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Abstract—In this paper, we present an algorithmic approach partitioned form [29]
to find the stationary probability distribution of M/G/1-type

Markov chains which arise frequently in performance analysis of By B DBy Bs

computer and communication networ ks. The approach unifies Ay A Ay Az -

finite- and infinite-level Markov chains of this type through a P— Ag Ay Ay .- 1)
generalized state-space representation for the probability gener- Ay A

ating function of the stationary solution. When the underlying

probability generating matrices are rational, the solution vector

for level k, i, is shown to be in the matrix-geometric form ) . .

zrer = gF¥H. k> 0, for the infinite-level case, whereas it takes WhereA; and B;, i > 0, arem x m matrices. Assuming that
the modified form 31 = g1 FF H\ + g2 Ff* " "'H,, 0 < k< K, P is irreducible and positive recurrent, we find the stationary
for the finite-level case. The matrix parameters in the above ‘frobability vectorz = [xg 1 - - ] which satisfies

two expressions can be obtained by decomposing the generalize

system into forward and backward subsystem®r, equivalently, rz=zP ze=1 (2)
by finding bases for certain generalized invariant subspacesf a

regular pencil A\E — A. We note that the computation of such wherez;, ¢ > 0, is 1 x m, ande is an infinite column vector
bases can efficiently be carried out using advanced numerical of gnes.

linear algebra techniques includingmatrix-sign functioniterations P .
with quadratic convergence rates orordered generalized Schur When the number of levels is finite, s#+-1, the transition

decomposition The simplicity of the matrix-geometric form of Probability matrix takes the block upper-Hessenberg form

the solution allows one to obtain various performance measures -
- ; o By Bi By -+ Bg_1 Bk,
of interest easily, e.g., overflow probabilities and the moments A A A A 1
of the level distribution, which is a significant advantage over 0 1 2 K-1 £K-1
conventional recursive methods. P Ao A1 - Axg 2 Ak o @)

Index Terms—-ATM multiplexer analysis, generalized difference A. A Z
equations, generalized invariant subspaces, generalized Schur 0 L 1
decomposition, matrix-sign function, M/G/1-type Markov chains, A A

polynomial matrix fractional descriptions. _ ) — .
where 4;, 0 < i< K, and Bx_; arem x m, and constitute

the boundary at leveK. We then study the solution vector
I. INTRODUCTION x = [zo 71 - - - 7x] Which satisfies (2), withe this time being

N this paper, we study Markov chains of M/G/1 type witi column vector of ones of length(K + 1). Throughout the
finite or infinite number of levels. The state space of apaper.c will denote a column vector of ones of suitable size.
infinite-level (or simply infinite) M/G/1-type Markov chain Both infinite and finite M/G/1-type Markov chains arise
consists of integer pair@, j) wherei, the level of the chain, frequently in the performance analysis of ATM (asynchronous
takes on an infinite set of valugs > 0), and j, the phase transfer mode) networks. In an ATM network, the basic
of the chain, takes on a finite set of valugs < j <m). unit of information is a fixed-lengtitell and the sharing of
The transition probability matrix of this chain has the blockcommon network resources (bandwidth, buffers, etc.) among
virtual connections is made on a statistical multiplexing basis.
Statistical quality of service guarantees are integral to an
ATM network, necessitating accurate traffic and performance
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the connection [34], [10] or at the link (physical or logicallUsing the same generalized system and its forward—backward
level [18], [19], [27]. Markovian arrival process (MAP) [26] decomposition, we further show that the solution vector for
and batch Markovian arrival process (BMAP) [24] have bedavel £ for finite M/G/1 chains is expressible as

used extensively in ATM performance evaluation in contin- _ % K kel

uous time. For example, the well-known Markov-modulated”*+! ~ g T Hy+ 0o By i, O<k<K-1 (8)

Poisson process (MMPP) is a sub-case of MAP [18]. Variote computational algorithm we propose to find the elements
other Markovian traffic models, including Markov-modulategf the above matrix-geometric expressions is based on the
Bernoulli process (MMBP) or its generalization discrete batGRatrix-sign function iterationg7] or the generalized Schur
Markovian arrival process (DBMAP), are also used to modglecomposition with orderin§20], leading to a method which
the correlated nature of ATM traffic streams in discrete timg in general relatively faster than the conventional recursive
[34], [35]. We note that the DBMAP model allowssatch gjgorithms, with less storage requirements. Besides, the simple
arrivals in one cell time [30] and is suitable for modelingompact form for the stationary probabilities substantially
aggregate traffic. Such processes in continuous or discrete tigggijitates calculating certain performance measures of interest
when fed into a single-server queue are known to give risedgch as buffer overflow probabilities (or cell loss rates) and
M/G/1-type Markov chains [29], where the phase of the chafjoments of the level distribution (or cell delay and cell delay
represents the state of the underlying Markovian model thgdriation). It also proves useful in the analysis of asymptotic
governs (or modulates) the arrivals, and the level of the cheq'[]eue length behavior.
represents the queue length. The transition probability matrices of (1) and (3) are said
While the infinite M/G/1 chain seems to lack physicajp e in canonicalform. Noncanonical chains with complex
justification due to limited storage capacities in ATM nodegoundaries can also be studied in the same unifying general-
it usually serves as an efficient approximation to the case ofzaq state-space framework. A case which was studied in [3]
finite but large number of levels. Infinite M/G/1 models havgy the M/G/1 chain below with multiple boundary levels
especially been used in the analysis of asymptotic queue length -~
behavior which is closely linked with effective bandwidth Bo.o Bo, Bo,2 Bo,s
computations for call admission control in ATM networks Bio Bia Bz Bis
[34], [35], [10]. Assuming an output buffer capacity & : : : :
cells, the infinite M/G/1 chain can be truncated at leyel By-10 Bn-11 By-12 Bn_13

to obtain a finite M/G/1 chain of the form (3). Assuming no - A A Ay As ©)
particular buffer management scheme in effect, this truncation 0 A A Ay
is generally done by writing the boundary at levélas 0 0 Ao A
L2 Y 4, 0<i<k and - : : :
j=it1 whereB; ; and4;, j > 0,0 < ¢ < N—1, arem X m matrices,
. - and N denotes the number of boundary levels. Whén-= 1,
By-1 = Z B;. (4) the probability model reduces to the canonical form (1). We
=K show in [3] that the solution vector for levél + N has the
On the other hand, the boundary behavior at level 0 is generafi{’Ple matrix-geometric form
captured by defining enen = gFVH, k> 0. (10)
A A .
By =Ao+A1 and B; = Aipq, I<i<K  (5) Using invariant subspace computations in the solution of

if the node can forward an incoming cell without any delaynfinite. M/G/1- and G/M/1-type Markov chains has been
In the case that an incoming cell is subject to one cell-tinf¥oPosed before in [2]. In [3], this approach has been refined in

delay even when the buffer is empty, one has the generalized st_a_lte-space framewor_k to elimin_ate recursive
A computations traditionally required to find the stationary prob-
B; = A, 0<i<K. (6) abilities of an infinite M/G/1 chain. The current paper is an

—_ . extended version of [3], and presents the unifying generalized
Other possibilities for the boundary sequeridé; } also exist state-space approach for the stationary solution of infinite/finite

[29]. . i — _ . L
For the solution of infinite and finite M/G/1 chains, weand single-/multiple bour_1dary M/G/1-type chains arising 1
the performance analysis of computer and communication

take an algebraic approach which is entirely different than stems. Furthermore, we introduce tvelered generalized

the conventional methods. This technique unifies finite al e . .

S . - : chur decompositioim this paper as the numerical engine that

infinite models, and consists of obtaining a generalized stafe- .

) . . -Implements the generalized state-space approach, as well as

space representation of the probability generating functign S . ) : .

. ; . ; ematrix-sign functiormethod which was studied extensively

of the stationary solution. The generalized system is then : .

