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1. Introduction

In this paper we study the mean square distribution of primes in short segments of
arithmetic progressions. Specifically we examine

I(x, h, q) =
∑

*

a(q)

∫ 2x

x

(

ψ(y + h; q, a) − ψ(y; q, a) −
h

φ(q)

)2

dy (1.1)

where
ψ(x; q, a) =

∑

n≤x
n≡a(q)

Λ(n), (1.2)

Λ is the von Mangoldt function, and
∑

*
a(q) denotes a sum over a set of reduced

residues modulo q. We shall assume throughout

x ≥ 2, 1 ≤ q ≤ x, 1 ≤ h ≤ x, (1.3)

the other ranges being without interest. As far as we are aware the only known
result concerning the general function I(x, h, q) is due to Prachar [11], who showed
that, assuming the Generalized Riemann Hypothesis (GRH)

I(x, h, q) ≪ hx log2 qx. (1.4)

On the other hand, much more is known about the special cases where one of the
two aspects, segment or progression, is trivialized. Indeed, our function I(x, h, q)
is essentially a hybrid of the more familiar functions

I(x, h) =

∫ 2x

x

(ψ(y + h) − ψ(y) − h)2 dy, (1.5)

the second moment for primes in short intervals, and

G(x, q) =
∑

*

a(q)

(

ψ(x; q, a) −
x

φ(q)

)2

, (1.6)
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which measures the total variance in the prime number theorem for arithmetic
progressions modulo q. We see I(x, h, 1) = I(x, h) so that I(x, h, q) generalizes
I(x, h). We shall see for small q that I(x, h, q) behaves rather similarly to I(x, h).
When h is about x then h−1I(x, q, h) will behave rather similarly to G(x, q).

In studying I(x, h, q) we will use some techniques from the recent papers Gold-
ston [4] and Friedlander and Goldston [2] where I(x, h) and G(x, q) were examined.
It is helpful in understanding the results we obtain to first consider what follows
from the Riemann Hypothesis (RH) and a strong form of the twin prime conjecture.
Let

N1 = N1(k) = max(0,−k), N2 = N2(x, k) = min(x, x− k), (1.7)

and
E(x, k) =

∑

N1(k)<n≤N2(x,k)

Λ(n)Λ(n+ k) − S(k)(x − |k|), (1.8)

where we define as usual

S(k) =















2C
∏

p|k
p>2

(

p− 1

p− 2

)

, if k is even, k 6= 0;

0, if k is odd;

(1.9)

with

C =
∏

p>2

(

1 −
1

(p− 1)2

)

. (1.10)

Theorem 1. Assume the Riemann Hypothesis and that for 0 < |k| ≤ x and some
given ǫ ∈ (0, 1

4 )

E(x, k) ≪ x
1
2
+ǫ. (1.11)

Then for 1 ≤ h/q ≤ x
1
2
−ǫ and h ≤ x we have

I(x, h, q) ∼ hx log
(xq

h

)

. (1.12)

In the smaller range q4ǫ ≤ h/q ≤ x
1
2
−2ǫ we have

I(x, h, q) = hx log(
xq

h
)−hx



γ + log
π

2
+
∑

p|q

log p

p− 1



+O(h2)+Oǫ(h
1−ǫx). (1.13)

In the case q = 1 we recover the formula

I(x, h) ∼ hx log(x/h), 1 ≤ h ≤ x
1
2
−ǫ (1.14)

subject to the same hypotheses. We may conjecture that equation (1.14) hold for
the expanded range 1 ≤ h ≤ x1−ǫ, since Goldston and Montgomery [5] showed this
conjecture is equivalent under the RH to a pair correlation conjecture for zeros of the

Riemann zeta-function. Therefore we might conjecture the condition h/q ≪ x
1
2
−ǫ

for (1.12) might be relaxed. In the case of G(x, q) it was proved in [2] that under
the same conjectures

G(x, q) ∼ x log q, x
1
2
+ǫ ≤ q ≤ x. (1.15)
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We mention that the case h/q ≤ 1 may be dealt with trivially, and it is easy to
show that

I(x, h, q) ∼ hx log x, 1 ≤ h ≤ q. (1.16)

The conjecture (1.11) is a very strong conjecture and one purpose of this paper
is to see what can be proved when we replace this conjecture with GRH. For cer-
tain small ranges of h and q our results are unconditionally true, but the results
conditional on GRH are more interesting.

We begin by proving that (1.12) and (1.13) holds for “almost all ” q in a smaller
range.

Theorem 2. Assume the Generalized Riemann Hypothesis. Then we have for
h3/4 ≤ Q ≤ h that

∑

Q/2<q≤Q

∣

∣

∣

∣

∣

∣

I(x, h, q) − hx log(
xq

h
) + hx



γ + log
π

2
+
∑

p|q

log p

p− 1





∣

∣

∣

∣

∣

∣

≪ h
7
4x log

17
4 x+ xmin(h

1
2Q

3
2 log

3
2 Q, hQ) + h2(Q+ x

1
2 log3 x).

