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Abstract—In this paper, we present an algorithmic approach
to find the stationary probability distribution of M/G/1-type
Markov chains which arise frequently in performance analysis of
computer and communication networ ks. The approach unifies
finite- and infinite-level Markov chains of this type through a
generalized state-space representation for the probability gener-
ating function of the stationary solution. When the underlying
probability generating matrices are rational, the solution vector
for level k, xk, is shown to be in the matrix-geometric form
xk+1 = gF kH; k � 0; for the infinite-level case, whereas it takes
the modified form xk+1 = g1F

k

1H1 + g2F
K�k�1

2 H2; 0 � k<K,
for the finite-level case. The matrix parameters in the above
two expressions can be obtained by decomposing the generalized
system into forward and backward subsystems, or, equivalently,
by finding bases for certain generalized invariant subspacesof a
regular pencil �E � A: We note that the computation of such
bases can efficiently be carried out using advanced numerical
linear algebra techniques includingmatrix-sign function iterations
with quadratic convergence rates orordered generalized Schur
decomposition. The simplicity of the matrix-geometric form of
the solution allows one to obtain various performance measures
of interest easily, e.g., overflow probabilities and the moments
of the level distribution, which is a significant advantage over
conventional recursive methods.

Index Terms—ATM multiplexer analysis, generalized difference
equations, generalized invariant subspaces, generalized Schur
decomposition, matrix-sign function, M/G/1-type Markov chains,
polynomial matrix fractional descriptions.

I. INTRODUCTION

I N this paper, we study Markov chains of M/G/1 type with
finite or infinite number of levels. The state space of an

infinite-level (or simply infinite) M/G/1-type Markov chain
consists of integer pairs where the level of the chain,
takes on an infinite set of values and the phase
of the chain, takes on a finite set of values
The transition probability matrix of this chain has the block-
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partitioned form [29]

...
...

.. .

(1)

where and are matrices. Assuming that
is irreducible and positive recurrent, we find the stationary

probability vector which satisfies

(2)

where is and is an infinite column vector
of ones.

When the number of levels is finite, say the transition
probability matrix takes the block upper-Hessenberg form

...
...

...
...

(3)

where and are and constitute
the boundary at level We then study the solution vector

which satisfies (2), with this time being
a column vector of ones of length Throughout the
paper, will denote a column vector of ones of suitable size.

Both infinite and finite M/G/1-type Markov chains arise
frequently in the performance analysis of ATM (asynchronous
transfer mode) networks. In an ATM network, the basic
unit of information is a fixed-lengthcell and the sharing of
common network resources (bandwidth, buffers, etc.) among
virtual connections is made on a statistical multiplexing basis.
Statistical quality of service guarantees are integral to an
ATM network, necessitating accurate traffic and performance
analysis tools to determine the cell loss rate, cell delay, and
cell delay variation in an ATM node (switch, multiplexer, etc.).
This is, in general, difficult due to multiplexing of typically
a large number of connections and burstiness of individual
cell streams at possibly different time scales. One popular
approach is to approximate such complex nonrenewal input
processes by analytically tractable Markovian models either at
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the connection [34], [10] or at the link (physical or logical)
level [18], [19], [27]. Markovian arrival process (MAP) [26]
and batch Markovian arrival process (BMAP) [24] have been
used extensively in ATM performance evaluation in contin-
uous time. For example, the well-known Markov-modulated
Poisson process (MMPP) is a sub-case of MAP [18]. Various
other Markovian traffic models, including Markov-modulated
Bernoulli process (MMBP) or its generalization discrete batch
Markovian arrival process (DBMAP), are also used to model
the correlated nature of ATM traffic streams in discrete time
[34], [35]. We note that the DBMAP model allowsbatch
arrivals in one cell time [30] and is suitable for modeling
aggregate traffic. Such processes in continuous or discrete time
when fed into a single-server queue are known to give rise to
M/G/1-type Markov chains [29], where the phase of the chain
represents the state of the underlying Markovian model that
governs (or modulates) the arrivals, and the level of the chain
represents the queue length.

While the infinite M/G/1 chain seems to lack physical
justification due to limited storage capacities in ATM nodes,
it usually serves as an efficient approximation to the case of a
finite but large number of levels. Infinite M/G/1 models have
especially been used in the analysis of asymptotic queue length
behavior which is closely linked with effective bandwidth
computations for call admission control in ATM networks
[34], [35], [10]. Assuming an output buffer capacity of
cells, the infinite M/G/1 chain can be truncated at level
to obtain a finite M/G/1 chain of the form (3). Assuming no
particular buffer management scheme in effect, this truncation
is generally done by writing the boundary at levelas

and

(4)

On the other hand, the boundary behavior at level 0 is generally
captured by defining

and (5)

if the node can forward an incoming cell without any delay.
In the case that an incoming cell is subject to one cell-time
delay even when the buffer is empty, one has

(6)

Other possibilities for the boundary sequence also exist
[29].