7 in [2] and [3]. Based on the numerical experiments we have
decomposed into its forward and backward subsystems which

) . : . . N performed, the former method appears to outperform the serial
in turn result in a matrix-geometric solution for infinite M/G/1 ; : L
chains version of the latter in terms of execution times and accuracy.

However, we note that the matrix-sign function iterations are
Trg1 = gF*H, k>0. (7) parallelizable at the algorithm level, and significant execution
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time reductions can potentially be attained by means of paraltedundancies in the matrix-fractional description, and implies
implementations [15]. that all the roots oflet[Q(d)] lie in the open unit disk.

The paper is organized as follows. In Section Il, we intro- In the following, we first discuss how the fractional de-
duce the generalized state-space approach for solving infirstziption of (12) can be obtained generically, and provide some
M/G/1-type Markov chains. Section Il describes the tweeletraffic examples naturally yielding such descriptions. Then,
algorithms that implement this approach; one algorithm &fter outlining a slightly modified version of the traditional
based on the matrix-sign function, and the other on tlierative solution methods, we introduce the generalized state-
ordered generalized Schur decomposition. Then Sectionsdpace approach of this paper.
and V extend the formulation to also cover finite M/G/1
chains and the noncanonical case of multiple boundary leveds, Obtaining Stable Right Coprime Fractions
respectively. Numerical examples are provided in Section VI Consider a stable proper transform matri(d), of size

to demonstrate the accuracy and efficiency of the approach),, . “one can generically obtain a stable right coprime fraction

of A(d) as follows. Letl;(d), 1 < ¢ < ¢, be the least common
multiple of all the denominators of th#h column entries of
, _ _ A(d). Define Q(d) 2 diag{l;(d)} and P(d) 2 A(d)Q(d). It
For the mathemaucal formqlatlon of Fhe problem., we first then clear that the fractiod(d) = P(d)Q~(d) is a stable
need to define the twd-domain probability generating ma-jont coprime polynomial fraction. As an example, consider a
trices two-state Markov-modulated geometric source. Letbe the
0o 0o state transition probabilities of the modulating chain, and
A(d) 2 Z A;d™" and B(d) 2 Z B;d™? (11) be the geometric rate parameter associated with the transitions.
i—o Then, the entries;;(d) of A(d) are given as

Il. INFINITE M/G/1-TYPE MARKOV CHAINS

1=0
(L —rij)d

1,7 =1,2.
d_Tij ’ > ’

which are related to theie-domain counterparts ag(d) = a;;(d) =ty

A(2)|.=q—1 and B(d) = B(2)|.—a-1, respectively. We then

make the assumption that the transform matricégd) and If we assume that;;’s are all different, then the entrigg; (d)

B(d) are rational, i.e., the entries df(d) andB(d) are rational andp;;(d) of Q(d) and P(d) are found, respectively, as

functions ofd. This assumption is not restrictive due to the o . . .
Qii(d)—(d—7li)(d—721‘), 1 =1,2

following.

1) Most of the probability models of M/G/1 type encounand
tered in computer and communication systems naturally pi;(d) =t (1 — 7:)d(d — 715),
give rise to rational transform matrices. L _ .

. . i,7=1,2, and k=3-—1.

2) When the transform matrices are general, conventional
methods make use of truncation to replace the infiniteor a wide variety of teletraffic models, however, one may
matrix sequencesA;} and {B;} appropriately by fi- not need to take this generic approach as the fractions can
nite sequences for computational tractability, and thidrectly be obtained from the problem description. Below, we
amounts to approximating the transform matrices kgive three popular models from the teletraffic literature, and
rational matrices. Our model avoids truncation by takinfind a stable right coprime pair of matricé¥d) andQ(d) for
advantage of the rational structure éfd) and B(d), the probability generating matrix(d). We also note that the
and thus generalizes the existing models. fraction for B(d) can generally be obtained through that for

3) ltis, in general, advantageous to use rational functior¥d) easily as in (5) or (6).
to approximate general (possibly irrational) probability 1) Quasi-Birth-and-Death Processes [36], [28], [23, in
generating matrices. See, for example, [1] in whicthe structure ofP in (1), state transitions are restricted to
the deterministic service time in a MAP/D/1/K queudake place between adjacent levels only, the resulting model
is approximated by P#&dapproximations in transformis called a quasi-birth-and-death process (QBD). That is, for
domain to successfully estimate the cell loss rates in &BD chains,A; = 0 for £>2, and
ATM multiplexer. A(d) = Ag+ Aydt 4 Apd2.

Under the above assumption, one can exprdé$) and

B(d) as astable right coprime polynomial matrix fraction The choice of

P(d) = Ay + Ajd + Aod®  and Q(d) = d*I

A(d) | _ 1P(d) Q—l(d) (12) . . . . .
B(d)| ~ |R(d) gives a stable right coprime fraction fot(d). Note that this
formulation appropriately extend to obtain fractions for the
where P(d), R(d), andQ(d) arem x m polynomial matrices More general case in whicly, = 0for £ > N and2 < N < co.
of d [21], with polynomial degreeg, r, and g, respectively.  1Our recent experiments indicate that the generalized state-space method
We note thatA(d) and B(d) are proper rational matricesWworks even when there are redundancies, that is, even when coprimeness
and. hence. the relatior)s <q andr < q hold. Moreover is not sought. See Appendix | for a brief mathematical overview of stability

b . = ; and right coprimeness concerning polynomial matrices and polynomial matrix
stable right coprimeness is imposed on the fraction to avdigctions.
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2) Single-Server Discrete-Time Queue with Modulated Awhere Q~1(d)P(d) is a polynomial fraction forA(d—1) or,
rivals: Consider a discrete-time queue with a single servequivalently,A(z) = Q1(z)P(z) in the z-domain (note that
and with arrivals modulated by a finite-state discrete-timthis is a left polynomial fraction as opposed to (12); also see
Markov chain [34]. Assume that the modulating chain hdg&]). Previous numerical experiments indicate that this iteration
m states with transitions occurring at slot boundaries.#.gt has a linear convergence rate [2]. It is shown in [33] that
0 <¢,7 < m—1, denote the transition probabilities. Also letis equal to the stationary probability vectenf the stochastic

h;. denote the probability of arrivals when the modulating matrix 352, B;G% normalized as

chain resides in state Assume that K
oo o =—,
o ok n .
hi(d) = kzzohzkd 13 iy T B+ BO) = 1[I = A+ ex] o] (16)

is a rational function of! (for example, a discrete phase-typgyhere
distribution). Let the queue length and state of the modulating W W
chain be associated with our level and phase definitions. If we® = —AV(1=)e, B=-B"(1-)e, p=ma (17)

write hi(d) = pi(d)/qi(d), 0 < i < m — 1, then A(d) can 1 is the stationary probability vector oi(1), and the traffic

be written as parameter (or utilization) is less than unity. Once, is found,
A(d) = QoP(d) Q7 (d) the vectorsey, k£ > 1, can be obtained recursively by [31]
‘v—’P D k=l 1

) ) ) ] ) ) T = |xoBr + Z TiAk—it1 (I — Al) (18)
which is a stable right coprime fraction withy = [¢;;], i=1
P(d) = diag{p;(d)}, and Q(d) = diag{q:(d)}. where