(1.17)

From this theorem we obtain the following almost-all result, where we mean by
almost-all that all except at most o(Q) integers in the interval [Q/2, Q] satisfy the
given property.

Corollary. Assume the Generalized Riemann Hypothesis. Then for almost all q
with h3/4 log5 x ≤ q ≤ h we have

I(x, h, q) ∼ hx log(
xq

h
) (1.18)

and for h = o(x) in the range h3/4 log5 x ≤ q ≤ o(h/ log3 h) we have

I(x, h, q) ∼ hx log(
xq

h
) − hx



γ + log
π

2
+
∑

p|q

log p

p− 1



 . (1.19)

The range where the Corollary holds is

h

q
≪

h
1
4

log5 x
, (1.20)

which is smaller than the range of validity in Theorem 1.
Next we prove a Barban-Davenport-Halberstam type theorem for I(x, h, q).

Theorem 3. Assume the Generalized Riemann Hypothesis. Then we have, for
1 ≤ Q ≤ h ≤ x,

∑

q≤Q

I(x, h, q) = Qhx log(
Qx

h
) − cQhx+O(xmin(Q

3
2h

1
2 log

3
2 Q,Qh)

+O(Qh2) +O(h
3
2 x log6 x),

(1.21)
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where c = γ + log π
2 − 1 +

∑

p
log p

p(p−1) .

We thus obtain an asymptotic formula
∑

q≤Q

I(x, h, q) ∼ Qhx log(
Qx

h
) (1.22)

provided h
1
2 log6 x ≤ Q ≤ h ≤ x. This gives a range of validity

h

q
≪

h
1
2

log6 x
(1.23)

which is larger than the range in Theorem 2 and close to Theorem 1 when h is close
to x.

All of our results in Theorems 1, 2 and 3 contain an error term containing an
O(h2) which is significant as a second order term if h is close to or equal to x. This
error term can be replaced by an explicit expression; we have chosen not to do so
to keep the appearance of the results as simple as possible. We have retained these
terms in Lemma 4, and it is straightforward to retain them through the paper and
obtain the complete second order terms for h close to x.

Finally we prove that we can obtain reasonable lower bounds for I(x, h, q) con-
sistent with (1.7).

Theorem 4. Assume the Generalized Riemann Hypothesis. Then for any ǫ > 0

and 1 ≤ h
q ≪ x

1
3

qǫ log3 x
, we have

I(x, h, q) ≥
hx

2
log
(

( q

h

)3
x
)

−O(hx(log log x)3) (1.24)

Letting h
q = xα, we have in particular for any ǫ > 0 and 0 ≤ α ≤ 1

3 ,

I(x, h, q) ≥

(

1

2
−

3

2
α− ǫ

)

hx log x. (1.25)

Equation (1.25) improves the result obtained in [4]. This improvement is based
on a suggestion of Heath-Brown. A similar improvement has been made in [3] for
the result in [2].

Our results have interesting connections with the pair correlation of zeros of
Dirichlet L-functions, and allow us to obtain new result that connect and extend
the earlier work of Yıldırım [12] and relate it to work of Özlük [10]. We will present
these results in a later paper.

2. Preliminaries and Lemmas

In this section we relate I(x, h, q) to E(x, k) and obtain the necessary lemmas for
proving our results.

We have

I(x, h, q) =
∑

*

a(q)

∫ 2x

x

(ψ(y + h; q, a) − ψ(y; q, a))
2
dy

−
2h

φ(q)

∑

*

a(q)

∫ 2x

x

(ψ(y + h; q, a) − ψ(y; q, a)) dy +
h2x

φ(q)

=S1 −
2h

φ(q)
S2 +

h2x

φ(q)
. (2.1)
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Now

S2 =
∑

*

a(q)

∑

n≡a(q)

Λ(n)

∫

[x,2x]∩[n−h,n)

1 dy

=
∑

n
(n,q)=1

Λ(n)f(n, x, h),

where

f(n, x, h) =

∫

[x,2x]∩[n−h,n)

1 dy =



















n− x, for x ≤ n < x+ h

h, for x+ h ≤ n ≤ 2x

2x− n+ h, for 2x < n ≤ 2x+ h

0, elsewhere.

(2.2)

Since
∑

x≤n≤2x+h
(n,q)>1

Λ(n) =
∑

p|q

∑

ν
x≤pν≤2x+h

log p≪
∑

p|q

log p≪ log q, (2.3)

we conclude
S2 =

∑

x<n≤2x+h

Λ(n)f(n, x, h) +O(h log q). (2.4)

To evaluate sums involving f(n, x, h) we use the following result.