For the solution of infinite and finite M/G/1 chains, we
take an algebraic approach which is entirely different than
the conventional methods. This technique unifies finite and
infinite models, and consists of obtaining a generalized state-
space representation of the probability generating function
of the stationary solution. The generalized system is then
decomposed into its forward and backward subsystems which
in turn result in a matrix-geometric solution for infinite M/G/1
chains

(7)

Using the same generalized system and its forward–backward
decomposition, we further show that the solution vector for
level for finite M/G/1 chains is expressible as

(8)

The computational algorithm we propose to find the elements
of the above matrix-geometric expressions is based on the
matrix-sign function iterations[7] or the generalized Schur
decomposition with ordering[20], leading to a method which
is in general relatively faster than the conventional recursive
algorithms, with less storage requirements. Besides, the simple
compact form for the stationary probabilities substantially
facilitates calculating certain performance measures of interest
such as buffer overflow probabilities (or cell loss rates) and
moments of the level distribution (or cell delay and cell delay
variation). It also proves useful in the analysis of asymptotic
queue length behavior.

The transition probability matrices of (1) and (3) are said
to be in canonical form. Noncanonical chains with complex
boundaries can also be studied in the same unifying general-
ized state-space framework. A case which was studied in [3]
is the M/G/1 chain below with multiple boundary levels

...
...

...
...

...
...

...
...

. . .

(9)

where and are matrices,
and denotes the number of boundary levels. When
the probability model reduces to the canonical form (1). We
show in [3] that the solution vector for level has the
simple matrix-geometric form

(10)

Using invariant subspace computations in the solution of
infinite M/G/1- and G/M/1-type Markov chains has been
proposed before in [2]. In [3], this approach has been refined in
the generalized state-space framework to eliminate recursive
computations traditionally required to find the stationary prob-
abilities of an infinite M/G/1 chain. The current paper is an
extended version of [3], and presents the unifying generalized
state-space approach for the stationary solution of infinite/finite
and single-/multiple-boundary M/G/1-type chains arising in
the performance analysis of computer and communication
systems. Furthermore, we introduce theordered generalized
Schur decompositionin this paper as the numerical engine that
implements the generalized state-space approach, as well as
thematrix-sign functionmethod which was studied extensively
in [2] and [3]. Based on the numerical experiments we have
performed, the former method appears to outperform the serial
version of the latter in terms of execution times and accuracy.
However, we note that the matrix-sign function iterations are
parallelizable at the algorithm level, and significant execution
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time reductions can potentially be attained by means of parallel
implementations [15].

The paper is organized as follows. In Section II, we intro-
duce the generalized state-space approach for solving infinite
M/G/1-type Markov chains. Section III describes the two
algorithms that implement this approach; one algorithm is
based on the matrix-sign function, and the other on the
ordered generalized Schur decomposition. Then Sections IV
and V extend the formulation to also cover finite M/G/1
chains and the noncanonical case of multiple boundary levels,
respectively. Numerical examples are provided in Section VI
to demonstrate the accuracy and efficiency of the approach.

II. I NFINITE M/G/1-TYPE MARKOV CHAINS

For the mathematical formulation of the problem, we first
need to define the two-domain probability generating ma-
trices

and (11)

which are related to their-domain counterparts as
and respectively. We then

make the assumption that the transform matrices and
are rational, i.e., the entries of and are rational

functions of This assumption is not restrictive due to the
following.

1) Most of the probability models of M/G/1 type encoun-
tered in computer and communication systems naturally
give rise to rational transform matrices.

2) When the transform matrices are general, conventional
methods make use of truncation to replace the infinite
matrix sequences and appropriately by fi-
nite sequences for computational tractability, and this
amounts to approximating the transform matrices by
rational matrices. Our model avoids truncation by taking
advantage of the rational structure of and
and thus generalizes the existing models.

3) It is, in general, advantageous to use rational functions
to approximate general (possibly irrational) probability
generating matrices. See, for example, [1] in which
the deterministic service time in a MAP/D/1/K queue
is approximated by Padé approximations in transform
domain to successfully estimate the cell loss rates in an
ATM multiplexer.

Under the above assumption, one can express and
as astable right coprime polynomial matrix fraction

(12)

where and are polynomial matrices
of [21], with polynomial degrees and respectively.
We note that and are proper rational matrices
and, hence, the relations and hold. Moreover,
stable right coprimeness is imposed on the fraction to avoid

redundancies in the matrix-fractional description, and implies
that all the roots of lie in the open unit disk.1

In the following, we first discuss how the fractional de-
scription of (12) can be obtained generically, and provide some
teletraffic examples naturally yielding such descriptions. Then,
after outlining a slightly modified version of the traditional
iterative solution methods, we introduce the generalized state-
space approach of this paper.