3) MMPP/G/1 Queue [24]Consider a single-server queue N - N -
with the arrival process modeled as a MMPP characterized by Ay 2 Y AGTH B2 ) BGIR (19)
the infinitesimal generator matrix of the underlying Markov i>k i>k

chain and the rate matri® = diag{)\;}, 0 < ¢ < m — 1. Note that computation ofy, k>0, as in (18), requires trun-
We assume that the service time distributidris Coxian, i.e., cation of the infinite matrix sequencésl;} and{B;}. Due to
H has a rational Laplace-Stieltjes transfokifi), so that we the |ow linear convergence rates of the successive substitution
can writeh(s) = p(s)/q(s) for some coprime polynomials jterations to findG, and depending on the truncation index
andq. Considering the embedded Markov renewal process@uired to attain a certain accuracy, the matrix-analytic ap-
departure epochs, we obtain a Markov chain of M/G/1 tyR§oach may, in general, incur considerable execution times and
with storage requirements especially under heavy traffic conditions.
A(d) = h(A _R_ Ad—l) The gengralized §tate—space approa}ch differs significantly frqm
the matrix-analytic approach, and is presented in Subsection

which is a rational function of [24]. The polynomial fractions D after the following brief overview of invariant subspaces.
of A(d) can directly be obtained as

Q(d) =d“ (A — R - Adfl) and C. Overview of Invariant Subspaces
P(d)=d“p(A— R— Ad™%) Here we give a brief description of ordinary and generalized
) ) invariant subspaces based mainly on [12] and [16]. We use
wherew is the degree of polynomia(s). the following notation. Uppercase is used for matrices and
lowercase for vectors, both being defined over the field of
B. Matrix-Analytic Method real numbersR. A(A) denotes the spectrum, i.e., the set of

We now outline an efficient iterative method for finding the&igenvalues, ofl. A constant, polynomial, or rational matrix is
stationary solution as in (2) of an infinite M/G/1-type Marko\galledregularwhen itis square and has a nonzero determinant.
chain. This method is based on the matrix-analytic approagiiherwise, it is calledsingular. A subspaces is a subset of
pioneered by Neuts [29] with a slight modification to takd?™ that is closed under the operations of addition and scalar
advantage of the rationality of(d) (also see [25] for a similar multiplication. Im A denotes the image (or the column space)
approach for the BMAP/G/1 queue). In this method, the ke§f A. AS is the image ofS under A. An invariant subspace
is to find the unique minimal nonnegative solutiéh of the & of A satisfiesAS C S where C denotes inclusionS + 7°

nonlinear matrix equation and S @ 7 are the sum and direct sum, respectively, of the
0o subspace$ and7. LetS®7 = R™ and assume tha and7
G = Z A, GF. (14) are invariant subspaces of a square matriaf sizemn. Then,
=0 S =TIm S and7 =TIm 7 andU defined byl = [S T satisfy
A successive substitution iteration for findidg, exploiting U-LAU — {All 0 }
the rationality of A(d) to avoid truncation of this infinite 0 Al

summation s ) ) If A(A411) (A(A22)) lies in the closed right-half (open left-

Go=0, Gjr1=Q HG)P(G,), j=1 (15) half) plane, thenS (7) is said to be the right (left) invariant
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subspace ofd. When A(A;1) (A(Az:)) lies outside (in) the where

open unit disk, thenS (7) is called the unstable (stable) B B > f
invariant subspace aft. This notation is inherited from the N(d) =dlR(d) - Q(d)] = Nid + Nopd” + - + Nyd” (23)

stability of difference systems. D(d) =Q(d) — dP(d)
Let us now assume a regular matrix pencll — A, which =Do+Did+ Dyd*> + -+ + Dfdf (24)
is a polynomial matrix (in the indeterminate) of degree f=q4+1. (25)

one. Thegeneralized eigenvalue problefor the matrices

A and E of size m is equivalent to finding the scalas Here, f is called thedegree parameteof the Markov chain
for which the equationAz = AEx has solutionsz # 0. and will play a key role in our approach.

Such scalars. are called generalized eigenvalues. A solution Given the polynomial fraction (22), one can find a gener-
x # 0 corresponding to an eigenvaluds called a generalized alized state-space realization [12] fgr (see Appendix Il for
eigenvector. A generalized eigenvalue satisfies the relationa proof)

YIS )\(E,A) = {LL € C| det(uE — A) = 0} Zk+1E = ZkA, Zoﬁ = .IoN, Y = ch, k>0 (26)
whereC is the field of complex numbers, addE, A) denotes where
the generalized spectrum of the matrix p&E,A). Any 0 0 —Dy
subspaceS satisfying 7 0 -D
T = ES+ AS, dim(S) = dim(7) A=|0 I - =Dy
is called ageneralized invariant subspacgr a deflating 0 0 . I —D:
subspace) of the pencdE — A. When £ = I, we indeed :I st T
have an ordinary invariant subspace. 7 0
Let S and S, be two complementary deflating subspaces ) 0
of the pencil \E — A, ie., S® S. = R™. Define7 = E= K , U= X (27)
ES + AS and 7, = ES. + AS.. It is shown in [11] that 1
these two subspaces are also complementarySLetlm S, L Dy 0
T=ImT,S =1ImS, and7. = Im T,.. Then there exists N = [Ny Ny_1 Nyp_p -+ N{] (28)
a decomposition
and
UEY = {EO“ o } Ut AV = {AO“ h } D; Dji Djy - D
22 22 Df _Df_1 . _D2
where D= Dy .-+ D3| (29)
U=[T T, V=[S 5] :

If A(E11, A11) (A(Fas, Ass)) lies in the closed right-half (open Dy
left-half) plane, therS (S,) is called the right (left) deflating Here, z is called thedescriptor (or the semistate) which
Subspace of the matrix pencNE' — A. When )\(E'117A11) reduces to the definition aitatewhen F is nonsingular [21]
(MEa2, Asy)) lies outside (in) the open unit disk, theéh(S,) The possible singularity of' plays a significant role in the
is called the unstable (stable) deflating subspace of the maff@Plem formulation. Also note tha, is of sizel xm f, and

pencil \E — A. the matricest’ and A are of sizemf x mf.
Remark: When the first coefficients ofD(d) are zero, i.e.,
D. Generalized State-Space Approach D;=0fori=0,1,2,---,»—1, areduced-order generalized

. o . _State-space representation can be obtained. That is, the problem
Now consider the Markov chain with the transition probabilgi .\ ansion can be reducedre( f—1), resulting in an effective

ity matrix given in (1). Define the-transform of the sequencedegree parameter of = f — .. In the case of a QBD chain
xk, k 20, as for example, it turns out thab, = 0. Therefore, the effective

A 4 degree parameter can be mafle= 2 as opposed t¢ = 3,
z(d) = Zxkdik- (20) as (25) suggests. See [3] for details.
k=0 We now need to findry so that none of the unstable
It is easy to show by (1) that modes of the matrix paif£, A) is excited, i.e.,z; of (26)
remains finite for allk. The matrix pencilA\F — A has one
w(d)lI — dA(d)] = zo[B(d) — dA(d)] (21) singularity atd = 1, say,m,, singularities (including the one
Also define the sequence at d = 1) outside the open unit disk, and, singularities in
A the open unit disk. Note that,, + m, yields the dimension
Yk = Tr+1, k>0 mjf of the generalized system given in (26). Dét and Vs,

be the unstable and stable deflating subspaces of the pencil
AE — A, respectively. LetV; = Im V; andV, = Im V; for
y(d) = d[z(d) — z0] = zoN(d)D™(d) (22) some matriced’; and V; of sizesmf x m, andmf x ms,

and lety(d) be itsd-transform. It is not difficult to show that
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respectively. Also lett; := EV; + AV, = Im U; and
Uy = EVy + AV, = Im U, for some matriced/; and U,
of sizesmf x m, andmf x m,, respectively. Define

U275 ;] and V2 Wl (30)
Then, from Section II-C, we have
-1 B O 1 A o0
U EV_[O Eos and U AV = 0 Ay
(31)

and A\(E11, A1) and A(Eas, Asq) lie outside and in the open

unit disk, respectively. Defining

[U,k Uk] ézk[Ul UQ], /{}20

and postmultiplying the generalized state-space model (26) by
V., we have two uncoupled generalized difference equatio

for ux and vy

k>0.