Lemma 1. Let C(x) =
∑

n≤x cn. Then we have

∑

x<n≤2x+h

cnf(n, x, h) =

∫ 2x+h

2x

C(u) du −

∫ x+h

x

C(u) du (2.5)

where cv = 0 if v is not an integer.

Proof. Since the left-hand side is

∫ 2x+h

x

f(u, x, h) dC(u) = −

∫ 2x+h

x

C(u) duf(u, x, h)

= −

∫ x+h

x

C(u) du+

∫ 2x+h

2x

C(u) du ,

the lemma follows.

Now writing
R(x) = ψ(x) − x, (2.6)

we obtain on taking C(x) = ψ(x) in Lemma 1 that

S2 = hx+

∫ 2x+h

2x

R(u) du−

∫ x+h

x

R(u) du. (2.7)

To evaluate S1, we use the following lemma.
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Lemma 2. For real numbers an and bn we have

∫ 2x

x





∑

y<n≤y+h

an









∑

y<m≤y+h

bm



 dy =
∑

x<n≤2x+h

anbnf(n, x, h)

+
∑

0<k≤h





∑

x<n≤2x+h−k

(anbn+k + an+kbn)f(n, x, h− k)



 .
(2.8)

Proof. The left-hand side of (2.8) is

=
∑

x<m,n≤2x+h
|m−n|≤h

anbm

∫

[x,2x]∩[n−h,n)∩[m−h,m)

1 dy.

The terms n = m give the first term on the right of (2.8). The terms with n < m
are

=
∑

x<n<m≤2x+h
m−n≤h

anbmf(n, x, h− (m− n)),

and letting m = n+ k this becomes

∑

0<k≤h





∑

x<n≤2x+h−k

anbn+kf(n, x, h− k)



 .

The terms m < n contribute the symmetric term in (2.8).

By Lemma 2 we see that

S1 =
∑

x<n≤2x+h
(n,q)=1

Λ2(n)f(n, x, h) + 2
∑

0<k≤h
k≡0(q)

∑

x<n≤2n+h−k
(n(n+k),q)=1

Λ(n)Λ(n+ k)f(n, x, h− k).

A calculation similar to (2.3) shows that we may drop the conditions (n, q) = 1 and
(n(n+ k), q) = 1 in the above sums with an error

≪
h2

q
log2 x+ h log2 x. (2.9)

Thus we have

S1 = S3 + 2S4 +O((1 +
h

q
)h log2 x), (2.10)

where
S3 =

∑

x<n≤2x+h

Λ2(n)f(n, x, h) (2.11)

and
S4 =

∑

0<j≤h/q

∑

x<n≤2x+h−jq

Λ(n)Λ(n+ jq)f(n, x, h− jq). (2.12)
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To evaluate S3 we let

P (x) =
∑

n≤x

Λ2(n) − x log x+ x (2.13)

and on applying Lemma 1 with C(x) =
∑

n≤x Λ2(n) we obtain

S3 =
(2x+ h)2

2
log(2x+ h) −

(2x)2

2
log 2x−

(x+ h)2

2
log(x+ h)

+
x2

2
log x−

3xh

2
+

∫ 2x+h

2x

P (u) du−

∫ x+h

x

P (u) du

=hx log x+ x2 log(
(1 + h

2x )2

(1 + h
x )

1
2

) + hx(−
3

2
+ log

4(1 + h
2x )2

(1 + h
x )

)

+
h2

2
log(

2x+ h

x+ h
) +

∫ 2x+h

2x

P (u) du−

∫ x+h

x

P (u) du. (2.14)

For S4, we take C(u) =
∑

0<n≤u Λ(n)Λ(n+ jq) in Lemma 1 and obtain

S4 =
∑

0<j≤ h
q

{(

∫ 2x+h−jq

2x

−

∫ x+h−jq

x

)
∑

n≤u

Λ(n)Λ(n+ jq) du}

=

∫ 2x+h

2x

∑

0<j≤ u−2x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du

−

∫ x+h

x

∑

0<j≤ u−x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du. (2.15)

On combining our results on S1, S2, and S3 we obtain

I(x, h, q) =hx log x+ x2 log(
(1 + h

2x)2

(1 + h
x )

1
2

) + hx(−
3

2
+ log

4(1 + h
2x )2

(1 + h
x )

)

+
h2

2
log(

2x+ h

x+ h
) + 2

∫ 2x+h

2x

∑

0<j≤ u−2x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du

− 2

∫ x+h

x

∑

0<j≤u−x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du−
h2x

φ(q)

−
2h

φ(q)

(

∫ 2x+h

2x

R(u) du−

∫ x+h

x

R(u) du

)

+

∫ 2x+h

2x

P (u) du−

∫ x+h

x

P (u) du+O(
h2 log2 x

q
) +O(h log2 x).