A. Obtaining Stable Right Coprime Fractions

Consider a stable proper transform matrix, of size
One can generically obtain a stable right coprime fraction

of as follows. Let be the least common
multiple of all the denominators of theth column entries of

Define and It
is then clear that the fraction is a stable
right coprime polynomial fraction. As an example, consider a
two-state Markov-modulated geometric source. Letbe the
state transition probabilities of the modulating chain, and
be the geometric rate parameter associated with the transitions.
Then, the entries of are given as

If we assume that ’s are all different, then the entries
and of and are found, respectively, as

and

and

For a wide variety of teletraffic models, however, one may
not need to take this generic approach as the fractions can
directly be obtained from the problem description. Below, we
give three popular models from the teletraffic literature, and
find a stable right coprime pair of matrices and for
the probability generating matrix We also note that the
fraction for can generally be obtained through that for

easily as in (5) or (6).
1) Quasi-Birth-and-Death Processes [36], [28], [23]:If, in

the structure of in (1), state transitions are restricted to
take place between adjacent levels only, the resulting model
is called a quasi-birth-and-death process (QBD). That is, for
QBD chains, for and

The choice of

and

gives a stable right coprime fraction for Note that this
formulation appropriately extend to obtain fractions for the
more general case in which for and

1Our recent experiments indicate that the generalized state-space method
works even when there are redundancies, that is, even when coprimeness
is not sought. See Appendix I for a brief mathematical overview of stability
and right coprimeness concerning polynomial matrices and polynomial matrix
fractions.
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2) Single-Server Discrete-Time Queue with Modulated Ar-
rivals: Consider a discrete-time queue with a single server
and with arrivals modulated by a finite-state discrete-time
Markov chain [34]. Assume that the modulating chain has

states with transitions occurring at slot boundaries. Let
denote the transition probabilities. Also let

denote the probability of arrivals when the modulating
chain resides in state Assume that

(13)

is a rational function of (for example, a discrete phase-type
distribution). Let the queue length and state of the modulating
chain be associated with our level and phase definitions. If we
write then can
be written as

which is a stable right coprime fraction with
and

3) MMPP/G/1 Queue [24]:Consider a single-server queue
with the arrival process modeled as a MMPP characterized by
the infinitesimal generator matrix of the underlying Markov
chain and the rate matrix
We assume that the service time distributionis Coxian, i.e.,

has a rational Laplace–Stieltjes transform so that we
can write for some coprime polynomials
and Considering the embedded Markov renewal process at
departure epochs, we obtain a Markov chain of M/G/1 type
with

which is a rational function of [24]. The polynomial fractions
of can directly be obtained as

and

where is the degree of polynomial

B. Matrix-Analytic Method

We now outline an efficient iterative method for finding the
stationary solution as in (2) of an infinite M/G/1-type Markov
chain. This method is based on the matrix-analytic approach
pioneered by Neuts [29] with a slight modification to take
advantage of the rationality of (also see [25] for a similar
approach for the BMAP/G/1 queue). In this method, the key
is to find the unique minimal nonnegative solution of the
nonlinear matrix equation

(14)

A successive substitution iteration for finding exploiting
the rationality of to avoid truncation of this infinite
summation is

(15)

where is a polynomial fraction for or,
equivalently, in the -domain (note that
this is a left polynomial fraction as opposed to (12); also see
[2]). Previous numerical experiments indicate that this iteration
has a linear convergence rate [2]. It is shown in [33] that
is equal to the stationary probability vectorof the stochastic
matrix normalized as

(16)

where

(17)

is the stationary probability vector of and the traffic
parameter (or utilization) is less than unity. Once is found,
the vectors can be obtained recursively by [31]

(18)

where

(19)

Note that computation of as in (18), requires trun-
cation of the infinite matrix sequences and Due to
the low linear convergence rates of the successive substitution
iterations to find and depending on the truncation index
required to attain a certain accuracy, the matrix-analytic ap-
proach may, in general, incur considerable execution times and
storage requirements especially under heavy traffic conditions.
The generalized state-space approach differs significantly from
the matrix-analytic approach, and is presented in Subsection
D after the following brief overview of invariant subspaces.

C. Overview of Invariant Subspaces

Here we give a brief description of ordinary and generalized
invariant subspaces based mainly on [12] and [16]. We use
the following notation. Uppercase is used for matrices and
lowercase for vectors, both being defined over the field of
real numbers denotes the spectrum, i.e., the set of
eigenvalues, of A constant, polynomial, or rational matrix is
calledregularwhen it is square and has a nonzero determinant.
Otherwise, it is calledsingular. A subspace is a subset of

that is closed under the operations of addition and scalar
multiplication. Im denotes the image (or the column space)
of is the image of under An invariant subspace

of satisfies where denotes inclusion.
and are the sum and direct sum, respectively, of the
subspaces and Let and assume that and
are invariant subspaces of a square matrixof size Then,

and and defined by satisfy

If lies in the closed right-half (open left-
half) plane, then is said to be the right (left) invariant
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subspace of When lies outside (in) the
open unit disk, then is called the unstable (stable)
invariant subspace of This notation is inherited from the
stability of difference systems.

Let us now assume a regular matrix pencil which
is a polynomial matrix (in the indeterminate of degree
one. The generalized eigenvalue problemfor the matrices

and of size is equivalent to finding the scalars
for which the equation has solutions
Such scalars are called generalized eigenvalues. A solution

corresponding to an eigenvalueis called a generalized
eigenvector. A generalized eigenvalue satisfies the relation

where is the field of complex numbers, and denotes
the generalized spectrum of the matrix pair Any
subspace satisfying

is called a generalized invariant subspace(or a deflating
subspace) of the pencil When we indeed
have an ordinary invariant subspace.