32
(33)

Upt1E11 = urAn, k>0
Vi1 Boo =vp Ao,

In order for z; not to diverge ask — oo, ug must be the

zero vector
ug = Zolfl =0. (34)

Moreover, since\(Esz, A22) lie in the open unit diskF»; is
nonsingular implying

v = voF¥, E>0 (35)
where them, x m, matrix F' is found as
F = Ay FEyt. (36)
Let us now partitionl/ ! as
-1 _ Ll
U™ = { L, (37)

whereL; and Ls hasm, andm, rows, respectively. Then

Trp1 =Yk = 2C = (urLn + vpLo)C

= 20Uy F* L,C, k> 0. (38)
S~ S~
g H

631

simple matrix-geometric solution for the stationary probability
vector xy, for level k& 4+ 1

The1 = gF*H, k> 0. (41)

This simple and compact solution form makes it easier to
write certain performance measures of interest. For example,
therth factorial momentL(r), » > 1, of the level distribution
is readily expressible in closed form as (also see [28])

k!

ma:ke =rlgF" (I - F)"'""He. (42)

oo

L{r)= Z

k=r

The overflow probabilities, say’s, are also easy to write

Pg= Y axe=gF?(I—F) 'He.
k=B+1

(43)

rhsaddition, the queue length distribution is known to exhibit
a geometric decay as/3"* for sufficiently largek [34], [35],
[10]. The form (41) of the solution indicates that the decay rate
5 here is the dominant eigenvalue of matfix which can be
computed efficiently by the power method [17, Section 7.3.1].
More importantly, (41) allows computation of the coefficient
« as well. Assuming that = T F'T is the Jordan form of

F, the stationary probability of levetl 4+ 1 can be written as
zry1e = gTA*T~ He. As k goes to infinity, this expression
reduces tary,ie = g1 TrHe, whereT;, and T are the
left- and right-eigenvectors df' associated with the dominant
eigenvaluei. Oncef is computed, and7’r can be found by
solving two sets of linear equations, and then the coefficient
follows as«a = ¢TI TrHe.

This concludes the discussion of the existence of matrix-
geometric solutions for infinite M/G/1-type Markov chains
when the transform matricesl(d) and B(d) are rational
functions ofd. Two computational algorithms, one based on
the matrix-sign function and the other on ordered generalized
Schur decomposition, for finding the matricés and V' of
decomposition (31) are presented in the next section.

Ill. ALGORITHMS FORINVARIANT SUBSPACE COMPUTATIONS

The (generalized) invariant subspace computation (left or
right, stable or unstable) is a well-known problem of numerical
linear algebra [12], [16]. To name a few, (generalized) Schur

The only unknowns that remain to complete the solution adecomposition methods [17], [20], inverse-free spectral divide-

zo and the initial valuezy, which, by (26) and (34), satisfy
-N 0

5 UJ =0. (39)

[t0 #0]Z = [zo zo][

and-conquer methods [6], (generalized) matrix-sign function
iterations [14] have been proposed to compute bases for these
subspaces which arise for a wide variety of problems in applied
mathematics. All of the above approaches can be used to

Note thatZ is m( f+1) xm(f+1). Furthermore, the sum of thefind bases for the stable and unstable deflating subspaces
probabilitieszy, is unity which gives a normalizing equationof the matrix pencilAE — A, which is an essential task in

in terms ofxzg and zg

oo oo
E Tre =xoC + E Y€
k=0 k=0

=xzoe + 2oUs(I — F) 'He = 1. (40)

the generalized state-space method for solving M/G/1-type
Markov chains. Here we present two algorithms. One is based
on theordinary matrix-sign function [32], and the other on the
generalized Schur decomposition with ordering. The former
algorithm employs certain properties of the matriéeand A

akin to M/G/1-type models, whereas the latter is quite generic.

The concatenated vectdry zo] is the unique solution to the We also provide a summary of the overall method for infinite
two equations (39) and (40), which when computed leads to th#G/1 chains.
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A. Matrix-Sign Function Approach Then

We first note that the stable (unstable) deflating subspace of
the matrix penci\E — A is equal to the left (right) deflating
subspace of the pencdL — M, where the two matriced

klim Zy, = Z = sgn(M)

and M are defined as wheresgn(M') denotes the matrix sign @/, and convergence
Lap YA M A4_E :i q[giadratm. The stopping criterion we use is the one proposed

For a proof, we refer the reader to [14]. With this transfor-

mation, the generalized eigenvalues of the pendil — A 1Zx+1 — Zills <€l Zil1- (48)

in (outside) the open unit disk are moved to the open left-

half (closed right-half) plane. So there is one generalizéthe most important property of matrix sign is tHat(Z — I)
eigenvalue ofAL — M on the imaginary axis, which is at(Im(Z + I)) is equal to the left (right) invariant subspace of

the origin. M [32]. Then find
One can also show thdt is regular by observing that the
pencil \E' — A does not have any generalized eigenvalue on S = sgn(W,) (49)

the unit circle except one at = 1. In particular, \E’ — A
does not have any generalized eigenvalué at —1 which  through the matrix-sign function iterations (47). Recall that
clearly shows thafl. is nonsingular. LetV = L™ 'M. Itis there arem, eigenvalues of¥, in the right-half plane, and

not difficult to show that the left (right) invariant subspace of,_ eigenvalues in the left-half plane. Let the rank-revealing
W is also equal to the left (right) deflating subspace of th@r decomposition [8] of5 + I be
pencil A\L — M. Furthermore W has one eigenvalue on the

imaginary axis, which is at the origin. Then tetand: be left S+1=Q,R1Il, (50)
and right eigenvectors dV corresponding to the eigenvalue
at the origin, i.e, where R, is upper triangular(, is orthogonal, andl, is a
AW =0, Wp=0. (44) permutation matrix. Suppose thd} is chosen so that the rank
_ _ deficiency ofS + I is exhibited inR,. by a smaller lower-right
Then, the matrixiv, defined as block in norm of sizem, x m,. Then, let
w, 2w+ (45) .
Y Vi = leadingm,, columns ofQ},. (51)

is free of imaginary-axis eigenvalues, and the left (right)

invariant subspace df. is equal to the left (right) invariant which spanlm(S + I) or, equivalently, form an orthogonal
subspace of¥. It is not difficult to show that the vectorg basis for the left-invariant subspace @f. or the unstable
and ;. defined as deflating subspace of the pendi? — A. Similarly, a rank-

revealing QR decomposition o — 7 yields

Ho
. [x = - 7]L, = u.l (46) S—1=QRIlL (52)
Hf-1 and with a proper choice of permutatidh, we define
where 7 is the stationary probability vector ofi(1), i.e.,
wA(1) = w,me = 1 and Vi 2 leadingm, columns of@;. (53)
pro =—DoQ* (1)e, . . . .
1 ] Following Section II-C, with two more rank-revealing QR
pi = pier = DiQ(Me, 1< f -2 decompositions
pr1=Q (e o
satisfy (44). [EVi AV :Q”{z’}n” (54)
One can now use matrix-sign function iterationsdh [2] (EVa AV | =Qui1L (55)
to find bases for the unstable and stable deflating subspaces of
the pencil\E — A, leading to construction of the matricés we define
and V' defined as in (30). We now outline this approach. X
We refer the reader to [2] for the definition of the matrix- Uy 2 leadingm,, columns of@},. (56)
sign function. The basic matrix-sign function algorithm for an Uy A leadingm,, columns of0). (57)

m X m matrix M with no imaginary axis eigenvalues is (see

[7] and [14]) This concludes the discussion of using ordinary matrix-sign

Zo=M, Zji1= R (Zk + CzZ;Zl% function to find the four key matrice‘&s?Lz Vo, Uy, andUs tha}t .
2y, are used to decompose the generalized system (26) into its
o, = | det(Zy) [ ™. (47) forward and backward subsystems through (31).
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TABLE |
SUMMARY OF THE OVERALL NUMERICAL ALGORITHM FOR INFINITE M/G/1-TYPE MARKOV CHAINS
m=16. f=38 m=32, f=41
P K=10| K=100 | K =1000 || K =10 | K =100 | K = 1000