(2.16)

We see that if h/q ≤ 1 the double sums above vanish and by the prime number
theorem the terms with R(u) and P (u) contribute ≪ h(1 + h

φ(q) )
x

logA x
. Thus
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equation (1.16) follows from (2.16). To evaluate the double sums over primes in
(2.16), we use (1.8) and find

∫ 2x+h

2x

∑

0<j≤ u−2x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du

−

∫ x+h

x

∑

0<j≤ u−x
q

∑

n≤u−jq

Λ(n)Λ(n+ jq) du

= x
∑

0<j≤h/q

(h− jq)S(jq) +

∫ 2x+h

2x

∑

0<j≤ u−2x
q

E(u, jq) du

−

∫ x+h

x

∑

0<j≤ u−x
q

E(u, jq) du. (2.17)

To evaluate the singular series above we using the following result from [2].

Lemma 3. We have

∑

j≤y

(y−j)S(jq) =
y2

2

q

φ(q)
−
y

2
log y−

y

2

(

γ+log 2π−1+
∑

p|q

log p

p− 1

)

+Iδ(y, q), (2.18)

for any δ, 0 < δ < 1
2 , where, letting 2q = 2

(2,q) ,

Iδ(y, q) = 2qS(2qq)
1

2πi

∫ −δ+i∞

−δ−i∞

ζ(s)
∏

p∤2q

(

1 +
1

(p− 2)ps

)( y

2q

)s+1 ds

s(s+ 1)
.

Further, we have the estimates

Iδ(y, q) ≪ S(2q)y1−δδ−1(
1

2
− δ)−

3
2

∏

p|q

(

1 +
1

p1−δ

)(

1 +
1

p2(1−δ)

)

, (2.19)

and, for arbitrarily small fixed ǫ, η > 0,

min
0<δ< 1

2

Iδ(y, q) ≪ min(y(log log 3q)3, y
1
2 exp

(

log y

log 2q

)

qη), (2.20)

and

min
0<δ< 1

2

∑

Q/2<q≤Q

q|Iδ(
h

q
, q)| ≪ min(Q

3
2h

1
2 log

3
2 Q,Qh), (hǫ ≤ Q ≤ h). (2.21)

On combining (2.16) with (2.17) and (2.18) we obtain the following result which
we use in the proof of Theorems 1, 2, and 3.
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Lemma 4. We have

I(x, h, q) =hx log(
xq

h
) − hx



γ + log
π

2
+

1

2
+
∑

p|q

log p

p− 1
− log

(1 + h
2x )2

(1 + h
x )





+ x2 log(
(1 + h

2x )2

(1 + h
x )

1
2

) +
h2

2
log(

2x+ h

x+ h
) + 2qxIδ(

h

q
, q))

+ 2

∫ 2x+h

2x

∑

0<j≤u−2x
q

E(u, jq) du− 2

∫ x+h

x

∑

0<j≤ u−x
q

E(u, jq) du

−
2h

φ(q)

(

∫ 2x+h

2x

R(u) du−

∫ x+h

x

R(u) du

)

+

∫ 2x+h

2x

P (u) du−

∫ x+h

x

P (u) du+O(
h2 log2 x

q
) +O(h log2 x).

(2.22)

3. Proof of Theorems 1 and 2.

Assuming the Riemann Hypothesis, we have [1]

R(x) ≪ x
1
2 log2 x, (3.1)

and by partial summation

P (x) ≪ x
1
2 log3 x. (3.2)

Using Lemma 4 and these estimates we find after expanding the logarithmic terms
into power series that, assuming RH,

I(x, h, q) =hx log(
xq

h
) − hx



γ + log
π

2
+
∑

p|q

log p

p− 1





+O(h2) + 2qxIδ(
h

q
, q)

+ 2

∫ 2x+h

2x

∑

0<j≤ u−2x
q

E(u, jq) du− 2

∫ x+h

x

∑

0<j≤u−x
q

E(u, jq) du

+O(
h2x1/2 log2 x

φ(q)
) +O(hx1/2 log3 x). (3.3)

Since
∑

p|q

log p

p− 1
≪

∑

p≤2 log 2q

log p

p
≪ log log 3q, (3.4)

on using the former bound in (2.20), and the conjectured bound (1.11) we see that
(1.12) holds. In order to prove (1.13) we need to show that

min
0<δ< 1

2

qIδ(
h

q
, q) ≪ h1−ǫ. (3.5)
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If q > 1
2e

1
η (η will be specified in terms of ǫ below), then the latter bound in (2.20)

yields

min
0<δ< 1

2

qIδ(
h

q
, q) ≪ (hq)

1
2
+η. (3.6)

For q4ǫ ≤ h
q ≤ x

1
2
−2ǫ and ǫ < 1

4 we have

(hq)
1
2
+η ≪ (h(1+ 1

1+4ǫ )
1
2
+η = h(1− 2ǫ

1+4ǫ
)(1+2η) ≪ h1−ǫ

if we choose η = ǫ
3 . For 1 ≤ q ≤ 1

2e
1
η , we appeal to (2.19) with δ = ǫ to see that

(3.5) holds with the implied constant now depending on ǫ.
We now turn to the proof of Theorem 2, which depends on the following result

essentially due to Kaczorowski, Perelli, and Pintz [7].