Let and be two complementary deflating subspaces
of the pencil i.e., Define

and It is shown in [11] that
these two subspaces are also complementary. Let

and Then there exists
a decomposition

where

If lies in the closed right-half (open
left-half) plane, then is called the right (left) deflating
subspace of the matrix pencil When

lies outside (in) the open unit disk, then
is called the unstable (stable) deflating subspace of the matrix
pencil

D. Generalized State-Space Approach

Now consider the Markov chain with the transition probabil-
ity matrix given in (1). Define the-transform of the sequence

as

(20)

It is easy to show by (1) that

(21)

Also define the sequence

and let be its -transform. It is not difficult to show that

(22)

where

(23)

(24)

(25)

Here, is called thedegree parameterof the Markov chain
and will play a key role in our approach.

Given the polynomial fraction (22), one can find a gener-
alized state-space realization [12] for (see Appendix II for
a proof)

(26)

where

...
...

.. .
...

.. . ...
(27)

(28)

and

...
...

(29)

Here, is called thedescriptor (or the semistate) which
reduces to the definition ofstatewhen is nonsingular [21].
The possible singularity of plays a significant role in the
problem formulation. Also note that is of size and
the matrices and are of size

Remark: When the first coefficients of are zero, i.e.,
for a reduced-order generalized

state-space representation can be obtained. That is, the problem
dimension can be reduced to resulting in an effective
degree parameter of In the case of a QBD chain,
for example, it turns out that Therefore, the effective
degree parameter can be made as opposed to
as (25) suggests. See [3] for details.

We now need to find so that none of the unstable
modes of the matrix pair is excited, i.e., of (26)
remains finite for all The matrix pencil has one
singularity at say, singularities (including the one
at outside the open unit disk, and singularities in
the open unit disk. Note that yields the dimension

of the generalized system given in (26). Let and
be the unstable and stable deflating subspaces of the pencil

respectively. Let and for
some matrices and of sizes and
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respectively. Also let and
for some matrices and

of sizes and respectively. Define

and (30)

Then, from Section II-C, we have

and

(31)

and and lie outside and in the open
unit disk, respectively. Defining

and postmultiplying the generalized state-space model (26) by
we have two uncoupled generalized difference equations

for and

(32)

(33)

In order for not to diverge as must be the
zero vector

(34)

Moreover, since lie in the open unit disk, is
nonsingular implying

(35)

where the matrix is found as

(36)

Let us now partition as

(37)

where and has and rows, respectively. Then

(38)

The only unknowns that remain to complete the solution are
and the initial value which, by (26) and (34), satisfy

(39)

Note that is Furthermore, the sum of the
probabilities is unity which gives a normalizing equation
in terms of and

(40)

The concatenated vector is the unique solution to the
two equations (39) and (40), which when computed leads to the

simple matrix-geometric solution for the stationary probability
vector for level

(41)

This simple and compact solution form makes it easier to
write certain performance measures of interest. For example,
the th factorial moment, of the level distribution
is readily expressible in closed form as (also see [28])

(42)

The overflow probabilities, say are also easy to write

(43)

In addition, the queue length distribution is known to exhibit
a geometric decay as for sufficiently large [34], [35],
[10]. The form (41) of the solution indicates that the decay rate

here is the dominant eigenvalue of matrix which can be
computed efficiently by the power method [17, Section 7.3.1].
More importantly, (41) allows computation of the coefficient

as well. Assuming that is the Jordan form of
the stationary probability of level can be written as

As goes to infinity, this expression
reduces to where and are the
left- and right-eigenvectors of associated with the dominant
eigenvalue Once is computed, and can be found by
solving two sets of linear equations, and then the coefficient
follows as

This concludes the discussion of the existence of matrix-
geometric solutions for infinite M/G/1-type Markov chains
when the transform matrices and are rational
functions of Two computational algorithms, one based on
the matrix-sign function and the other on ordered generalized
Schur decomposition, for finding the matrices and of
decomposition (31) are presented in the next section.

III. A LGORITHMS FORINVARIANT SUBSPACECOMPUTATIONS

The (generalized) invariant subspace computation (left or
right, stable or unstable) is a well-known problem of numerical
linear algebra [12], [16]. To name a few, (generalized) Schur
decomposition methods [17], [20], inverse-free spectral divide-
and-conquer methods [6], (generalized) matrix-sign function
iterations [14] have been proposed to compute bases for these
subspaces which arise for a wide variety of problems in applied
mathematics. All of the above approaches can be used to
find bases for the stable and unstable deflating subspaces
of the matrix pencil which is an essential task in
the generalized state-space method for solving M/G/1-type
Markov chains. Here we present two algorithms. One is based
on theordinary matrix-sign function [32], and the other on the
generalized Schur decomposition with ordering. The former
algorithm employs certain properties of the matricesand
akin to M/G/1-type models, whereas the latter is quite generic.
We also provide a summary of the overall method for infinite
M/G/1 chains.
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A. Matrix-Sign Function Approach

We first note that the stable (unstable) deflating subspace of
the matrix pencil is equal to the left (right) deflating
subspace of the pencil where the two matrices
and are defined as

For a proof, we refer the reader to [14]. With this transfor-
mation, the generalized eigenvalues of the pencil
in (outside) the open unit disk are moved to the open left-
half (closed right-half) plane. So there is one generalized
eigenvalue of on the imaginary axis, which is at
the origin.