0.6 1.9¢-15 2.5e-15 2.5¢-15 2.5¢-15 2.6¢-15 2.6e-15
0.9 1.3e-14 | 6.Ge-15 6.5e-15 4.7¢-15 | 3.9e-15 4.0e-15
0.999 | 6.9¢-11 9.6e-12 1.3e-12 2.7e-11 3.2e-12 5.9e-13
1.001 | 1.4e-10 | 2.0e-11 2.5e-12 3.2e-11 | 6.1e-12 1.0e-12

1.1 1.3c-14 5.0e-15 4.9¢-15 1.8¢-15 2.1e-15 2.1e-15
1.4 1.9¢-15 1.7e-15 1.7e-15 1.1e-15 L.1e-15 1.1e-15
TH, |l 7166 | 9583 15.233 6.766 | T7.616 11.900
TH | 7133 | 9366 13.083 6750 | 7.400 9.816
T, 5.016 1.566
B. Generalized Schur Decomposition Approach are still valid foro0 < £ < K —1
One other approach to find the stable (unstable) deflating B = A, 20D = xoN,

subspaces that give rise to decomposition (31) is to use
generalized Schur decomposition with ordering [17], [20].
Given the two matricest and A, one can employ the ygjng the same decomposition (31) as in infinite M/G/1 chains,
generalized Schur decomposition method with ordering [2Q)e have

to compute the two orthonormal matric€sand ¥ satisfying

Yk IZkC, OSICSK—].. (61)

up1 811 = up Ay, 0<k<K-1 (62)
T Ell E12 T All A12
O BV = [ 0 EQJ’ O AV = [ 0 AQJ (58) or, equivalently
such that: U = U,k+1F2, 0<k<K-1 (63)
1) A;; and Ay, are upper triangular with nonnegative
diagonals, where
2) FEi1; andEys are upper blocktriangular with githerx’Ll Fy = B AT (64)
or 2 x 2 blocks (corresponding to complex eigenvalues),
3) A(E11, A1) lies in the open unit disk, and The invertibility of A;; follows directly from the fact that the
4) A(FEa2, Aso) lies outside the open unit disk. generalized eigenvalues of the pél;1, A1) lie outside the
Given the above decomposition, we next solve the generfiReén unit disk. Therefore, the matrb% has all its eigenvalues
ized Sylvester equations [20] in the closed unit disk. We call (63) tHeackward subsystem

of the generalized system (61). It immediately follows from
A11Y — XAQQ = A12 and FE1Y — XE> = FEio (59) (63) that

for the two matricesX andY. Finally, defining u = up_1Fy 71, 0<k<K-1 (65)
AT -X A I =Y The main difference from the infinite M/G/1 formulation is
U= @[0 I } and V= \II[O I } (60) that the unstable modes of the pai, A) may be excited

. . . o in finite M/G/1 chains and the vectar, is not necessarily
one obtains the decomposition (31), I.e., eliminates the UPP§{e zero vector. On the other hand, the difference equations

digg_ona_l blocksE;» and Al? in (58). Here we note that c?rresponding to théorward subsyster(B3) are still valid for
elimination of these blocks is not necessary in the solution gf - ;" ;- ~ 4 leading to

infinite M/G/1 chains. However, for the case of finite M/G/1 —
chains that will be discussed in the next section, those blocks v = vOFl’“, 0<k<K-1 (66)
have to be eliminated. A
In Table I, we provide an algorithmic description of thevhere F; = F. Then, the solutiory;, 0 < k < K — 1, of
generalized state-space approach for infinite M/G/1 chaitie finite M/G/1 chain of (3) can be written in terms ok _,
based on either the matrix-sign function or the generalizédd vo
Schur decomposition with ordering. The algorithm assumes B B k K k1
that the right polynomial fractions of (12) are given. vk =m0 = o MU L2Cru—1 Iy L<,
a1 Hy g2 Hy
IV. FINITE M/G/1-TYPE MARKOV CHAINS O<hk<K-1 (67)
Consider the finite M/G/1 chain of the form (3). It is notproving the existence of the modified matrix-geometric form
difficult to show that the generalized difference equations (2§jven in (8). What now remains is to find the three unknown
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vectorszg, g1, and g-. We have two equations to solve forand

these vectors, the first of which isD = zoN yielding
N(d) =Nid + Nod? +--- + Nyd!

) K-17 75 _ .. N
through straightforward substitution. The second equation de- _ Ry(d)d™ —d¥~1Q(d) (74)
rived from the balance equation at lev&l is B :
K-1 RN_l(d)dN — dQ(d)
By AR _ic1 = Y- : ,
ToL K1t ; Vil =izt = K= Note thatN(d) and D(d) are polynomial matrices of degree

o _ f = q + N. Define the matricesz, A, C, N, and D in the
and can be rewritten in terms o§, g1, andg; by using (67) as ggme way as in (27), (28), and (29) using the polynomials of
K-1 (73) and (74) above. The rest of the algorithm is the same as
zoBx_1+q1 <Z FfHJK_i_1> that for the canonical M/G/1 chain. We first find the matrices

N\i=0 U, V,andF as in (30) and (36), and partitidii—* as in (37).
N We then solve or
1

E-1 S N o0

+ g2 <§% FQAIZHQAKZ‘1> [vo 21 -+ oy z0]|: 5 UJ =0 (75
h N and normalize the solution so that
=g FFYH, + goHy. (69) N-1

> wie+ 2Usx(I — F) " He =1 (76)

Using (68) and (69), one can then fing, ¢;, andg> uniquely

by solving the equation =

Defining ¢ 2 zoU> and H 2 LoC gives us the matrix-

[zo g1 92]Zc . .
w B geometric solution
=z L.D A —-FFH | =0 d
[to g1 92] FK_21L15 1A2 ! H, 1] TN = gF"H, k> 0. (77)
2

70
(70) VI. NUMERICAL EXAMPLES AND DISCUSSION

and normalizing the solution such that the stationary probabil-Example 1: We first consider an infinite M/G/1-type
ities add up to unity, i.e. /L, zxe = 1. Markov chain obtained from thEPP,, /E,./1 queueing model,
where IPP,, stands for the superposition ef independent
V. M/G/1 CHAINS WITH MULTIPLE BOUNDARIES and identical IPP’s (interrupted Poisson process) [13] Bad
Based on [3], we outline below the algorithm for ﬁndingstands for the--stage Erlangian distribution. We refer to this

the matrix-geometric factors of the M/G/1 chain with multipl&€hain through the following three parameters: 1) the number
boundary levels. The proof is similar to that of the canonic&Qf Phasesn, 2) the degree parametgrefined by (25), and 3)

M/G/1 chain and is omitted in this paper. the traffic parameter (or utilization given in (17). Note that
Consider the M/G/1-type Markov chain in (9) with’ since i.i.d. IPP’s are considered, settitag= . — 1 results in
multiple boundary levels. First, define anm-state Markovian model for the aggregate arrival process.
- ' For each IPP source, we fix the transition rates to the idle and
A g active states as 3 and 1, respectively. Therefore, the arrival
Ald) = E%AJd and rate in the active state of each IPP is uniquely determined for
=

o any desired aggregate arrival rateWe fix the mean service
Bi(d) N ZBi,jd_j7 0<i<N. (71) _rate asp = 1, which implies thatp = A. SinceIPPn/E,,/l
= is a special case of the MMPP/G/1 queueing model, the
probability generating matriced(d) and B(d) are found as

Then find a stable right coprime fraction as described in Section II-A. The Laplace-Stieltjes transform of
A(d) P(d) an r-stage Erlangian distribution with unity mean is given as
By(d) Ro(d) [22] h(s) = (1 + s/r)~". Hence, a desired degree parameter
Bi(d) | = | Ri(d) O Y(d). (72) f is met by settingr = f — 1.