Proposition 1. Assume the Generalized Riemann Hypothesis. Then, with
2 ≤ H ≤ N , we have uniformly in N that

∑

N≤k≤N+H

|E(x, k)|2 ≪ H
1
2 x2 log

11
2 x. (3.7)

We first derive Theorem 2, before making some comments on the proof of Propo-
sition 1. By (3.3) we have

∑

Q/2<q≤Q

∣

∣

∣

∣

∣

∣

I(x, h, q) − hx log(
xq

h
) + hx



γ + log
π

2
+
∑

p|q

log p

p− 1





∣

∣

∣

∣

∣

∣

≪ h2Q+ x
∑

Q/2<q≤Q

q|Iδ(
h

q
, q)|

+ h max
x≤u≤3x

max
0<v≤h

∑

Q/2<q≤Q

∑

0<j≤ v
q

|E(u, jq)|

+O((h2 + hQ)x1/2 log3 x). (3.8)

Now

∑

Q/2<q≤Q

∑

0<j≤ v
q

|E(u, jq)| ≤
∑

0<jq≤v

|E(u, jq)|

=
∑

k≤v

τ(k)|E(u, k)|

≤





(

∑

k≤v

τ2(k)

)(

∑

k≤v

|E(u, k)|2
)





1
2

≪ v
3
4 u log

3
2 v log

11
4 u (3.9)

where we have used
∑

k≤v τ
2(k) ≪ v log3 v and Proposition 1 in the last line. We

apply (2.21) for the term involving Iδ(
h
q , q) in (3.8), where the condition in (2.21)
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is satisfied for hǫ ≤ Q ≤ h, and conclude

∑

Q/2<q≤Q

∣

∣

∣

∣

∣

∣

I(x, h, q) − hx log(
xq

h
) + hx



γ + log
π

2
+
∑

p|q

log p

p− 1





∣

∣

∣

∣

∣

∣

≪ h2Q+ xmin(Q
3
2 h

1
2 log

3
2 Q,Qh)

+ h
7
4x log

17
4 x+ h2x1/2 log3 x. (3.10)

This proves Theorem 2. To prove the corollary, by (3.4) it is sufficient to pick Q so
that the right hand side of (3.10) (or (1.17)) is ≪ hQx log log x. This is the case if

h
3
4 log5 x ≤ Q ≤ h. If in addition, h = o(x) and Q = o(h/ log3 h), then the right

hand side of (3.10) is o(hQx) which gives the second part of the corollary.
Proposition 1 is due to Kaczorowski, Perelli, and Pintz. The proof may be found

in [7] with three modifications. First, in that paper the result is proved for the
Goldbach problem, and therefore one replaces the generating function S(α)2 with
|S(α)|2. This changes the main term to the one given in Proposition 1 but all error
terms are estimated with absolute value and therefore the rest of the proof goes
through unchanged. Second, as mentioned in [8], Lemma 1 should state

∫ 1/qQ

−1/qQ

|ψ′(2N,χ, η)|2dη ≪
N log4N

qQ
(3.11)

where the original had the log factor log2N instead; this slightly inflates the
power of the log term in Proposition 1. Finally, there is an additional error term
F (n,N,H) in the Kaczorowski, Perelli, and Pintz result that can be eliminated.
To do this, as in [7] one derives from (3.11) that

∑

1≤a≤q
(a,q)=1

∫ 1/qQ

−1/qQ

|R(η, q, a)|2dη ≪
N log4N

Q
(3.12)

and then by the Cauchy-Schwarz inequality one obtains

∑

1≤a≤q
(a,q)=1

∫ 1/qQ

−1/qQ

|R(η, q, a)|dη ≪
N

1
2 log2N

Q
. (3.13)

Using this estimate in the proof in [7] one obtains
∑

2 ≪ Px
1
2 log3 x which is smaller

than the error estimate for
∑

3 since Q ≤ 1
2x

1
2 . One then finds that F (n,N,H)

can be absorbed into the main error term.