One can also show that is regular by observing that the
pencil does not have any generalized eigenvalue on
the unit circle except one at In particular,
does not have any generalized eigenvalue at which
clearly shows that is nonsingular. Let It is
not difficult to show that the left (right) invariant subspace of

is also equal to the left (right) deflating subspace of the
pencil Furthermore, has one eigenvalue on the
imaginary axis, which is at the origin. Then letand be left
and right eigenvectors of corresponding to the eigenvalue
at the origin, i.e.,

(44)

Then, the matrix defined as

(45)

is free of imaginary-axis eigenvalues, and the left (right)
invariant subspace of is equal to the left (right) invariant
subspace of It is not difficult to show that the vectors
and defined as

...
(46)

where is the stationary probability vector of i.e.,
and

satisfy (44).
One can now use matrix-sign function iterations on [2]

to find bases for the unstable and stable deflating subspaces of
the pencil leading to construction of the matrices
and defined as in (30). We now outline this approach.

We refer the reader to [2] for the definition of the matrix-
sign function. The basic matrix-sign function algorithm for an

matrix with no imaginary axis eigenvalues is (see
[7] and [14])

(47)

Then

where denotes the matrix sign of and convergence
is quadratic. The stopping criterion we use is the one proposed
in [5]

(48)

The most important property of matrix sign is that
is equal to the left (right) invariant subspace of

[32]. Then find

(49)

through the matrix-sign function iterations (47). Recall that
there are eigenvalues of in the right-half plane, and

eigenvalues in the left-half plane. Let the rank-revealing
QR decomposition [8] of be

(50)

where is upper triangular, is orthogonal, and is a
permutation matrix. Suppose that is chosen so that the rank
deficiency of is exhibited in by a smaller lower-right
block in norm of size Then, let

leading columns of (51)

which span or, equivalently, form an orthogonal
basis for the left-invariant subspace of or the unstable
deflating subspace of the pencil Similarly, a rank-
revealing QR decomposition of yields

(52)

and with a proper choice of permutation we define

leading columns of (53)

Following Section II-C, with two more rank-revealing QR
decompositions

(54)

(55)

we define

leading columns of (56)

leading columns of (57)

This concludes the discussion of using ordinary matrix-sign
function to find the four key matrices and that
are used to decompose the generalized system (26) into its
forward and backward subsystems through (31).
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TABLE I
SUMMARY OF THE OVERALL NUMERICAL ALGORITHM FOR INFINITE M/G/1-TYPE MARKOV CHAINS

B. Generalized Schur Decomposition Approach

One other approach to find the stable (unstable) deflating
subspaces that give rise to decomposition (31) is to use
generalized Schur decomposition with ordering [17], [20].
Given the two matrices and one can employ the
generalized Schur decomposition method with ordering [20]
to compute the two orthonormal matricesand satisfying

(58)

such that:

1) and are upper triangular with nonnegative
diagonals,

2) and are upper block triangular with either 11
or 2 2 blocks (corresponding to complex eigenvalues),

3) lies in the open unit disk, and
4) lies outside the open unit disk.

Given the above decomposition, we next solve the general-
ized Sylvester equations [20]

and (59)

for the two matrices and Finally, defining

and (60)

one obtains the decomposition (31), i.e., eliminates the upper-
diagonal blocks and in (58). Here we note that
elimination of these blocks is not necessary in the solution of
infinite M/G/1 chains. However, for the case of finite M/G/1
chains that will be discussed in the next section, those blocks
have to be eliminated.

In Table I, we provide an algorithmic description of the
generalized state-space approach for infinite M/G/1 chains
based on either the matrix-sign function or the generalized
Schur decomposition with ordering. The algorithm assumes
that the right polynomial fractions of (12) are given.

IV. FINITE M/G/1-TYPE MARKOV CHAINS

Consider the finite M/G/1 chain of the form (3). It is not
difficult to show that the generalized difference equations (26)

are still valid for

(61)

Using the same decomposition (31) as in infinite M/G/1 chains,
we have

(62)

or, equivalently

(63)

where

(64)

The invertibility of follows directly from the fact that the
generalized eigenvalues of the pair lie outside the
open unit disk. Therefore, the matrix has all its eigenvalues
in the closed unit disk. We call (63) thebackward subsystem
of the generalized system (61). It immediately follows from
(63) that

(65)

The main difference from the infinite M/G/1 formulation is
that the unstable modes of the pair may be excited
in finite M/G/1 chains and the vector is not necessarily
the zero vector. On the other hand, the difference equations
corresponding to theforward subsystem(33) are still valid for

leading to

(66)

where Then, the solution of
the finite M/G/1 chain of (3) can be written in terms of
and