: : We provide CPU time and error results for the matrix-

' : sign function (MSF), generalized Schur decomposition (GSD)
By-1(d) Ry-1(d) implementations of the generalized state-space approach (see
Let ¢ be the degree of the polynomial matii}d), and define Sections II-D and Ill), and the truncation-free successive sub-

. stitution iteration (SSI) method outlined in Section II-B. We
D(d) =Do+ D1d+ Dsd® +---+ Dyd! = Q(d) = d¥P(d) measure the CPU time until the point at which the program
(73) becomes ready to compute the level probability vectors
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TABLE I
CPU TiME AND ERROR RESULTS FORp = 0.6. I; AND Is ARE THE NUMBERS OF SUCCESSIVE SUBSTITUTION ITERATIONS AND MATRIX-SIGN FUNCTION
ITERATIONS, RESPECTIVELY. {1 AND K'» ARE THE INDEXES FOR THE{ A} AND { B} (AND ALso {A.} AND { By }) MATRIX SEQUENCES RESPECTIVELY

SSI Method MSF Method GSD Method
flm | Icpy Error | Ig l K, | Ky Teru Error | Is || Tcpy Error
16 J| 0.283 | 1.9e-09 | 37 | 21 | 20 0.317 | 8.8e-16 | 6 0.150 | 4.4e-15
32 |} 1.950 [ 1.4e-09 | 37 | 20 | 20 2133 | 1.8e-15| 7 0.983 | 2.2¢-14
64 || 14.466 | 1.9e-09 | 36 | 20 | 20 || 19.049 | 6.2e-15 | 7 8.133 | 8.7e-14
3116 0.350 | 1.5e-09 | 40 | 16 | 16 0.800 | 2.6e-14 [ 6 0.367 | 7.5e-15
32 || 2.217 | 1.7e-09 | 38 | 16 | 15 6.516 | 3.2e-14 [ 6 2.600 | 1.2e-12
| 64 || 16.516 | 1.8e-09 | 37 | 16 | 15 || 53.681 | 1.6e-13 | 6 || 22.732 | 6.2¢-12
4116 | 0417 | 1.9¢-09 | 42 | 15 | 14 1.817 | 4.7e-14 1 6 0.817 | 2.6e-13
32 || 2.717 | 1.9e-09 | 39 | 15 | 14 || 15.366 | 6.2¢-13 | 6 6.000 | 1.5e-12
64 |1 20.199 | 1.6e-09 | 38 | 14 | 14 || 124.612 | 3.9e-12 | 6 || 46.715 | 1.9e-11

k> 0. This amounts to finding the matrix-geometric factorsf the MSF method in terms of CPU time. Singe = 4

g, F, and H in the case of the MSF and GSD methods, and the largest degree parameter considered here, we evaluate
to finding the level-0 probability vector, and the matrix polynomials of at most degree three during the truncation-
sequenceg A} and {B;} in the case of the SSI method.free successive substitution iteration of (15). The number of
As for error computations, we consider the infinity norm off;, matrices generated(; ~ 14-21) indicates the significant

the residual of the solution vectolfz — 2 P||..; See (1) and time savings achieved here by exploiting the rational structure
(2). However, sincer and P are infinite entities, truncation in (15) in comparison to the traditional iteration [29]

is needed here. We simply consider the balance equation i,
over levels 0 and 1 only. That is, we estimate the error as Go=0, Gji1= ZAka-
||Z —ZP||oo, Wherez = [z 21 x2] and P is the corresponding o !

partition of P. Note that all three matrix-geometric factors of In Table Ill, we provide the same set of results as in Table Ii

the solution are involved in this computatloq. for utilization p = 0.9. As these results indicate, the MSF

All MSF, GSD, and SSI methods are implemented in ; .

. . X .—.__and GSD methods are still very accurate. Furthermore, unlike

C, and compiled (by gcc version 2.7.2.1 with optimize e case for matrix-sign function iterations, the number of
-03) and run on a DEC Alpha server supporting IEE . TIx-sign ; . ’ . .

standard double-precision arithmetic with machine epsilosuccesswe substitution iterations increase substantially with

uQiIization, and the MSF method becomes faster than the SSI

€ &~ 2.2¢ — 16. Standard BLAS (Basic Linear Algebra Sub- L
: . ethod as utilization increases unless the degree parameter
routines) and CLAPACK (Fortran-to-C translated version of . . ; .
is large. To further explore this point, we fix and f as

LAPACK-Linear Algebra PACKage) library routines [4] are . .
used to perform all matrix operatioddn the SSI implemen- 32 and 3, respectively, and perform a stress test with respect

) X . . . to utilization. The results shown in Table IV indicate the
tation, all polynomial matrix evaluations are performed usin

Horner's method. and théflk} and {Bk} matrix sequences gﬁiciency and high numerical stability of the MSF and GSD

are obtained by backward recursions on {ai.} and {By} meth_o.ds under hegvy load conditions which yield a very _|II-
X . : conditioned numerical problem. In fact, Schur decomposition
matrix sequences which are truncated at indeiXgsand K

such thatSy i, Age and Sx- x, Bge have negligible is, in general, known for its remarkable numerical stability [6].
. . _R . This is observed as the GSD method becomes more accurate
components [24]. In all iterations, = 10~ ° is used in the

. o X .. than the MSF method with increasipgThe fact that the CPU
stopping criteria. In the SSI method, since ¢ matrix is . : o
. . time for the GSD method is not affected at all by utilization
known to be stochastic, we UBé&r. e—e¢||o < e as the stopping . :
criterion is particularly noteworthy here.
In Table I, fixing the utilization ag = 0.6, we present the Note that, in Table 1V, the error of the SSI method decreases

CPU time and error results for different valuesrafand . as utilization is increased. This counter-intuitive trend may be

These results show that the MSE and GSD methods are higﬂve to the fact that the probability mass moves to higher levels

. ; th increasing utilization, which makes error measurements
accurate although they may incur more computational com

plexity than the SSI method a8 increases. It is noteworthy through the balance equations over only levels 0 and 1 less

o ! representative of the actual error.
that the GSD method outperforms the (serial |mplementat|0r(1?)Example 2:We now consider a finite M/G/1-type Markov

2Here we note that the routines for generalized Schur decomposition wﬁnam of the fo_rm (3) withd, : 0 for & 2 I The_ WayA(d) IS
ordering and generalized Sylvester equation solution, which are requit@Btained in this case was discussed in Section II-A. We note
to implement the GSD me_thod, are not gvallal:_)le in the current version ®at the effective degree parameter in this example can be
LAPACK. However, they will become available in the new release (version . . .
gde less tharf (see the remark in Section II-D); however,

3.0) of the package. The respective routines that we have obtained via pri\g{ i | - AR ’ -
communication and used in our implementations are DGGES and DTGSWve did not exploit this possibility in our implementation.
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TABLE I
CPU TiME AND ERROR RESULTS FORp = 0.9. Iz AND Is ARE THE NUMBERS OF SUCCESSIVE SUBSTITUTION |ITERATIONS AND MATRIX-SIGN FUNCTION I TERATIONS,
RESPECTIVELY. I{'1 AND K5 ARE THE TRUNCATION INDEXES FOR THE{ A, } AND {Bj } (AND ALso {A,} AND {Bj}) MATRIX SEQUENCES RESPECTIVELY

SSI Method MSF Method GSD Method
flm Teru | Error | Ig l K; ' K, Tepu | Error ] Is Tepu ) Error
2116 | 0.800 | 6.3e-10 | 165 | 27 | 26 0.333 | 6.0e-16 0.150 | 4.5e-15

