSR, [n])z, (9d)

n

where (4) is used to derive (9a) and (1) and (3) are used to derive
(9b) and (9c), respectively. (9d) indicates that error made in the
estimation of primary response is associated with the error made
in the unknown part of secondary response. (9d) can be further
expanded by (6):

PPRy,

P —+ —‘t?PPRA Model

GEN -
tion

PSRy & —t‘+1

Fig. 5. Block diagram of the estimation scheme for PPR, and PSR,.

APPRpf[n — 7]

—
5PSR 4

—
PSR,

err = > (L{Pcen[n] — PSRy (1] — iPPRy[n — 7]}

n

—8PSRa[n])? (10a)
=) "(L{(PPRa[n] + PSRa[n]) — PSRy(n]

—JPPRy[n — 1]} — 6PSR4[n])?
=) (L{(PSRa[n] — PSRy[n]) -+ PPRa[n]

—PPRy[n — 1]} — 6PSR4[n])? (10b)
= (L{6PSRa[n] + rpp[n]} — PSR4 [])%, (10c)

where (1) and (3) are used in the (10a) and (10b), respectively. In
(10c), rppr[n] = PPRA[n] — APPRy[n — 1] is referred to as residual
primary response. Note that eppz is minimized if,

L{OPSRA [n] + rppR[n]} = ()PSRA [n]

The equality is satisfied when the following two conditions are
met:

1. rppg should be eliminated by L.
2. PSR4 should pass though L with negligible distortion.

Proper choice of the filter

Conditions 1 and 2 bring significant constraints on the proper
choice of the filter L. Since rppz has considerable amount of content
in wide spectrum, it is not advisable to design L in frequency
domain, e.g., with a specific cut-off frequency. However, it is
expected that derivative of (piecewise linear) 6PSR,4 will be much
sparser than derivative of rpp since SPSR, tend to have only limited
number of jumps, compared to rppr. Hence, one can solve following
minimization problem, using derivative of §PSR4 as a Lagrange
multiplier:

min||0PSRy + rppx — 9PSR4|[3 + 0| DSPSR, |1, (11)
OPSR,

where D5P§§A denotes the derivative of 6ITS\RA and o is a
regularization parameter used to determine the trade-off between
smoothness and the size of residual. Note that using ¢' norm of
derivative as a constraint ensures that 51’/S§A have sparse derivative
[23,21]. To solve (11), also knowing the shape of 6PSR4is in the form
of a piecewise linear function, we used ¢' trend filter [21], which
yields nonlinear estimate of 6PSR4 with linear computational time.
It has been shown that ¢! trend filter converges in finite number of
iterations and error of estimation is bounded by a predefined value,
as details can be found in [21].

Expectation maximization type recursion

Condition 1 is also the fundamental motivation behind the
recursion:

arg min rZ.[n] = arg miny  (PPRA[n] — APPRy[n — 1])% = (4, T°),
 Min _iys{n] = arg min (PR fn] — APPRy(n — 7))" = (4", 7

as (4, t*) are defined in (2).

(4*,7*) should be derived first for the ideal case (epr = 0). T*
would be computed by GCC-PHAT algorithm where PPR, and
PPRy, are considered as received form of a signal at two spatially
separated sensors. Nonetheless, PPR, is an also unknown signal
that should be estimated. This situation inspires us to use
Expectation-Maximization (EM) type recursion as indicated in

Fig. 5. Instead of PPRy, at each step, PPR, is compared with PPRy,
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to estimate 7t according to GCC-PHAT algorithm. Then, / that corre-
sponds to the correlation coefficient is estimated as:

5 _ ZPPRa[nPPRy[n — 7] (12)
>, PPRE [ — 1]

This (EM) type scheme provides an iterative way of estimation in

which PSR, and SPPR, are updated at each step, providing more
reliable information about each other. This can be deduced by the

fact that 7 is obtained by the comparison of 6Pf§A and PPRy,. The
difference between A and A* , T and t* are associated with the epp
since as eppg is minimized, GCC-PHAT algorithm compares PPRy,

with 6PT’§A which is closer to PPR, than prior case. Therefore,
strictly speaking, as long as (/,7) pair approach to (1*,7*) , epp is
minimized and vice versa. This situation ensures the convergence
of EPSCon. EPSCon is tested both synthetic and real data sets
obtained by SCADA and it is observed that eppr and epsz tend to
decrease at each iteration. EPSCon finally converges to a specific
Mﬁ"ﬁA and 5P§§A after a couple of iterations. The speed of conver-
gence is generally associated with the amount of ||rp]|2, i.e., how
close PPR4 is acquired as a function of PPRy, . EPSCon provides an
increasing trend of error functions and becomes divergent only
when PPR4 has a completely independent behavior than PPRy,
which is highly unlikely.

After decomposition of active power generation to its compo-
nents; primary and secondary responses may be used to evaluate
the compliance of the generating plant to the frequency control
requirements.

Experimental results
Synthetic examples

The performance of EPSCon is tested by synthetically generated
PPR4 and PSR,. PPR, is selected as PPR[n] = ZoPPRy[n — 7o) where
Jo and 7, are predetermined constants and P¢gy is obtained using
(1). Then, based on Pggy, PPRy and PSRy, PPR4 and PSRy are esti-
mated. In Fig. 6, inputs for EPSCon algorithm are indicated when
no a priori information on PSR, is available, so PSRy, is selected
as the mean of Pgey. In Fig. 7, PPR,4 and PSR, are compared with

PPR, and PSR, at iteration 50, respectively. In Fig. 8, normalized
errors for primary and secondary estimates defined as:

€ppR
e, & % 13
S PPR ] (13)
€psr
P — 14
B S PSR 1] (14

are shown. Both of them are seen to converge quickly.