(67)

proving the existence of the modified matrix-geometric form
given in (8). What now remains is to find the three unknown
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vectors and We have two equations to solve for
these vectors, the first of which is yielding

(68)

through straightforward substitution. The second equation de-
rived from the balance equation at level is

and can be rewritten in terms of and by using (67) as

(69)

Using (68) and (69), one can then find and uniquely
by solving the equation

(70)

and normalizing the solution such that the stationary probabil-
ities add up to unity, i.e.,

V. M/G/1 CHAINS WITH MULTIPLE BOUNDARIES

Based on [3], we outline below the algorithm for finding
the matrix-geometric factors of the M/G/1 chain with multiple
boundary levels. The proof is similar to that of the canonical
M/G/1 chain and is omitted in this paper.

Consider the M/G/1-type Markov chain in (9) with
multiple boundary levels. First, define

and

(71)

Then find a stable right coprime fraction as

...
...

(72)

Let be the degree of the polynomial matrix and define

(73)

and

...
(74)

Note that and are polynomial matrices of degree
Define the matrices and in the

same way as in (27), (28), and (29) using the polynomials of
(73) and (74) above. The rest of the algorithm is the same as
that for the canonical M/G/1 chain. We first find the matrices

and as in (30) and (36), and partition as in (37).
We then solve or

(75)

and normalize the solution so that

(76)

Defining and gives us the matrix-
geometric solution

(77)

VI. NUMERICAL EXAMPLES AND DISCUSSION

Example 1: We first consider an infinite M/G/1-type
Markov chain obtained from the queueing model,
where stands for the superposition of independent
and identical IPP’s (interrupted Poisson process) [13] and
stands for the -stage Erlangian distribution. We refer to this
chain through the following three parameters: 1) the number
of phases 2) the degree parameterdefined by (25), and 3)
the traffic parameter (or utilization) given in (17). Note that
since i.i.d. IPP’s are considered, setting results in
an -state Markovian model for the aggregate arrival process.
For each IPP source, we fix the transition rates to the idle and
active states as 3 and 1, respectively. Therefore, the arrival
rate in the active state of each IPP is uniquely determined for
any desired aggregate arrival rateWe fix the mean service
rate as which implies that Since
is a special case of the MMPP/G/1 queueing model, the
probability generating matrices and are found as
described in Section II-A. The Laplace–Stieltjes transform of
an -stage Erlangian distribution with unity mean is given as
[22] Hence, a desired degree parameter

is met by setting
We provide CPU time and error results for the matrix-

sign function (MSF), generalized Schur decomposition (GSD)
implementations of the generalized state-space approach (see
Sections II-D and III), and the truncation-free successive sub-
stitution iteration (SSI) method outlined in Section II-B. We
measure the CPU time until the point at which the program
becomes ready to compute the level probability vectors
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TABLE II
CPU TIME AND ERROR RESULTS FOR� = 0:6: IG AND IS ARE THE NUMBERS OF SUCCESSIVESUBSTITUTION ITERATIONS AND MATRIX-SIGN FUNCTION

ITERATIONS, RESPECTIVELY. K1 AND K2 ARE THE INDEXES FOR THEfAkg AND fBkg (AND ALSO fÂkg AND fB̂kg) MATRIX SEQUENCES, RESPECTIVELY

This amounts to finding the matrix-geometric factors
and in the case of the MSF and GSD methods, and

to finding the level-0 probability vector and the matrix
sequences and in the case of the SSI method.
As for error computations, we consider the infinity norm of
the residual of the solution vector: see (1) and
(2). However, since and are infinite entities, truncation
is needed here. We simply consider the balance equation
over levels 0 and 1 only. That is, we estimate the error as

where and is the corresponding
partition of Note that all three matrix-geometric factors of
the solution are involved in this computation.

All MSF, GSD, and SSI methods are implemented in
C, and compiled (by gcc version 2.7.2.1 with optimizer
-O3 ) and run on a DEC Alpha server supporting IEEE
standard double-precision arithmetic with machine epsilon

Standard BLAS (Basic Linear Algebra Sub-
routines) and CLAPACK (Fortran-to-C translated version of
LAPACK–Linear Algebra PACKage) library routines [4] are
used to perform all matrix operations.2 In the SSI implemen-
tation, all polynomial matrix evaluations are performed using
Horner’s method, and the and matrix sequences
are obtained by backward recursions on the and
matrix sequences which are truncated at indexesand
such that and have negligible
components [24]. In all iterations, is used in the
stopping criteria. In the SSI method, since the matrix is
known to be stochastic, we use as the stopping
criterion.