4. Proof of Theorem 3

The proof of Theorem 3 closely follows the proof of Theorem 4 of [2] and therefore
we do not repeat parts of the proof that need no alterations from the earlier proof.
The information on twin primes we need is contained in the following Proposition.
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Proposition 2. Assume the Generalized Riemann Hypothesis. Then we have for
H

1
2 ≤ R ≤ H ≤ x that

∑

0<|j|≤H
R

∣

∣

∣

∣

∣

∣

∣

∑

R<q≤ H
|j|

E(x, jq)

∣

∣

∣

∣

∣

∣

∣

≪ H
1
2x log6 x. (4.1)

This generalizes Proposition 4 of [2] which is the case H = x.
Proof of Theorem 3. Using the GRH estimate (1.4) we have

∑

q≤Q

I(x, h, q) =
∑

Q0<q≤Q

I(x, h, q) +O(Q0hx log2 x), (4.2)

where Q0 will be chosen later. By (3.3) we therefore have on GRH that

∑

q≤Q

I(x, h, q) =
∑

Q0<q≤Q



hx log(
xq

h
) − hx



γ + log
π

2
+
∑

p|q

log p

p− 1









+O(Qh2) + 2x
∑

Q0<q≤Q

qIδ(
h

q
, q)

+ 2

2
∑

k=1

(−1)k

∫ kx+h

kx

∑

Q0<q≤Q

∑

0<j≤ u−kx
q

E(u, jq) du

+O(h2x1/2 log3 x) +O(Qhx1/2 log3 x) +O(Q0hx log2 x)
(4.3)

First, an easy computation gives

∑

Q0<q≤Q



hx log(
xq

h
) − hx



γ + log
π

2
+
∑

p|q

log p

p− 1









= Qhx log(
Qx

h
) −Qhx

(

γ + log
π

2
− 1 +

∑

p

log p

p(p− 1)

)

+O(Q0hx log x).
(4.4)

Next by (2.21) we have, for hǫ ≤ Q0,
∑

Q0<q≤Q

qIδ(
h

q
, q) ≪ min(Q

3
2 h

1
2 log

3
2 Q,Qh). (4.5)

Finally, by Proposition 2 we have for h
1
2 ≤ Q0

∫ kx+h

kx

∑

Q0<q≤Q

∑

0<j≤u−kx
q

E(u, jq) du

=

∫ kx+h

kx







∑

0<j≤ u−kx
Q0

∑

Q0<q≤u−kx
j

−
∑

0<j≤u−kx
Q

∑

Q<q≤u−kx
j






E(u, jq) du

≪ h max
0≤H≤h

Q0≤R≤Q

∣

∣

∣

∣

∣

∣

∣

∑

0<j≤ H
R

∑

R<q≤H
j

E(x, jq)

∣

∣

∣

∣

∣

∣

∣

≪ h
3
2x log6 x. (4.6)
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We now choose Q0 = h
1
2 . Therefore the conditions in equations (4.5) and (4.6)

are satisfied, and Theorem 3 follows from (4.3), (4.4), (4.5), and (4.6).

Proof of Proposition 2. We sketch the modifications needed in the proof of
Proposition 4 in [2]. Since E(x,−k) = E(x, k) we need only consider positive j.
By (7.7) and (7.16) of [2] we have

E(x, jq) = 2I2 + I3 + E1 + E2 +O(log jq). (4.7)

We shall denote

∑

H,R

f(j, q) =
∑

j≤H
R

∣

∣

∣

∣

∣

∣

∣

∑

R<q≤H
j

f(j, q)

∣

∣

∣

∣

∣

∣

∣

.

Then Lemma 7.2 of [2] states that, for |α− b
r | ≤

1
r2 , (b, r) = 1, and r ≤ H

1
2 ≤ R,

W (α) =
∑

H,R

e(jqα) ≪
H logH

r
. (4.8)

To prove Proposition 2 we sum over j and q in (4.7) and estimate each term on the
right hand side. This was done in [2] for the case H = x. The argument is identical
here only we apply the estimate (4.8) at the appropriate point in each estimation.
We obtain in this way

∑

H,R

I2 ≪ Hx
1
2 log5 x,

∑

H,R

I3 ≪
Hx

R
log6 x,

∑

H,R

E1 ≪ RH logH,
∑

H,R

E2 ≪
Hx

R
log3 x,

∑

H,R

log jq ≪ H log2 x.

(4.9)

Taking H
1
2 ≤ R ≤ H ≤ x (which forces R ≤ x1/2), then all of these error terms are

≪ H
1
2x log6 x and Proposition 2 follows.

5. Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of the lower bounds for I(x, h) in
[4] and G(x, q) in [2]. We make use of the arithmetic function

λR(n) =
∑

r≤R

µ2(r)

φ(r)

∑

d|r
d|n

dµ(d). (5.1)

We note the simple bound, for any ǫ > 0,

λR(n) ≪ τ(n) log2R ≪ nǫ log2R. (5.2)

We require the following lemma from [2].
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Lemma 5. Let

L(R) =
∑

r≤R

µ2(r)

φ(r)
= logR+O(1). (5.3)

For 1 ≤ R ≤ x, we have

∑

n≤x

λR(n)Λ(n) = ψ(x)L(R) +O(R log x), (5.4)

∑

n≤x

λR
2(n) = xL(R) +O(R2). (5.5)

Letting E(x; q, a) = ψ(x; q, a) − Eq,a
x

φ(q) , where Eq,a = 1 if (q, a) = 1 and is 0

otherwise, we have for 0 < |k| ≤ x, with N1, N2 as in (1.7), that

∑

N1(k)<n≤N2(x,k)

λR(n)Λ(n+ k) = S(k)(x − |k|) +O

(

kτ(k)x

φ(k)R

)

+O(
∑

r≤R

µ2(r)r log(2R/r)

φ(r)
|E(N2 + k; r, k) − E(N1 + k; r, k)|),

(5.6)
and

∑

N1(k)<n≤N2(x,k)

λR(n)λR(n+ k) = S(k)(x − |k|) +O

(

kτ(k)x

φ(k)R

)

+O(R2). (5.7)

Proof of Theorem 4. By (2.1), (2.7), and (3.1) we have on RH that

I(x, h, q) = S1 −
h2x

φ(q)
+O(

h2

φ(q)
x

1
2 log2 x). (5.8)

Let
∑

a(q) denote a sum over a complete set of residues modulo q. By (2.9) and the

equation above it we see that

S1 =
∑

a(q)

∫ 2x

x

(ψ(y + h; q, a) − ψ(y; q, a))
2
dy +O(h(

h

q
+ 1) log2 x)

=
∑

a(q)

∫ 2x

x

∣

∣

∣

∣

∑

y<n≤y+h
n≡a(q)

Λ(n)

∣

∣

∣

∣

2

dy +O(h(
h

q
+ 1) log2 x)

= S11 +O(h(
h

q
+ 1) log2 x). (5.9)

We now obtain a lower bound for S11 through the inequality

J(x, q) =
∑

a(q)

∫ 2x

x

∣

∣

∣

∣

∑

y<n≤y+h
n≡a(q)

(Λ(n) − λR(n))

∣

∣

∣

∣

2

dy ≥ 0. (5.10)
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Writing ∆R(n) = Λ(n) − λR(n), we have by Lemma 2 that

J(x, q) =
∑

a(q)

(

∑

x<n≤2x+h
n≡a(q)

(∆R(n))2f(n, x, h)

+ 2
∑

0<k≤h
k≡0(q)

(

∑

x<n≤2x+h−k
n≡n+k≡a(q)

∆R(n)∆R(n+ k)f(n, x, h− k)

)

)

= S11 −
∑

x<n≤2x+h

α(n, 0)f(n, x, h)

− 2
∑

0<k≤h
k≡0(q)

∑

x<n≤2x+h−k

α(n, k)f(n, x, h− k), (5.11)

where α(n, k) = Λ(n)λR(n + k) + Λ(n + k)λR(n) − λR(n)λR(n + k). To evaluate
these sums we use Lemma 1 and Lemma 5. In order to control the error term
O(R2) in (5.5) and (5.7) we assume

1 ≤ R ≤ x
1
2 . (5.12)

By (5.3),(5.4), (5.5), (5.12) and the prime number theorem we have that

∑

n≤x

α(n, 0) = x logR+O(x)

which on applying Lemma 1 gives together with (5.2) that

∑

x<n≤2x+h

α(n, 0)f(n, x, h) = hx logR+O(hx). (5.13)

By replacing x by x+ k in (5.6) and (5.7) and using the case of k negative in (5.6)
to handle the term Λ(n)λR(n+ k) we obtain

∑

n≤x

α(n, k) = S(k)x+O

(

kτ(k)x

φ(k)R

)

+O(R2)

+O
(

∑

r≤R

µ2(r)r log(2R/r)

φ(r)
(|E(x+ k; r, k)| + |E(x; r, k)| + |E(k; r, k)|)

)

.
(5.14)

By Lemma 1 we now obtain

∑

0<k≤h
k≡0(q)

∑

x<n≤2x+h−k

α(n, k)f(n, x, h− k)

=
∑

0<jq≤h

∑

x<n≤2x+h−jq

α(n, jq)f(n, x, h− jq)

= x
∑

0<j≤ h
q

(h− jq)S(jq) +O(R(x, h, q)), (5.15)
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where

R(x, h, q) =
hx

R

∑

0<j≤ h
q

jqτ(jq)

φ(jq)
+
h2

q
R2

+

2
∑

l=1

∑

0<j≤h
q

∫ lx+h−jq

lx

∑

r≤R

µ2(r)r log(2R/r)

φ(r)
max

v≤u+jq
|E(v; r, jq)| du.