.
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Fig. 6. Synthetic inputs (Pggy, PPRy and PSRy,) of EPSCon.
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Fig. 8. e}, and el for the inputs in Fig. 6. Both errors converge approximately to
zero after a few iterations.

Table 2 compares EPSCon with some other algorithms. LP stands
for the algorithm based on low-pass filtering suggested in [20].
11th order moving average filter is used as a low-pass filter. SG
shows that Savitzky Golay [24] filter is used instead of ¢; trend fil-
ter. FF + ¢, indicates the case where no feedback is used, i.e., the
results obtained in the first iteration. It has been observed that
EPSCon provides much reliable estimates compared to other
algorithms.

Results with real data

To illustrate the performance of the EPSCon on real data, Pgey
that is obtained by SCADA/EMS of Turkish Power System is used.
Fig. 9 depicts an example in which no information on PSR, is avail-
able, so PSRy is selected as the mean of P¢ey. In Fig. 10, PPR, and

PSR, are compared with Pﬁ/\ and P§§A at iteration 50, respec-
tively. Note that PPR, and PSR4 are unknown signals that are
wanted to be estimated. Nevertheless, in Fig. 10, representative
PPR, and PSR4, based on local plant data, are used to discuss the

performance of EPSCon. It can be said that PSRy is a reliable esti-
mate of PSR4, although minor errors are observed especially
around abrupt variations in PSR,. e, and el are shown in Fig. 11.

Minor errors can be eliminated by some a priori information on
PSR4. In Fig. 12, PSRy is assumed to provide an estimate of PSR4
with an offset. When EPSCon is tested with the same configuration

Table 2

Comparison of the algorithms for synthetic data.
Method el (dB) epse (dB)
EPSCon -32.20 —75.73
LP —-1.58 —45.11
SG -10.05 —53.57
FF + 4 -2.48 —46.01




B. Ozer et al./Electrical Power and Energy Systems 73 (2015) 16-22 21

0 900 1800 2700 3600

time (sec)
S5 1
o ]
<5 A . .
0 900 1800 2700 3600
time (sec)

T T T

900 1800 2700 3600
time (sec)

Fig. 9. Real data inputs of EPSCon.
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Fig. 12. PSRy, is assumed to provide an estimate of PSR, with an offset.

given in Fig. 9, with PSRy, as in Fig. 12, Pﬁ,‘ and PgﬁA are acquired
as in Fig. 13. It is observed that the accuracy of the estimation is
enhanced, minor errors are reduced to negligible level. Fig. 14 indi-
cates el; and el which are significantly lower than the previously
obtained results shown in Fig. 11.

Table 3 tabulates the estimation performance of EPSCon, LP, SG
and FF + ¢; for the first case, where the mean of Pgey is used as a
priori, as indicated in Fig. 9. It has been observed that although
EPSCon makes the least errors, there is no considerable difference
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Fig. 13. PPRA.,PT’E;,PSRA an/d\PFﬁA at/i\teration 50 for the inputs in Fig. 9 with
known PSRy, as in Fig 12. PPR4 and PPR,4 are very reliable estimates of PPR, and
PSR, respectively.
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Fig. 14. e}, and e}, for the inputs in Fig. 9 with known PPRy as in Fig. 12.

Table 3
Comparison of the algorithms for read data when no information about PSR4 is
available as a priori.

Method efg (dB) epsg (dB)
EPSCon 0.03 -52.70
LP 0.84 -51.89
SG 0.37 -52.36
FF + 4 0.80 -51.93

Table 4

Comparison of the algorithms for read data when PSR, is known with an offset.
Method el (dB) epsg (dB)
EPSCon —40.23 —92.98
LP —-0.85 —53.60
SG 0.37 -52.36
FF + 4 -19.29 —72.03

between algorithms. Table 4, on the other hand, indicates the per-
formance of the algorithms when PSRy provides an estimate of
PSR, with an offset, as illustrated in Fig. 12. As shown in Table 4,
all algorithms yield more accurate results when prior information
of PSR, is available. However, ¢; trend filter utilizes such informa-
tion much better than, a moving average low-pass filter or Savitzky

Golay since the derivative of 5P/ST{A becomes much sparser. Hence,
EPSCon and FF + ¢; dramatically enhance their performance.

Conclusions

For reliable extraction of the primary and secondary frequency
response components from the active power generation data of a
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plant, a novel algorithm that is called as EPSCon is proposed. ¢!
Trend filtering is used to separate primary and secondary fre-
quency whose derivatives have distinct sparsity characteristics. A
model of primary response is used to enhance the accuracy of
estimation. Model parameters are updated based on previous
estimations in a EM type iterative approach.

Detailed performance assessment results of EPSCon in both syn-
thetic and real data sets have indicated that in general EPSCon has
provided reliable estimates that have been obtained in a few itera-
tion. However, it has been observed that abrupt variations in the
secondary response adversely affect the accuracy of the estimates
obtained by EPSCon. To overcome this, a model, that is built upon
basic governor and plant load controller characteristics, providing
a priori information on primary and secondary response is utilized.
Consequently, EPSCon is a highly reliable technique that provides
accurate estimates for the primary and secondary responses.
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