In Table II, fixing the utilization as we present the
CPU time and error results for different values of and
These results show that the MSF and GSD methods are highly
accurate although they may incur more computational com-
plexity than the SSI method as increases. It is noteworthy
that the GSD method outperforms the (serial implementation)

2Here we note that the routines for generalized Schur decomposition with
ordering and generalized Sylvester equation solution, which are required
to implement the GSD method, are not available in the current version of
LAPACK. However, they will become available in the new release (version
3.0) of the package. The respective routines that we have obtained via private
communication and used in our implementations are DGGES and DTGSYL.

of the MSF method in terms of CPU time. Since
is the largest degree parameter considered here, we evaluate
polynomials of at most degree three during the truncation-
free successive substitution iteration of (15). The number of

matrices generated 14–21) indicates the significant
time savings achieved here by exploiting the rational structure
in (15) in comparison to the traditional iteration [29]

In Table III, we provide the same set of results as in Table II
for utilization As these results indicate, the MSF
and GSD methods are still very accurate. Furthermore, unlike
the case for matrix-sign function iterations, the number of
successive substitution iterations increase substantially with
utilization, and the MSF method becomes faster than the SSI
method as utilization increases unless the degree parameter

is large. To further explore this point, we fix and as
32 and 3, respectively, and perform a stress test with respect
to utilization. The results shown in Table IV indicate the
efficiency and high numerical stability of the MSF and GSD
methods under heavy load conditions which yield a very ill-
conditioned numerical problem. In fact, Schur decomposition
is, in general, known for its remarkable numerical stability [6].
This is observed as the GSD method becomes more accurate
than the MSF method with increasingThe fact that the CPU
time for the GSD method is not affected at all by utilization
is particularly noteworthy here.

Note that, in Table IV, the error of the SSI method decreases
as utilization is increased. This counter-intuitive trend may be
due to the fact that the probability mass moves to higher levels
with increasing utilization, which makes error measurements
through the balance equations over only levels 0 and 1 less
representative of the actual error.

Example 2: We now consider a finite M/G/1-type Markov
chain of the form (3) with for The way is
obtained in this case was discussed in Section II-A. We note
that the effective degree parameter in this example can be
made less than (see the remark in Section II-D); however,
we did not exploit this possibility in our implementation.



636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 5, JUNE 1998

TABLE III
CPU TIME AND ERROR RESULTS FOR� = 0:9: IG AND IS ARE THE NUMBERS OFSUCCESSIVESUBSTITUTION ITERATIONS AND MATRIX-SIGN FUNCTION ITERATIONS,

RESPECTIVELY. K1 AND K2 ARE THE TRUNCATION INDEXES FOR THEfAkg AND fBkg (AND ALSO fÂkg AND fB̂kg) MATRIX SEQUENCES, RESPECTIVELY

TABLE IV
CPU TIME AND ERROR RESULTS AS FUNCTIONS OF � FOR m = 32 AND f = 3: IG AND IS ARE THE NUMBERS OF

SUCCESSIVE SUBSTITUTION ITERATIONS AND MATRIX-SIGN FUNCTION ITERATIONS, RESPECTIVELY. K1 AND K2 ARE

THE TRUNCATION INDEXES FOR THEfAkg AND fBkg (AND ALSO fÂkg AND fB̂kg) MATRIX SEQUENCES, RESPECTIVELY

The matrices are specified as follows:
1) and are both diagonal matrices with constant
diagonal entries and respectively, where
2) All other are equal to each other, and
tridiagonal with null diagonal entries, i.e., their nonzero entries
are and

It can be shown that the
utilization of this system is irrespective of

So, given and the parameter is uniquely determined,
and the number of phases can be arbitrarily chosen.

Having defined ’s, we assume the level-0 boundary
behavior of (5), and ’s follow accordingly. As for the
limiting level we use (4) to obtain and ’s. The
hardware and software platform used is the same as described
in Example 1.

Table V presents the CPU time and error results obtained
using the generalized Schur decomposition method (see
Sections II-D and III-B). As was observed in Example 1,
the CPU time for this method is insensitive to utilization.
Therefore, in Table V, we only provide CPU time versus
results, and this time, the measurements are taken both after
finding the matrix-geometric factors of the solution form and
after all level probability vectors are computed. We also

provide the CPU times for the infinite-level counterpart of the
original chain. Note that the effect of the number of levels
on the CPU time is minimal in this example. In addition,
even for as high as 1000, the solution of the finite chain
takes about twice the time required to solve the infinite chain.
We are thus led to believe that approximating finite M/G/1
chains by their infinite counterparts may be unnecessary in
many circumstances. On the other hand, the error is computed
as the infinity norm of the residual of the complete solution
vector: see (3) and (2). Apart from a reasonable
worsening for utilization very close to unity, Table V verifies
the accuracy and numerical stability of our method under this
ultimate error measure.