32 || 5.383 | 5.9e-10 | 162 | 27 | 26 2.283 | 1.0e-15 1.033 | 7.2e-15
64 || 40.048 | 6.1e-10 | 160 | 27 | 26 19.833 | 2.9e-15 8.450 | 3.5e-14
3|16 1.083 | 5910 | 180 | 21 | 20 0.867 | 5.2e-15 0.367 | 1.9e-13
32| 7.333 | 6.1e-10 | 170 | 20 | 19 7.233 | 3.3e-14 2.617 | 5.2e-13

64 || 53.498 | 5.7e-10 | 166 | 20 | 19 59.298 | 8.6e-14 22.266 | 2.8e-12

4116 || 1.517 | 6.0e-10 | 194 | 18 | 18 1.933 | 6.8e-13
32 || 9.533 | 6.3e-10 | 177 | 18 | 17 16.749 | 2.3e-12
64 || 70.031 | 5.7e-10 | 170 | 18 | 17 {| 137.111 | 8.0e-12

0.817 } 2.6e-13
6.000 | 1.2e-12
48.598 | 2.1e-10

Co |00 [Co|joo| 00| G0 [jw©]©]|0oo

TABLE IV
CPU TiME AND ERROR RESULTS AS FUNCTIONS OF p FOR m = 32 AND f = 3. I; AND Is ARE THE NUMBERS OF
SUCCESSIVE SUBSTITUTION |ITERATIONS AND MATRIX-SIGN FUNCTIQN |TERATIO[\IS, RESPECTIVELY. {1 AND Ko ARE
THE TRUNCATION INDEXES FOR THE{ A} } AND {Bj} (AND ALso { A} AND {Bj}) MATRIX SEQUENCES RESPECTIVELY

SSI Method MSF Method GSD Method
o Tery | Error | Ie | Ko | Ko | Topy | Error | Is || Topw | Error
0.4 | 1533 [11e09| 22 [ 13| 13 [ 6533 [17e14 | 6 || 2.583 | 6.6e-13
0.6 | 2267 [17e09| 38 | 16 | 15 || 6.533 | 3.2¢14 | 6 || 2.600 | 1.2¢-12
08 | 4100 |1.0e09| 84 |19 | 18 || 6.866 | 2.5e14 | 7 || 2.583 | 5.2¢-13
0.0 || 7233 |6.1e-10| 170 | 20 | 19 || 7.200 | 3.3e-14 | 8 || 2.650 | 5.2¢-13
0.95 | 13.266 | 3.0e-10 | 335 | 21 | 20 || 7.550 | 1.2¢-14 | 9 [ 2.583 | 5.8¢-13

0.99 56.514 | 5.9e-11 | 1542 | 21 | 21 8.516 | 1.6e-13 | 12 || 2.617 | 4.2e-14
0.995 || 107.096 | 2.9e-11 | 2946 | 21 | 21 8.483 | 7.9e-14 | 12 || 2.567 | 3.6e-13

0.999 - - - - - 9433 | 1.7e-12 | 15 || 2.567 | 4.8e-13
0.9995 - - - - - 0.416 | 3.6e-12 | 15 || 2.583 | 3.0e-13
0.9999 - - - - - 11.100 | 3.7e-11 | 20 || 2.533 | 2.8e-12

Them xm matricesAdy, 0 < k < f, are specified as follows: provide the CPU times for the infinite-level counterpart of the
1) Ao and Ay_; are both diagonal matrices with constanoriginal chain. Note that the effect of the number of levels
diagonal entried — 2r andr, respectively, wher@ <r < 0.5. on the CPU time is minimal in this example. In addition,
2) All other 4, 0<k< f — 1, are equal to each other, andeven for K as high as 1000, the solution of the finite chain
tridiagonal with null diagonal entries, i.e., their nonzero entridakes about twice the time required to solve the infinite chain.
are a; ;+1 = a;,—1 = 0.5r/(f —2), 0<i<m — 1, and We are thus led to believe that approximating finite M/G/1
01 = Am-1m—2 = r/(f — 2). It can be shown that the chains by their infinite counterparts may be unnecessary in
utilization of this system i = 3(f — 1)r/2, irrespective of many circumstances. On the other hand, the error is computed
m. S0, givenf andp, the parameter is uniquely determined, as the infinity norm of the residual of the complete solution
and the number of phases can be arbitrarily chosen. vector: ||z — 2 P||-; See (3) and (2). Apart from a reasonable

Having defined A;’s, we assume the level-0 boundaryworsening for utilization very close to unity, Table V verifies
behavior of (5), andB;'s follow accordingly. As for the the accuracy and numerical stability of our method under this
limiting level K, we use (4) to obtairBx_; and A;’s. The ultimate error measure.
hardware and software platform used is the same as describeldxample 3: This example is on an infinite M/G/1 chain
in Example 1. with multiple boundary levels arising in queueing systems with

Table V presents the CPU time and error results obtainstlltiple servers. We assume a discrete-time, slotted queueing
using the generalized Schur decomposition method (sg¢stem with the following evolution equation for the queue
Sections 1I-D and I11I-B). As was observed in Example length:
the CPU time for this method is insensitive to utilization.

Therefore, in Table V, we only provide CPU time verskis @nepr = max(0,Qn + Cn = N) F1n, nz0
results, and this time, the measurements are taken both aftlere ), is the queue length at the end of th¢h slot,
finding the matrix-geometric factors of the solution form an&v > 1 is the number of serversy, is the total number
after all K +1 level probability vectors are computed. We alsof arrivals of type 1 traffic in thenth slot with C,, < N,
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TABLE V TABLE VI
THE ERROR OF THE GENERALIZED DECOMPOSITION METHOD FOR THE FINITE THE PROBABILITY OF EMPTY QUEUE, THE EXPECTED QUEUE LENGTH, AND THE
M/G/1 CHAIN As A FUNCTION OF p FOR &' = 10, 100,AnD 1000. TC Is THE ERROR AS FUNCTIONS OF UTILIZATION . Is |s THE NUMBER OF MATRIX-SIGN

( ) FuncTioN ITERATIONS. € = 10710 |s USED FOR THESTOPPING CRITERION (48
ToTAL TiME ELAPSED TO OBTAIN THE COMPLETE SOLUTION VECTOR T¢py; IS (48)

THCE TiME ELAPSED TO?BTAIN THE MATRIX-GEOMETRIC FACTORS FOR THEFINITE “ I [ Plempty] ) Elqueue] l Frror
HAIN, WHEREAS T¢5¢; IS THAT FOR THE CORRESPONDINGINFINITE CHAIN
m=16. f=8 m=32 f=1 0.6 || 10 | 7.525034e-1 | 3.321097e-1 | 3.8e-16
p | E=10| K=100 | K=1000 || K =10 | K =100 | K = 1000 0.8 || 10} 2.756323¢c-1 | 3.345204e0 | 2.3e-14
0.6 | 1.9¢-15 | 25¢15 | 25e-15 || 2.5e-15 | 2.60-15 | 2.6e-15 0.9 | 10 | 7.930838¢-2 | 5.016590e3 | 3.4e-16
0.9 || 1.3¢-14 | 6.6e-15 | 6.5¢-15 || 4.7¢-15 | 3.9¢-15 | 4.0e-15 0.95 | 10 } 3.889021e-2 | 3.001338ed | 1.7e-15
0.999 || 6.9e-11 | 9.6e-12 | 1.3e-12 || 2.7e-11 | 3.2e-12 | 5.9e-13 0.99 || 11 | 7.667718e-3 | 2.300500e5 | 1.2e-14
1.001 || 1.4e-10 | 2.0e-11 2.5e-12 5.2e-11 | 6.1e-12 1.0e-12 0.999 || 11 | 7.643891c-4 | 2.480478e6 | 9.0e-14
1.1 1.3¢-14 | 5.00-15 | 4.9¢-15 || 1.8¢-15 | 2.1¢-15 | 2.1e-13
14 | 1.9¢-15 | 1.7e-15 17015 Lle-15 | Lie-13 | 1.1e-13
T || 7166 9583 15.233 6.766 7616 11.900 One can then obtain a stable matrix fraction as in (72) by
T, | 133 9.366 13.083 6.750 7.400 9.816 choosing
T, 5.016 1.566
Q) = r—d"H(d - )l