(5.16)

By Lemma 3 we have

x
∑

0<j≤ h
q

(h− jq)S(jq) =
h2x

2φ(q)
−

1

2
hx log

h

q
+O(hx(log log 3q)3, (5.17)

and therefore we conclude by (5.8), (5.9), (5.10), (5.11), (5.13), (5.15) and (5.17)
that subject to (5.12) and RH

I(x, h, q) ≥ hx log
qR

h
+O(hx(log log 3q)3) +O(

h2

φ(q)
x

1
2 log2 x) +O(R(x, h, q)).

(5.18)
It remains to bound R(x, h, q). Since

∑

0<j≤h
q

jqτ(jq)

φ(jq)
≪

qτ(q)

φ(q)

∑

0<j≤ h
q

jτ(j)

φ(j)
≪

hqǫ

q
(1 + log

h

q
),

we see

R(x, h, q) ≪
h2xqǫ

qR
log

2h

q
+
h2

q
R2 +R1, (5.19)

where

R1 = h logR
∑

r≤R

µ2(r)r

φ(r)

∑

0<j≤ h
q

max
u≤2x+h

∣

∣E(u; r, jq)
∣

∣. (5.20)

The simplest way to bound R1 is to use the bound [1] E(x, q, a) ≪ x
1
2 log2(qx),

which assumes GRH. This was done in [4] and [2]. Heath-Brown observed that one
can do better by taking advantage of the averaging over j . To do this, we use
Hooley’s GRH estimate [6]

∑

*

a(q)

max
u≤x

|E(u; q, a)|2 ≪ x log4 x. (5.21)

This result without the max is a well known result of Turán and of Montgomery
[9]. Now in the inner sum in (5.20) we insert the condition (r, jq) = 1 with an error

≪
∑

0<j≤ h
q

(r,jq)>1

ψ(3x; r, jq) ≪
∑

0<j≤ h
q

∑

p|r

∑

n≤3x
p|n

Λ(n) ≪
h

q
log x

∑

p|r

1 ≪
h

q
log2 x.
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Since for (jq, r) = 1 the sequence of jq will run through a reduced set of residues
modulo r as j runs through a reduced set of residues modulo r, we see that

R1 ≪ h logR
∑

r≤R
(r,q)=1

µ2(r)r

φ(r)

∑

0<j≤ h
q

(j,r)=1

max
u≤2x+h

∣

∣E(u; r, j)
∣

∣+O(
h2R log3 x

q
) (5.22)

By Cauchy’s inequality and (5.21) we have

∑

r≤R
(r,q)=1

µ2(r)r

φ(r)

∑

0<j≤ h
q

(j,r)=1

max
u≤2x+h

∣

∣E(u; r, j)
∣

∣

≪
∑

r≤R
(r,q)=1

µ2(r)r

φ(r)

(

h

q

)
1
2
(

∑

0<j≤ h
q

(j,r)=1

max
u≤2x+h

∣

∣E(u; r, j)
∣

∣

2
)

1
2

≪

(

h

q

)
1
2 ∑

r≤R
(r,q)=1

µ2(r)r

φ(r)

(

1 +
h

qr

)
1
2
(

∑

*

j(r)

max
u≤3x

∣

∣E(u; r, j)
∣

∣

2
)

1
2

≪

(

h

q

)
1
2 ∑

r≤R

µ2(r)r

φ(r)

(

1 +

(

h

qr

)
1
2
)

x
1
2 log2 x

≪

(

h
1
2R

q
1
2

+
hR

1
2

q

)

x
1
2 log2 x. (5.23)

We conclude by (5.19), (5.22) and (5.23) that

R(x, h, q) ≪ hx
1
2 log3 x

(

h
1
2R

q
1
2

+
hR

1
2

q

)

+
h2xqǫ

qR
log

2h

q
+
h2R log3 x

q
+
h2R2

q
.

(5.24)
We now obtain from (5.18) that

I(x, h, q) ≥ hx log
qR

h
+O(hx(log log q)3) +R2,

where

R2 ≪ hx

(

h
1
2R

q
1
2x

1
2

log3 x+
hR

1
2

qx
1
2

log3 x+
hqǫ log x

qR
+
hR2

qx

)

.

We take

R =

(

qx
h

)
1
2

log3 x

and see that R2 = O(hx) subject to the condition that h
q ≪ x

1
3

qǫ log3 x
. We conclude

that

I(x, h, q) ≥
hx

2
log
(

( q

h

)3
x
)

−O(hx(log log x)3) (5.25)

which proves Theorem 4.
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