Example 3: This example is on an infinite M/G/1 chain
with multiple boundary levels arising in queueing systems with
multiple servers. We assume a discrete-time, slotted queueing
system with the following evolution equation for the queue
length:

where is the queue length at the end of theth slot,
is the number of servers, is the total number

of arrivals of type 1 traffic in the th slot with
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TABLE V
THE ERROR OF THEGENERALIZED DECOMPOSITIONMETHOD FOR THEFINITE

M/G/1 CHAIN AS A FUNCTION OF � FORK = 10, 100,AND 1000.T (1)CPU IS THE

TOTAL TIME ELAPSED TO OBTAIN THE COMPLETE SOLUTION VECTOR. T (2)CPU IS

THE TIME ELAPSED TOOBTAIN THE MATRIX-GEOMETRIC FACTORS FOR THEFINITE

CHAIN, WHEREAST
(3)
CPU IS THAT FOR THE CORRESPONDINGINFINITE CHAIN

is the total number of arrivals in theth slot due to type
2 traffic in the th slot, and type 2 traffic is buffered when
the servers are busy. is modulated by a homogeneous
finite-state, aperiodic discrete-time Markov chain with state
transitions taking place only at the slot boundaries. Letbe
the state of the modulating chain before the end of slotWe
also have

where is equal to one if the event is true and zero
otherwise. Note that takes the following form

We also assume to be an independent geometric batch
process with parameter i.e.,

This queueing system is suitable for modeling voice and
data traffic multiplexing over a single channel, and falls
into the M/G/1 paradigm with multiple boundary levels with
the doublet being Markov and having a transition
probability matrix of the form (9). It is not difficult to show
that and can now be written as

...

...

TABLE VI
THE PROBABILITY OF EMPTY QUEUE, THE EXPECTED QUEUE LENGTH, AND THE

ERROR AS FUNCTIONS OF UTILIZATION . IS IS THE NUMBER OF MATRIX-SIGN

FUNCTION ITERATIONS. � = 10
�10 IS USED FOR THESTOPPING CRITERION (48)

One can then obtain a stable matrix fraction as in (72) by
choosing

and

...

...

With the polynomial matrix fractions obtained as above,
we implemented the method outlined in Section V using
MATLAB on the same hardware platform as in Example 1.
We used the matrix-sign function approach of Section III-A.
We take and

-
-

-
-

-
-

which amounts to a bursty traffic of type 1 yielding a load of
50% on the system. The traffic parameteris chosen so as to
yield a desired overall arrival rate. We vary the total load
on the system and present the results in Table VI. The error
is computed as the infinity norm of the difference between
the left- and right-hand sides of (75). is
the probability of empty queue, and is the expected
queue length. To give an example about the detailed results,
we have obtained the following matrices that constitute the
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matrix-geometric form (10) for

- -

- -
- -

We note that these matrices do not have a probabilistic
interpretation, unlike the case for the matrix-analytic approach
for M/G/1- and G/M/1-type Markov chains [28], [29]. We have
also found the geometric decay rate for the level distribution,
i.e., the eigenvalue of closest to the unit circle, which
happens to be for this example.

Certain advantages of the simple and compact matrix-
geometric form for the stationary solution of M/G/1 chains
were addressed briefly at the end of Section II-D. The results
of this section demonstrate the accuracy and numerical sta-
bility of two particular implementations (based on ordinary
matrix-sign function and generalized Schur decomposition
with ordering) of the generalized state-space approach of this
paper. The results also indicate substantial savings in the CPU
time and storage requirements compared to conventional re-
cursive techniques, especially when the degree parameteris
not large. However, in the case of intolerably largerational
approximation techniques can be employed to reduceand
decrease the computational complexity with insignificant loss
of accuracy. For example, in [1], the deterministic service time
in a MAP/D/1/K queueing system, which indeed results in

is modeled by Pad́e approximations in transform
domain with a reduced degree of and very accurate
estimates for cell loss rates in an ATM multiplexer are obtained
efficiently.

APPENDIX I
POLYNOMIAL MATRICES AND FRACTIONS

The following material on polynomial matrices and poly-
nomial matrix fractions of a rational matrix is mainly
based on [21] and [9].

A matrix where for
a polynomial pair and is called a rational matrix
in If for all and

then is calledproper (strictly proper). We say
is stable if all roots of lie in the open unit disk for all

and A polynomial matrix is one with polynomial entries.
Let and be and polynomial
matrices, respectively, and let be nonsingular. and

are said to beright coprime over an arbitrary region
in the complex plane if and only if, for every

the matrix has full column rank If in the
above definition is outside the open unit disk, that is, if is
the set then the fraction is calledstableright
coprime. Consider a rational matrix of size The
fraction is called a stable right coprime
polynomial fraction if the polynomial matrices and
are stable right coprime. Given a stable rational matrix it
is always possible to obtain a stable right coprime polynomial
fraction [9].

APPENDIX II
GENERALIZED STATE-SPACE REALIZATION

Here we provide a proof for the generalized state-space
realization (26) for Following the treatment of [1] in a
similar context, we define

which yields

Here, in should be treated as a superscript. We note that

must be a bounded vector by definition. It is also easy to see
that

(78)

One can also show by using (22) and by algebraic manipu-
lations that

(79)

Since exists, (79) dictates linear constraints
on in the following manner:

(80)

Consequently, (79) becomes

(81)

Let us now define the concatenated transform vector

which is the -transform of the sequence

One can then make use of (78), (80), and (81) to obtain

and

(82)

where the matrices and are as defined in (27),
(28), and (29), respectively.

We note that the transform identities in (82) are equivalent
to the representation (26), and therefore we have found one
particular generalized state-space realization for the transform
expression (22) for
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