7, IS the total number of arrivals in theth slot due to type

2 traffic in thenth slot, and type 2 traffic is buffered whenand

the servers are busyC, is modulated by a homogeneous

finite-state, aperiodic discrete-time Markov chain with state Ro(d) =(Co + Cy + ---+CM)dN

transitions taking place only at the slot boundaries. £gte N
) . Ri(d)y=(Co+C1+---+Cpn)d
the state of the modulating chain before the end of sldtVe 1(d) = (Cot Ot -+ Cu)
also have :
CZJ(d) :E[d_cnl(sn+l = J|Sn = [’)]7 1<4,5<m, RN_]\4+1(d) = ijdN_l + (Oo +Ci+--+ O]w_l)dN
C(d) = {cU(d)} RN_]\4+2(d) = C]\4dN72 + C]\4_1dN71
where1(E) is equal to one if the evenk is true and zero +(Co+C1+ -+ Cppoa)d™

otherwise. Note tha€’(d) takes the following form

d)=>Cd", M<N. P(d) = Cpd™ M 4 Cpgogd® M4 o Cod™.

. . With the polynomial matrix fractions obtained as above,
We also assume,, to be an independent geometric batch
. . we implemented the method outlined in Section V using
process with parameter, i.e.,

MATLAB on the same hardware platform as in Example 1.
(1—-a)d We used the matrix-sign function approach of Section IlI-A.

r(d) = Bld™"] = o—— We take N' = 2, M = 2, and

This queueing system is suitable for modeling voice and
data traffic multiplexing over a single channel, and falls  (g) — [9-99966'1 0} n {0 3-00006'5} g1

into the M/G/1 paradigm with multiple boundary levels with ~ [1.0000e-5 0] © [0 7.4999-1
the doublet(Q),., S,,) being Markov and having a transition ch e
probability matrix of the form (9). It is not difficult to show 0 1.0000e-5 )
that B;(d), 0 < ¢ < N — 1, and A(d) can now be written as [0 2'50006_1} d-
— ———
Bo(d) =(Co+C1 +--- 4+ Cr)r(d) Cy

Bi(d) =(Co+ C1 + -+ + Car)r(d)
which amounts to a bursty traffic of type 1 yielding a load of
50% on the system. The traffic parameieis chosen so as to
By _p+1(d) = (CMd +(Co+Cr+---+ CM,l))r(d) yield a desired overall arrival rate. We vary the total Ilgad

By art2(d) = (Crd ™2 + Cyy_1d™! on the system and present the results in Table VI. The error
HCh O o (d is computed as the infinity norm of the difference between
HCo+ Crt ot Cua))r(d) the left- and right-hand sides of (75P[cmpty] = woc is

the probability of empty queue, ard[queue] is the expected
v M4t gueue length. To give an example about the detailed results,
A(d) = (Cyd ™ + Cry—rd +:+Co)r(d). e have obtained the following matrices that constitute the
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matrix-geometric form (10) fop = 0.99: APPENDIX I
GENERALIZED STATE-SPACE REALIZATION
g =[—1.076398e-3 2.319338e-4]

Fe 5.408260e-1  9.895 524e-2
T | —3.165397e-1  1.068213e-0

Here we provide a proof for the generalized state-space
realization (26) fory,. Following the treatment of [1] in a
similar context, we define

H— [—6.066 254e0 —1.852 386e1} -
We note that these matrices do not have a probabilistic k=0
interpretation, unlike the case for the matrix-analytic approaghich yields
for M/G/1- and G/M/1-type Markov chains [28], [29]. We have L
also found the geometric decay rate for the level distribution, v (d) =y(d)
i.e., the eigenvalue of closest to the unit circle, which Y(d) =dy T d) —dyi™t,  2<i< .

happens to be& = 0.999996 for this example. ,

Certain advantages of the simple and compact matriikere,;j in ¢;, should be treated as a superscript. We note that
geometric form for the stationary solution of M/G/1 chains iy j .
were addressed briefly at the end of Section 1I-D. The results Yo = jun Y (), lsjsf
of this section demonstrate the accuracy and numerical Sllr?l]
bility of two particular implementations (based on ordinar
matrix-sign function and generalized Schur decomposition
with ordering) of the generalized state-space approach of this dy?(d) = 3/ (d) + dy{ ™', 1<j<f—-1. (78
paper. The results also indicate substantial savings in the CPU
time and storage requirements compared to conventional € can also show by using (22) and by algebraic manipu-
cursive techniques, especially when the degree pararfieger lations that
not large. However, in the case of intolerably larfeational -1 !
approximation techniques can be employed to redfiand dy’(d)D; =— Zy”l(d)Di + Zonidi
decrease the computational complexity with insignificant loss i=0

st be a bounded vector by definition. It is also easy to see

=1

of accuracy. For example, in [1], the deterministic service time f=ri St o
in a MAP/D/1/K queueing system, which indeed results in = N Aty Di—d Y d' YDy (79)
f = oo, is modeled by Pasl approximations in transform i=1 r=1 i=1

domain with a reduced degree ¢f= 3, and very accurate Since

. ; i ; ATM multinl bai elimy ..o y/ (d) Dy exists, (79) dictates linear constraints
E?fflcrir:?]ttelj or cell loss rates in an multiplexer are o taln%q~| w.1< j < f, in the following manner:

j—1
APPENDIX | YD = 2oNj—jt1— » yoDy—jpi- (80)
POLYNOMIAL MATRICES AND FRACTIONS =1

The following material on polynomial matrices and polyConseauently, (79) becomes

nomial matrix fractions of a rational matrid(d) is mainly f-1

based on [21] and [9]. dyf (d)Dy = = >y TH(d)D; + dy{ Dy. (81)
A matrix A(d) = [CL“(d)], Whereaij(d) = p“(d)/qw(d) for =0

a polynomial paifp;;(d) andg;;(d), is called a rational matrix Let us now define the concatenated transform vector

ind. If deg(p;;) < deg(qi;) (deg(ps;) < deg(q;;)) for all i and

j, then A(d) is called proper (strictly prope)). We say A(d) 2(d) 2 [yl(d) 2 (d) - yf(d)}

is stableif all roots of ¢;;(d) lie in the open unit disk for all

¢ and j. A polynomial matrix is one with polynomial entries.which is thed-transform of the sequence

Let Q(d) and P(d) be m, x m, andm, x m, polynomial T f

matrices, respectively, and l6(d) be nonsingularQ(d) and k= [yk Y 0 Yk }

P(d) are said to beight coprime over an arbitrary region .

D in the complex planC if and only if, for everyd € D, One can then make use of (78), (80), and (81) to obtain

the matrix[Q7 (d) PT(d)]T has full column rankn,. If in the 2(d)(dE — A) =dz, 20D =2xz0N, and

above definitionD is outside the open unit disk, that IS,lF is y(d) = 2(d)C (82)

the set{d € C, |d| > 1}, then the fraction is callestableright

coprime. Consider a rational matri&(d) of sizem,, xm,. The where the matrices, £, C, D, and N are as defined in (27),

fraction A(d) = P(d)Q~(d) is called a stable right coprime (28), and (29), respectively.

polynomial fraction if the polynomial matrice3(d) and P(d) We note that the transform identities in (82) are equivalent

are stable right coprime. Given a stable rational matiix), it to the representation (26), and therefore we have found one

is always possible to obtain a stable right coprime polynomiparticular generalized state-space realization for the transform

fraction [9]. expression (22) fow(d).
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